200939854 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種電聲轉換器之振膜及其製造方法, 特別揭不了一種具有提高靈敏度之電聲轉換器之振膜及 其製造方法。 【先前技術】 目前的可攜式電子產品,如MP3隨身聽、行動電 話PDA等等’其發展趨勢都是朝多功能性的整合以及 庫二巧,而麥克風為一般可攜式電子產品中不可缺少的主 要令、、且件之,自然也朝向輕、薄、短、小的趨勢發展, 且同犄要求更佳的效能與輸出表現,然而,麥克風之效 能表現大都取決於振膜的靈敏度。 請务閱圖1,為美國第7049051號專利,係揭露一 種聲學晶片1〇〇,晶片100利用CMOS標準製程製造, 包括一矽基板101 ’矽基板1〇1上表面依序形成有一第 一介電層1〇2、第一金屬層103、第二介電層104、第 二金屬層105、第三介電層1〇6、第三金屬層1〇7以及 4於頂面第四;I電層108,第一金屬層有網孔的圖 形1矽基板101的底面形成一凹穴1〇9 ,利用異向性乾 蝕刻方式穿過第四介電層1〇8、第三介電層1〇6、第二 介電層104和第-介電層1〇2以形成數個網孔ιι〇,並 利用等向性蝕刻在網孔11〇下方形成腔室112以及連接 腔室112與凹穴1〇9之間的通道ηι。 200939854 、/然而,如此利用等向性蝕刻方式製作出網孔11〇, 以形成之振膜結構,並不能有效控制基板ι〇ι盥第一金 屬層103之間的距離(基板101在此為背極板第一金 屬層103為振膜),因此易造成振膜之振幅空間不—, 使得氣流產生較不平均,在實際量產上品質容易不均. 再者’第-金屬層103作為振膜’金屬應力大且不易振 動’也影響了振膜的靈敏度。 請參閱圖2、3,為美國第6829131號專利,係揭 露一種以MEMS製程製作之電聲轉換器的振膜結構, 圖2為振膜200結構示意圖,圖3為延續圖。所示之振 膜200局部示意圖。其中,振膜2〇〇形成數個婉挺狀的 網孔2G1 ®形,且於製作後,利用聚亞酿胺(Polyimide ) 將網孔2 〇 1填補,此外,振膜2 0 0使用金屬為製作材料, 如此錯以非線性之特殊結構消除振膜細成型後的殘 留内應力。 Ο 然而,聚亞酼胺(P〇lyimide)&非半導體標準材料, 有吸收水氣’增加雜音的可能性,亦料㈣的靈 敏度’因此解決此—㈣實為#前產業界致力研究的課 題0 【發明内容】 ^有鑑於上述課題,本發明之目的在於提供一種可提 高振膜靈敏度之電聲轉換器及其振膜。 200939854 緣是,為達上述目的,本發明電聲轉換器之振膜及 其製造方&,係於C0MS|底上製作出第一振膜及第二 振膜之雙層型態的互補結構’以使第—振膜與第二能消 坪成型後的殘留内應力’藉以提昇整個振膜結構的靈敏 度。 由於本發明第一振膜具有第一凹洞群,而第二振膜 具有第二凹洞群,且第—振膜與第二振膜互相堆疊、遮 蔽彼此間的每1洞,以使本發明軸結構具有消拜成 里後的殘留内應力,藉此提高振膜的靈敏度,實為 之增益。 【實施方式】 一以下明參照圖4至圖16所示,說明依據本發明較 佳實施例之一種電聲轉換器之振膜的製造方法。 參照圖4所示,為一 CM〇S基底之結構示意圖。本 發明電聲轉換ϋ之製造方法,首先,提供—cm〇s製成 之基底1〇於基底10上表面沉積一 N型多晶矽層u, 且於N型多晶矽層11上分別沉積- P型多晶矽層12 t 一 ^ 、絕緣層13。於本實施例中,第一絕緣層13可 為二氧化矽或氮化矽等化合物。 ^照圖5所示,為CM〇s基底⑺上製作沉積結構 的示意圖。接菩,垚贫 _ 在第一絕緣層13上沉積一第一振膜 ' 、、施例中,第一振膜2〇係以低壓化學氣相沉 法衣成且第一振膜20之材質係選自多晶矽 200939854 (Poly-silic〇n )材料。 參照圖6所示,係於第一振 示意圖。接著,本發㈣於第—圖形之 先、頒衫寻製程步驟,再曝 .群21的圖形。於本 W作出-弟-凹洞 例T第一凹洞群21择以非楚 向性乾式钱刻方式(忉⑽)製成。 係以非4 .」 參照圖7所示,係於第一振膜20上制你山 構⑽意圖。接著,本發、^^沉積結 ❹及第-凹洞群21内沉積形二'二::膜,之 3〜双弟一絕緣層22。特予說 、=:弟-絕緣層22並無填滿第—凹洞群2ι。 苓知、圖8所示,係於第 構的示意圖。接著,w 層2上製作沉積結 一第月會於第二絕緣層22上沉積 弟一振膜30。於本實施例中, ' 化學氣相沉積法製成,且第二· J〇係以低壓 晶石夕(P〇ly-silicon)材料。、、之材質係選自多 〇 *二振膜30沉積於第二絕緣體 '群2〗内的第二絕緣層22上夹& 且第一凹洞 第m“ 亦為沉積的範圍,以使 f 一振膜30局部位於第-振膜2〇之第一凹洞群21 内。特別一提的是,第一I暖 振膜2。兩侧寬度。膜%兩側寬度是小於第- 參照圖9所示,係於第二振膜% 接著,本發明會於第二振膜3。上表 先、顯影等製程步驟,再以钱刻方式製作出^苐‘ 群31的圖形。於本實施例中一 /5 罘一凹洞群31係以非等 9 200939854 3?=式蝕刻方式(dlT⑽)製成’使得第二凹洞群 31與第一凹洞群21不互相重疊。 制,’、、、圖10所示,係顯示本發明在CMOS基底1〇 土:: MEMS結構之示意圖。接著’本發明係利 層4〇、 10上表面依序沉積、蝕刻出數層犧牲 42 43以及於每一犧牲層4〇、41、42 ' 43 頂面料電金屬層50、51、52、53。 ύ 54電屬層5°:·51、52、53皆以導電貫孔(Via) ,其中導電金屬層50亦通過導電貫孔 54電性連接於p 貝孔 膜30。 1夕日日矽層12、第一振膜20、第二振 接者於犧牲層43與導雪各厪爲 三絕緣層55,且第:絕绫 S 而沉積-第 槽56。由於繁f 層5兩側分別蝕刻形成有一 例,以使第 兩側寬度大於第二振膜兩 側使第—振膜20與導電貫孔54方 此製程步驟為習知M 更電性連接,惟 〇 參照圖U所 製程,故在此不作詳細贅述。 42、43上繫作不係顯不本發明在犧牲層40、41、 第三絕緣層55、^m意圖。接著,本發明會在 -氮化石夕材料的下保護層沉積、钱刻出 屬層62 ,並於犧牲層42 1金(=)材料的金 62钱刻成形數個通道63。.端之下保㈣61及金屬層 參照圖12所示,係顯示本發 魏结構之示意圖。接著,本發明會於犧㈣424二作 10 200939854 以姓刻方法形成數個钱刻孔64。 _ >’、圖1 3所示,係顯示本發明於金屬展卜制从 S'?:之示意圖。接著,本發明會於金“ 62 :、、冗 積一虱化石夕材料的上保護層61a,上伴護 : ㈣孔64填滿, I隻層…將數個 下保護層6!、上伴、4 構⑷,且金屬層62被 構。 呆護層―所包覆而形成一背板60結 (b ο 列灶槿M所不’係顯示本發明在背板60上製作蝕 方式在中央“會於背板60上,刻 側钱刻製作出全屬焊執:個曰孔65 ’並在背板6〇之兩 件。"墙墊區70’用以連接外部的電性元 結構之示=5戶’係頒不本發明在基底1 〇製作钱刻 〜、圖。接者,本發明會於基底10之底面以非 寺向性=學濕式㈣方法形成—共振室14。-面乂非 麥知、圖16所不,係顯示本發明在犧牲層仙、 在犧二之示意圖。最後,本發明會 俄狂摩40、41、42、43上以音孔65作為勿 而㈣成形—腔室8〇,以完成本發明之電聲轉換:, =貫施财’腔室8Q係以等向性化學濕核刻方法 笛本發明之電聲轉換器,以背板60與第-振膜20、 弟一振膜30作為上、下電極’當第一振膜如 膜3〇受音壓產生振動,同時造成電容值改變, 11 200939854 成電信訊號。 由於背板60設有突狀結構64a的設計,可避免第 振膜20第一振膜30與背板60形成黏著現象,因 而可提高產品的良率。 其中,本發明電聲轉換器採用上 '下雙層的第一振 膜2〇:第二振膜30設計,且第一振膜20之第-凹洞 群21被第一振膜3〇所遮蔽,而第二振膜%之第二凹BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diaphragm of an electroacoustic transducer and a method of manufacturing the same, and particularly to a diaphragm having an electroacoustic transducer with improved sensitivity and a method of manufacturing the same. [Prior Art] Current portable electronic products, such as MP3 players, mobile phone PDAs, etc., are developing toward versatility and versatility, while microphones are not available in general portable electronic products. The lack of major orders, and pieces, naturally towards light, thin, short, small trends, and the same requires better performance and output performance, however, the performance of the microphone depends largely on the sensitivity of the diaphragm. Please refer to FIG. 1 , which is a patent of US Pat. No. 70,490,551, which discloses an acoustic wafer 1 . The wafer 100 is manufactured by a CMOS standard process, and includes a substrate 101 'the upper surface of the substrate 1 1 is sequentially formed with a first dielectric layer. The electric layer 1〇2, the first metal layer 103, the second dielectric layer 104, the second metal layer 105, the third dielectric layer 1〇6, and the third metal layer 1〇7 and 4 are fourth on the top surface; The electric layer 108 has a mesh pattern of the first metal layer. The bottom surface of the substrate 101 forms a recess 1 〇 9 through the fourth dielectric layer 1 〇 8 and the third dielectric layer by anisotropic dry etching. 1. The second dielectric layer 104 and the first dielectric layer 1〇2 are formed to form a plurality of mesh openings, and the chamber 112 and the connection chamber 112 are formed under the mesh 11〇 by isotropic etching. The channel ηι between the pockets 1〇9. 200939854, however, the mesh 11 is formed by the isotropic etching method to form the diaphragm structure, and the distance between the first metal layer 103 of the substrate ι〇ι is not effectively controlled (the substrate 101 is here) The first metal layer 103 of the back plate is a diaphragm), so that the amplitude space of the diaphragm is not easily caused, so that the airflow is less uneven, and the quality is easily uneven in actual mass production. Further, the 'metal layer 103 is used as the The diaphragm 'large metal stress and not easy to vibrate' also affects the sensitivity of the diaphragm. Referring to Figures 2 and 3, U.S. Patent No. 6,829,131 discloses a diaphragm structure of an electroacoustic transducer fabricated by a MEMS process, and Figure 2 is a schematic view of the structure of the diaphragm 200, and Figure 3 is a continuation diagram. A partial schematic view of the illustrated diaphragm 200 is shown. Among them, the diaphragm 2〇〇 forms a plurality of mesh-like mesh 2G1 ® shapes, and after fabrication, the mesh 2 〇 1 is filled with polyimide, and the diaphragm 200 uses metal. In order to make the material, the special internal structure of the nonlinearity is eliminated by the special structure of the nonlinearity. Ο However, P〇lyimide & non-semiconductor standard materials have the possibility of absorbing moisture and increasing the noise. It is also expected that the sensitivity of (4) will solve this problem. (4) It is the work of the former industry. Problem 0 [Invention] In view of the above problems, an object of the present invention is to provide an electroacoustic transducer and a diaphragm thereof which can improve the sensitivity of a diaphragm. 200939854 The reason is that, in order to achieve the above object, the diaphragm of the electroacoustic transducer of the present invention and the manufacturer thereof are formed on the C0MS| bottom to form a two-layer complementary structure of the first diaphragm and the second diaphragm. 'To maintain the sensitivity of the entire diaphragm structure by making the residual internal stress after the first diaphragm and the second can be formed. Since the first diaphragm of the present invention has a first cavity group, and the second diaphragm has a second cavity group, and the first diaphragm and the second diaphragm are stacked on each other to shield each hole between each other, so that the present The invention has a shaft structure having a residual internal stress after the bulging, thereby increasing the sensitivity of the diaphragm and gaining it. [Embodiment] A method of manufacturing a diaphragm of an electroacoustic transducer according to a preferred embodiment of the present invention will be described with reference to Figs. 4 to 16. Referring to Fig. 4, it is a schematic structural view of a CM 〇 S substrate. In the manufacturing method of the electroacoustic conversion crucible of the present invention, first, a substrate made of -cm〇s is provided, and an N-type polycrystalline germanium layer u is deposited on the upper surface of the substrate 10, and a p-type polycrystalline germanium is deposited on the N-type polycrystalline germanium layer 11, respectively. Layer 12 t a, insulating layer 13. In the present embodiment, the first insulating layer 13 may be a compound such as hafnium oxide or tantalum nitride. As shown in Fig. 5, a schematic diagram of a deposition structure is formed on the CM 〇s substrate (7). In the first insulating layer 13, a first diaphragm is deposited on the first insulating layer 13, and in the embodiment, the first diaphragm 2 is formed by a low pressure chemical vapor deposition method and the material of the first diaphragm 20 is Selected from polycrystalline germanium 200939854 (Poly-silic〇n) material. Referring to Figure 6, it is shown in the first vibration diagram. Next, the present (4) is preceded by the first figure, the process of finding the shirt, and then the pattern of the group 21. In this case, the first hole group 21 of the example T is made by a non-transitive dry money engraving method (忉(10)). Referring to Fig. 7, the structure of the mountain (10) is made on the first diaphragm 20. Then, in the present invention, the deposition layer and the first-cavity group 21 are deposited in the shape of a two-two: film, and the third layer is an insulating layer 22. Specifically, =: the brother-insulating layer 22 does not fill the first-cavity group 2ι. As shown in Fig. 8, it is a schematic diagram of the structure. Next, a deposition junction is formed on the w layer 2, and a diaphragm 30 is deposited on the second insulating layer 22 in the first month. In the present embodiment, 'chemical vapor deposition method is used, and the second layer is made of a low-pressure P〇ly-silicon material. The material of the first insulating layer 22 is deposited on the second insulating layer 22 of the second insulator 'group 2' and is also a deposition range. f A diaphragm 30 is partially located in the first cavity group 21 of the first diaphragm 2, in particular, the first I warm diaphragm 2. Both sides of the width. The width of both sides of the film is less than the first - reference As shown in Fig. 9, the second diaphragm is used. Next, the present invention is applied to the second diaphragm 3. The process of the first surface, the development process, and the like, and the pattern of the group 31 is produced by the money engraving. In the embodiment, a /5 凹 a cavity group 31 is made in a non-equal 9 2009 39854 3 = etch mode (dlT (10)) so that the second cavity group 31 and the first cavity group 21 do not overlap each other. ',, and FIG. 10 is a schematic view showing the MEMS substrate of the present invention in the CMOS substrate: MEMS structure. Then, the upper surface of the layer 4, 10 is sequentially deposited and etched into a plurality of layers. And at each sacrificial layer 4〇, 41, 42 '43 top fabric electrical metal layer 50, 51, 52, 53. ύ 54 electric layer 5°: · 51, 52, 53 are all conductive vias (Via), The intermediate conductive metal layer 50 is also electrically connected to the p-perforation film 30 through the conductive via hole 54. The first solar layer 12, the first diaphragm 20, and the second splicer are respectively disposed on the sacrificial layer 43 and the snow guide. The insulating layer 55, and the first: 槽 S is deposited - the first groove 56. Since the two sides of the fused layer 5 are respectively etched, an example is formed such that the width of the two sides is larger than the two sides of the second diaphragm to make the first diaphragm 20 The conductive through-hole 54 is a more electrically connected step of the conventional M, but is not described in detail herein with reference to the process of Figure U. 42, 43 is not shown in the sacrificial layer 40, 41 The third insulating layer 55, ^m is intended. Next, the present invention will deposit in the lower protective layer of the nitride-stone material, the money layer 62, and the gold 62 in the sacrificial layer 42 1 gold (=) material. A plurality of channels 63 are formed. The lower end of the protection (four) 61 and the metal layer are shown in Fig. 12. The schematic diagram of the present invention is shown. Next, the invention will be formed by sacrificing (four) 424 two for 10 200939854 by the surname method. Money engraved hole 64. _ > ', Figure 13 shows the schematic diagram of the invention from the metal exhibition system from S'?: Minghui in the gold "62:,, the accumulation of a fossil eve material of the upper protective layer 61a, on the support: (four) hole 64 filled, I only layer ... will be several lower protective layer 6!, upper companion, 4 structure (4), and the metal layer 62 is constructed. The protective layer is covered to form a backing plate 60 knot (b ο 槿 槿 所 所 所 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示 显示Produced all the welding: a hole 65 ' and two pieces in the back plate 6 。. " wall pad area 70 ' used to connect the external electrical element structure = 5 households Substrate 1 〇 钱 钱 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 The present invention shows a schematic diagram of the present invention at the sacrificial layer, and at the sacrificial level. Finally, the present invention uses the sound hole 65 as a sound hole 65 on the Russian madness 40, 41, 42, 43 to form the chamber 8 〇 to complete the present invention. The electroacoustic conversion:, = 贯施财' chamber 8Q is an isotropic chemical wet nucleation method, the electroacoustic transducer of the present invention, with the back plate 60 and the first diaphragm 20, the diaphragm 31 The upper and lower electrodes 'when the first diaphragm, such as the membrane 3, is vibrated by the sound pressure, and the capacitance value is changed, 11 200939854 becomes a telecommunication signal. Since the back plate 60 is provided with a protruding structure 64a The design can avoid the adhesion of the first diaphragm 30 and the back plate 60 of the first diaphragm 20, thereby improving the yield of the product. The electroacoustic transducer of the present invention adopts the first diaphragm of the upper and lower layers. The second diaphragm 30 is designed, and the first-cavity group 21 of the first diaphragm 20 is shielded by the first diaphragm 3, and the second diaphragm is second concave.
C 5^30被第振膜2〇所遮蔽,形成互相遮蔽、堆疊之 ^結構型態’使得原先第一振膜20及第二振膜30成 ' <產生之莰留内應力,能因本發明特殊設計,抵消殘 留的内應力,而有效增加電聲轉換器的靈敏度。 七此外’因第二振膜3〇之苐二凹洞群W的設計,可 2第二振膜3〇受側向外應力時,提供了應變空間,以 減夕外應力的影響,亦具有增加靈敏度之效果。C 5^30 is shielded by the second diaphragm 2 形成, forming a mutual shielding and stacking structure type 'the original first diaphragm 20 and the second diaphragm 30 are formed into a < generated residual internal stress, The invention is specially designed to offset the residual internal stress and effectively increase the sensitivity of the electroacoustic transducer. In addition, because of the design of the second cavity group W of the second diaphragm 3, the second diaphragm 3 is subjected to lateral outward stress, which provides a strain space to reduce the external stress and also has Increase the effect of sensitivity.
C 提的是,第二振膜3q上表面至下表面的厚 c 一振膜20之上表面至下表面的厚度,以使 結構較厚’如在第一振膜2。與第二振膜 為^材質時,較厚的第二振膜3G具有抵消第—振 列非應力;同理’如第一振膜2〇與第二振膜 川非為相同材質時,第二振膜 料製成,亦且右m振 為應變量較小的材 灸日Λ 膜20之殘留内應力的功效。 > '、、、囷17所示,為利用本發 振媒之第-較佳實例之立難分解; 2。為形成_狀’第,20具有第 =群第= 12 200939854 :凹洞群2i由數個相同大小 …有序地分佈於第一握膜2〇。士且每-凹洞 弟二摄膜30亦為矩形 第二凹洞群3 I係由 、〜、有第二凹洞群3 1, 货、由數個相同大 成,且每一凹洞杆 王矩形狀的凹洞組 .第二振膜3。另具有一第三凹:群弟,。’ 32亦由數個相同相同大小 ’…洞群 三凹洞群3 2與第二凹洞群 ^的凹洞組成,第 膜30,且不盥第— 0度角分佈於第二振 ”弟一凹洞群31干涉。並 之凹洞與第三凹洞 -中苐二凹洞群3Γ 參照圖18所亍2而為相同形狀。 厅不’為利用本發明夢!止 振膜之第-較佳實例之立體組合示音圖製作之 20之第-凹洞群21被第 :、圖。,-振膜 膜30之第_凹、·\〇所遮蔽’而第二振 ❹ 所遮蔽二::::及第三凹洞群32被第-振膜2。 L蚁稭以使弟一振膜2〇舆 雙層結構體,i$ /、弟一振膜3〇成為互補的 稱組具有靖除殘留内應力 此外,由於第二振膜30且古士 凹洞群31盥第二、、 /、有相互垂直分佈的第二 fB - — /5群32,提供兩種方向的瘅變空 :有構具有消除來自四種方向的外應力更 八有提幵靈敏度之功效。 所示’為圖18振膜沿剖線ΐ9·ΐ9之剖面 振膜1 振膜2G與第二振膜3g相互堆疊,且第一 J膜广與第二振膜3。之間具有第二絕緣層22。=中 振膜30局部I於第-振膜20之第一凹洞群21 13 200939854 内。另外,第二振膜30上表面至該第一凹祠^ 底面距離h大於該第一凹洞群21之每一凹洞咖 m L 2G與第:振膜3g的靈敏度。 蒼…圖20所示,為利用本發明製造方法 振膜第二較佳實例立體分解示意圖。顯示實施方式同於 =置而不且同第之t在於第一振臈2。與〜 形叹置,且第一凹洞群21、31 Λ聱to卢处、 ύ 形狀。 Ji為寻距銥狀分佈之彎弧 參照圖21所示,為利用本發明製造方法所作 振膜第二較佳實例之立體組合示意圖。顯示第一振膜 凹洞群21被第二振膜3。所遮蔽,而第二振 ,叙弟二凹洞群3〇被第-振膜所遮蔽,藉以使 弟-振膜20與第二振膜3Q成為互補的雙層結構體。 〇 特別一提的是,由於第一、二凹洞群2ι、Η均為 等距環狀分佈之彎弧形狀,具有提供消除來自任一方向 的外應力’大大提昇靈敏度之功效。 由於’本發明電聲轉換器之振膜係利用第一振膜 第1洞群21被第二振膜3〇所遮蔽,而第二振 之第二凹洞群30及第三凹洞群被第—振膜2〇所 敝之原理,形成互相遮蔽、堆疊之結構型態,使得原 ^―、二振膜20、3〇成型後產生之殘留張、拉應力, 3特殊結構之設計來大量釋放殘留⑽力,使低應力 '膜可增加對聲音之靈敏度;而在相同的靈敏度之要 14 200939854 求下本發明則可以縮小振動膜面積,更能符合小尺 之需求,實為功效之增益。 系不上所述’本發明具有以下之優點: (1)本發明電聲轉換器之振膜及其製造方法,i 膜結構採上、下雙声的筮 j瞄 ^ . ' 广又層的弟一振膜、第二振膜設計,第— 振膜之第一凹洞群為第二振膜所遮蔽,而第二振膜之第 ^ 一 i三凹洞群為第一振膜所遮蔽,就此形成互相遮蔽、 办堆s之結構型態,如此可抵消振膜殘留的張、拉應力, 有效地振膜靈敏度。 =)本〃發明電聲轉換器之振膜及其製造方法,其第 =膜與第二振膜以沉積製作,並於上端等向性钱刻出 腔室,下端異向性钱刻出漏孔,如此第—振膜 膜之振幅空間完令始4 ^ x 、, 凡王均句,不會產生亂流,且製作品質亦 平始。 、 (3) 本發明電聲轉換器之振膜及其製造方法,其第 -振膜為相同材質時,可採用第二振膜厚度大 * t的 '一振膜具有抵抗第一振膜之殘留内應 力的功效,有效提供振膜之靈敏度。 (4) 本發明電聲轉換器之振膜及其製造方法, :振膜與第二振膜非為相同材質時,第二振膜可以應變 里較小的材料製作,亦可且右 > j 〃、有抵抗第一振膜之殘留内應 力的# ’同樣地具有提昇振膜之靈敏度。 (5) 本發日月電聲轉換器之振膜及其製造方法,盆振 膜凹洞群的設計’可使振膜受侧向外應力時,具有應變 15 200939854 之空間’可減少外應力的影響’具有增加靈敏度之效果。 以上所述僅為舉例性,而非為限制性者。任何未脫 離本發明之精神與範疇,而對其進行之等效修改或變 更’均應包含於後附之申請專利範圍中。 【圖式簡單說明】 圖1為美國第704905!號專利之聲學晶片示意圖; 圖2為美國第6829131號專利之電聲轉換器的振膜結構 示意圖; 圖3為圖2之振膜局部示意圖; 圖4為一 CM0S基底之結構示意圖; 圖5為CMOS基底上製作沉積結構的示意圖; 圖6係於第一振膜上蝕刻出圖形之示意圖; 圖7係於第一振膜上製作出沉積結構的示意圖; 圖8係於第二絕緣層上製作沉積結構的示意圖; 圖9係於第二振膜上蝕刻出圖形之示意圖; 圖ίο係顯示本發明在CM0S基底上製作mems結構之 示意圖; 圖11係顯示本發明在犧牲層上製作沉積結構之示意圖; =.12係顯示本發明於犧牲層上製作蝕刻結構之示意 圖13係顯示本發明於金屬層上製作沉積結構之示意 圖; 〜 圖14係顯示本發明在背板上製作_結構示意圖; 16 200939854 圖2 5係顯示本發明在基底製 圖16係顯示本發明在犧牲層 圖; 作蝕刻結構之示意圖圖; 之間製作蝕刻結構之示意 圖17為利用本發明製造方法所制 實例之立體分解示意圖; 衣 辰獏之第一較佳 圖18為利用本發明製造方法所製作之振 實例之立體組合示意圖; 、 車父佳 0圖19為圖18振膜沿剖線H19之剖面圖. 圖20為利用本發明製造方法所製作之振膜之_ 一 i 實例之立體分解示意圖;以及 昂一車又佳 圖21為利用本發明製造方法所製作之振 實例之立體組合示意圖。 、圭 元件符號說明: 100 聲學晶片 101 矽基板 ❹102 第一介電層 103 第一金屬層 • 104 第二介電層 105 第二金屬層 106 第三介電層 107 第三金屬層 108 第四介電層 109 凹穴 110 網孔 111 通道 112 腔室 200 振膜 201 網孔 10 基底 11 N型多晶石夕層 12 P型多晶破層 13 第一絕緣層 17 200939854 14 共振室 20 第一振膜 21 第一凹洞群 22 第二絕緣層 30 第二振膜 31 第二凹洞群 32 第三凹洞群 40 犧牲層 41 犧牲層 42 犧牲層 43 犧牲層 50 導電金屬層 51 導電金屬層 52 導電金屬層 53 導電金屬層 54 導電貫孔 55 第三絕緣層 56 槽 60 背板 61 下保護層 61a 上保護層 62 金屬層 63 通道 64 姓刻孔 64a 突狀結構 65 音孔 70 金屬焊墊區 80 腔室 d 凹洞的寬度 h 第二振膜上表面至凹 洞内底面距離C mentions that the thickness of the upper surface to the lower surface of the second diaphragm 3q is the thickness of the upper surface to the lower surface of the diaphragm 20 so that the structure is thicker as in the first diaphragm 2. When the second diaphragm is made of a material, the thicker second diaphragm 3G has the offset of the first vibrating line non-stress; the same reason as the first diaphragm 2〇 and the second diaphragm are the same material, The second vibrating membrane is made, and the right m vibration is the residual internal stress of the moxibustion moxibustion membrane 20 with a small amount of strain. > ',, and 囷17 are difficult to decompose using the first preferred embodiment of the present invention; To form a _ shape ', 20 has a = group = 12 200939854: the cavity group 2i is distributed by several identical sizes ... in order to the first holding film 2 〇. And each of the two holes of the hole is also a rectangular second hole group 3 I system, ~, there is a second hole group 3 1, goods, from several identical large, and each hole king A rectangular cavity group. The second diaphragm 3. Another has a third concave: group brother,. '32 is also composed of a plurality of holes of the same size [...], a group of three concave holes 3 2 and a hole of the second concave group ^, the film 30, and not the first 0 degree angle distributed in the second vibration A cavity group 31 interferes with each other. The cavity and the third cavity-the middle two-hole group 3 are the same shape as shown in Fig. 18. The hall is not the first to use the dream of the present invention. The first-concave group 21 of the stereoscopic combination diagram display 20 of the preferred example is obscured by the first:-----the concave of the diaphragm 30, and the second vibration is shielded. :::: and the third cavity group 32 is the first diaphragm 2 L ants straw to make the brother a diaphragm 2 〇舆 double-layer structure, i$ /, brother a diaphragm 3 〇 become a complementary group In addition, due to the residual residual internal stress, the second diaphragm 23 and the Guseo cavity group 31盥 second, /, and the second fB - /5 group 32 which are perpendicularly distributed to each other, provide two directions of metamorphosis Empty: The structure has the effect of eliminating the external stress from the four directions and improving the sensitivity. The figure shown in Fig. 18 is the section of the diaphragm along the line ΐ9·ΐ9. The diaphragm 2G and the second diaphragm 3g Stacked on each other, and the first J There is a second insulating layer 22 between the film and the second diaphragm 3. The middle diaphragm 30 is partially I in the first cavity group 21 13 200939854 of the first diaphragm 21. In addition, the second diaphragm 30 is provided. The distance h from the surface to the first recess ^ bottom surface is greater than the sensitivity of each of the first cavity group 21 L L 2G and the: diaphragm 3 g. As shown in Fig. 20, in order to utilize the manufacturing method of the present invention A schematic exploded perspective view of a second preferred embodiment of the diaphragm. The display embodiment is the same as the = and the same t is in the first vibrating ridge 2. and the slant is set, and the first recess group 21, 31 Λ聱to The shape of the lug and the ύ. The curved arc of the Ji-shaped distribution is shown in Fig. 21. The three-dimensional combination diagram of the second preferred embodiment of the diaphragm made by the manufacturing method of the present invention shows the first diaphragm group 21 It is shielded by the second diaphragm 3, and the second vibration, the Descendant group 3〇 is shielded by the first diaphragm, thereby making the brother-diaphragm 20 and the second diaphragm 3Q a complementary two-layer structure. In particular, since the first and second concave groups 2 and Η are in the shape of a curved arc of equidistant annular distribution, they have the ability to provide elimination from either side. The external stress' greatly enhances the sensitivity of the effect. Since the diaphragm of the electroacoustic transducer of the present invention is shielded by the second diaphragm 3 by the first diaphragm 21 of the first diaphragm, the second diaphragm is concave. The principle that the hole group 30 and the third cavity group are smashed by the first diaphragm 2, forming a mutual shielding and stacking structure, so that the residual sheets generated after the original and second diaphragms 20 and 3 are formed, Tensile stress, 3 special structure design to release a large amount of residual (10) force, so that the low stress 'film can increase the sensitivity to sound; and under the same sensitivity 14 200939854, the invention can reduce the diaphragm area, more consistent with The demand for small feet is actually the gain of efficiency. The present invention has the following advantages: (1) The diaphragm of the electroacoustic transducer of the present invention and the method of manufacturing the same, the membrane structure of the i is taken up and down, and the double sound is applied. In the diaphragm and the second diaphragm design, the first cavity of the first diaphragm is shielded by the second diaphragm, and the first and third recesses of the second diaphragm are shielded by the first diaphragm. In this way, the structural form of shielding each other and stacking s is formed, so that the tensile and tensile stress of the diaphragm residual can be cancelled, and the sensitivity of the diaphragm can be effectively utilized. =) The diaphragm of the invention of the electroacoustic transducer and the manufacturing method thereof, wherein the first film and the second diaphragm are deposited, and the chamber is etched at the upper end, and the anisotropic money is leaked at the lower end. The hole, the amplitude space of the first diaphragm film is 4 ^ x, and the king is not turbulent, and the quality of the production is also flat. (3) The diaphragm of the electroacoustic transducer of the present invention and the method of manufacturing the same, wherein when the first diaphragm is of the same material, the diaphragm of the second diaphragm having a thickness of *t can be used to resist the first diaphragm. The effect of residual internal stress effectively provides the sensitivity of the diaphragm. (4) The diaphragm of the electroacoustic transducer of the present invention and the method of manufacturing the same, when the diaphragm and the second diaphragm are not of the same material, the second diaphragm can be made of a material having a small strain, or right > j 〃, which has the residual internal stress against the first diaphragm, has the sensitivity of lifting the diaphragm. (5) The diaphragm of the electroacoustic transducer of the present day and the manufacturing method thereof, the design of the basin diaphragm cavity group can make the diaphragm face the outward outward stress, and the strain 15 200939854 space can reduce the external stress The effect 'has the effect of increasing sensitivity. The above is intended to be illustrative only and not limiting. Any changes or modifications that come within the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an acoustic wafer of US Pat. No. 704,905!; FIG. 2 is a schematic diagram of a diaphragm structure of an electroacoustic transducer of US Pat. No. 6,829,131; FIG. 3 is a partial schematic view of the diaphragm of FIG. 4 is a schematic structural view of a CMOS substrate; FIG. 5 is a schematic view showing a deposition structure on a CMOS substrate; FIG. 6 is a schematic diagram of etching a pattern on the first diaphragm; FIG. 7 is a deposition structure formed on the first diaphragm. FIG. 8 is a schematic view showing a deposition structure on a second insulating layer; FIG. 9 is a schematic view showing a pattern etched on a second diaphragm; FIG. 9 is a schematic view showing a structure in which a MEMS structure is fabricated on a CMOS substrate; 11 shows a schematic diagram of the deposition structure of the present invention on a sacrificial layer; =.12 shows a schematic diagram of the present invention for forming an etched structure on a sacrificial layer. FIG. 13 shows a schematic view of the present invention for depositing a deposited structure on a metal layer; The invention is shown on the back sheet _ structure schematic diagram; 16 200939854 FIG. 2 shows the invention in the substrate pattern 16 shows the invention in the sacrificial layer diagram; Figure 17 is a schematic exploded perspective view showing an example of the manufacturing method of the present invention. The first preferred embodiment of the present invention is a three-dimensional combination diagram of an example of a vibration produced by the manufacturing method of the present invention. Fig. 19 is a cross-sectional view of the diaphragm of Fig. 18 along the line H19. Fig. 20 is a perspective exploded view of the diaphragm made by the manufacturing method of the present invention; Fig. 21 is a perspective view showing a three-dimensional combination of examples of vibrations produced by the manufacturing method of the present invention. Illustrated: 100 Acoustic Wafer 101 矽 Substrate ❹ 102 First Dielectric Layer 103 First Metal Layer • 104 Second Dielectric Layer 105 Second Metal Layer 106 Third Dielectric Layer 107 Third Metal Layer 108 Fourth Electrical layer 109 recess 110 mesh 111 channel 112 chamber 200 diaphragm 201 mesh 10 substrate 11 N-type polycrystalline layer 12 P-type polycrystalline layer 13 first insulating layer 17 200939854 14 resonant chamber 20 first vibration Film 21 First cavity group 22 Second insulating layer 30 Second diaphragm 31 Second cavity group 32 Third cavity group 40 Sacrificial layer 41 Sacrificial layer 42 Sacrificial layer 43 Sacrificial layer 50 Conductive metal layer 51 Conductive metal layer 52 Conductive metal layer 53 Conductive metal layer 54 Conductive through hole 55 Third insulating layer 56 Slot 60 Back plate 61 Lower protective layer 61a Upper protective layer 62 Metal layer 63 Channel 64 Last name hole 64a Projection structure 65 Sound hole 70 Metal pad area 80 chamber d the width of the cavity h the distance from the upper surface of the second diaphragm to the inner surface of the cavity
〇 18〇 18