[go: up one dir, main page]

TW200931159A - Stereo projection apparatus using polarized solid state light sources - Google Patents

Stereo projection apparatus using polarized solid state light sources Download PDF

Info

Publication number
TW200931159A
TW200931159A TW097146481A TW97146481A TW200931159A TW 200931159 A TW200931159 A TW 200931159A TW 097146481 A TW097146481 A TW 097146481A TW 97146481 A TW97146481 A TW 97146481A TW 200931159 A TW200931159 A TW 200931159A
Authority
TW
Taiwan
Prior art keywords
light
polarization
polarized
polarized light
incident
Prior art date
Application number
TW097146481A
Other languages
Chinese (zh)
Other versions
TWI450017B (en
Inventor
Barry D Silverstein
Richard P Corey
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Publication of TW200931159A publication Critical patent/TW200931159A/en
Application granted granted Critical
Publication of TWI450017B publication Critical patent/TWI450017B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0905Dividing and/or superposing multiple light beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/337Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using polarisation multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/363Image reproducers using image projection screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/365Image reproducers using digital micromirror devices [DMD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

A digital image projector includes a first polarized light source; a second polarized light source that is orthogonal in polarization state to the first polarized light source; a polarization beamsplitter disposed to direct light of either the first or second polarization along a common illumination axis; a MEMS spatial light modulator; and projection optics for delivering imaging light from the MEMS spatial light modulator.

Description

200931159 九、發明說明: 【發明所屬之技術領域】 本發明一般係關於用於投影一立體數位影像之一裝置, 且更特疋S之關於使用經偏振之固態雷射以建立用於數位 電影投影之立體影像的改良裝置及方法。 【先前技術】 為了視為習知的膠片投影機之合適替代物,數位投影系 ❹ 統必須滿足對影像品質之苛刻要求。此點對於多色電影投 影系統而言尤其重要。習知的電影品質投影機之一競爭2 的數位投影替代方案必須達到高性能標準,提供高解析 度、寬色域、高亮度及超過1,〇〇t i之連續圖框對比率。 動晝產業已逐漸朝生產及顯示三維(30)或感知立體内容 邁步以便向消費者提供在大型場所中之一増強的視 驗。雖然:多年來,娛樂公司(例如Disney)已在其主題公園 中提供此内容,且lmax已針對此内容建立特殊影院,但在 該兩種情形下’冑片已成為用於影像建立的主要媒體。為 建立立體影像,兩組膠片及投影機同時投影正交偏振,每 組各針對H觀眾㈣戴上對應的紅交偏振之眼 鏡,其針對每只眼睛阻擋一經偏振之光影像同時透射經正 交偏振之光影像。 在正進行的動晝產業向數位成像之轉變中,一些供應商 (例如lmax)繼續使用一二維投影系統來提供一高品質之立 體影像。然而,更普遍地,已修改習知投影機使其能夠進 行3D投影。 134048.doc 200931159 十對多色數位電景>投影之最有前景的習知投影解決方案 採用兩種基本類型之空間光調變器(SLM)之—作為影像形 成器件。該第一類型空間光調變器係由德州達拉斯市的德 州儀器公司開發的數位光處理器(DLp),—數位微鏡器件 (DMD)。 圖1顯示使用DLP空間光調變器之一投影機裝置1〇之一 簡化方塊圖。一光源12提供多色未偏振之光至一稜鏡組合 件14中例如菲利浦(Philips)稜鏡。稜鏡組合件μ將該 〇 彡色光分離成紅色、綠色及藍色成分波長帶並將每一波帶 引導至對應的空間光調變器2〇r、2〇g或2〇b。稜鏡組合件 14接著重新組合來自每一 SLM 2〇r、2〇g及2仙之調變光且 將此未偏振之光提供至一投影透鏡3〇以投影至一顯示螢幕 或其他適合表面上。 以DLP為主之投影機證實在自桌面至大電影之大多數投 影應用中提供必須的光輸出、對比率及色域之能力。然 ◎ 而,由於既有器件通常提供不超過2148χ1〇8〇像素,因此 存在固有的解析度之限制。此外,高組件及系統成本已限 制DLP設計用於更高品質數位電影投影中的適用性。此 外,飛利浦或其他適合的組合棱鏡之成本尺寸重量及 複雜性亦係顯著限制。 用於數位投影之第二類型之^間光調變器係lcd(液晶 器件)。該LCD藉由針對每一對應像素而選擇性地調變入 射光之偏振狀態來形成作為一像素陣列之一影像。作為用 於高品質數位電影投影系統之空間光調變器,LCD似乎具 134048.doc 200931159 有若干優點。LC〇S(矽上液晶)器件被認為在大型影像投影 中很有前景 '然而,咖組件在保持數位電影之高品質需 求尤其在顏色、對比度方面困難重重,因為高亮度投影 之高熱負载影響了材料的偏振品質。 肖於自以各知微顯示(见卩或LC〇s)為主之該等投影機形 成立體影像之習知方法基於兩個主要技術。$常用之技術 (例如Dolby實驗至所用之技術)類似於等人申請之 美國專利申請公開案第2〇〇7/〇127121中所述之技術,其中 © & &工間分離係用於區分左眼與右眼内容。濾光器係用在 白光照明系統中以暫時阻擋每一原色部分一部分之圖框時 間。例如對於左眼’將阻擋紅色、藍色及綠色(RGB)之較 低波長光譜一段時間。接著針對另一隻眼阻擋紅色藍色 及綠色(RGB)之較高波長光譜。將與每只眼相關聯之已調 整適當顏色之立體内容呈現給針對該眼之各調變器。觀眾 戴上一對應的濾光器組,其同樣僅透射兩個三色(RGB)光 譜組中之一個。此系統在以偏振為主之一投影系統上有優 勢,其中可將其影像投影至大多數螢幕上而不需要使用一 自訂的保持偏振之螢幕。然而,劣勢在於,濾光眼鏡很昂 貴且由於角度偏移、熱運動及傾斜會降低觀看品質。此 外,調節顏色空間很不容易且由於濾光存在顯著光損失, 此導致一更高要求的燈輸出或降低影像亮度。 第二種方法使用經偏振之光。在Svardal等人提出的美國 專利第6,793,341號中,其受讓與奥勒岗州斯18〇11以16市 InFocus公司,一方法使用遞送至兩個分離空間光調變器 134048.doc 200931159 之兩個正交偏振狀態之每一者。同時自該兩個調變器投^ 經偏振之光。觀眾戴上經偏振之眼鏡,該眼鏡具有針對左/ 眼及右眼之偏振透射輛,該等軸相對於彼此正交定向。儘 管此配置提供對光的有效使用,但其為一極昂貴之組態, 纟其在其中每一色帶均需要一空間光調變器之投影機設計 中。在另一方法中,修改一習知投影機以調變自一狀態快 速切換至另一狀態的交替偏振狀態。例如,其中一 DLp投 影機具有放置在光之輸出路徑中的一偏振器(例如藉由圖i © 中之一虛線所示之一位置16)時,可實現此方法。由於DLp 並不固有地設計成保持輸入光之偏振,此係由於該器件封 裝之視窗由於應力所致之雙折射會去偏振,因此需要該偏 振器。在該偏振器之後,類似於R〇bins〇n等人申請之美國 專利申請公開案第2006/0291 053中所述之類型的一消色差 偏振切換器可用在位置16處。此類型之一切換器將經偏振 之光在兩個正交偏振狀態(例如線性偏振狀態)之間交替旋 @ 轉以在使用者戴著偏振眼鏡時允許呈現兩個不同的影像, 即對每一眼睛呈現一影像。 歷史上’ Real-D系統利用左與右經圓形偏振之光,其中 該等眼鏡係由%波延遲器加一偏振器之一組合製成以在阻 播一狀態之前將該經圓形偏振之光改變回經線性偏振之 光。顯然’此對頭部傾斜較不敏感且該消色差偏振切換器 更易製造。然而’該等眼鏡相較於僅使用一偏振器之具體 實施例增加了花費。在任一情形下,顯示螢幕必須大體上 保持入射承載影像光的偏振狀態,且因此通常將其鍍銀。 134048.doc 200931159 鑛銀榮幕更Φ貝且對增益呈現角度敏感性。雖然此系統具 有-定價值’但以MEMS為主之系統存在一顯著光損失, 此係由於其需要偏振,從而減少了一半的輸出。同樣,由 於該偏振切換器,存在額外的光損失且增加了成本。以 LCOS為主之投影機的有利之處在於,在大多數組態中該 輸出通常已經偏振。由於透過高角度光學元件保持高偏振 控制很困冑,因此該等投影機一般更昂貴。因此,其他成 本抵消了效率中之任何增益。 照明效率之一連續問題係與光展量有關或同樣地,與拉 格朗日(Lagrange)不變量有關.在光學技術中,眾所周 知光展量與一光學系統可處理之光量有關。潛在可能的 係,光展量越大,影像越亮。從數值上而言,光展量與兩 個因數(即影像面積與數值孔徑)之乘積成比例。在圖2所示 之具有光源12、光學元件18及一空間光調變器2〇之簡化光 學系統方面,光展量為光源面積A1乘以其輸出角度01之因 數且等於調變器之面積A2乘以其接受角度θ2。為增加亮 度’需要自光源區域12提供盡可能多的光。作為一般原 理,當在光源處之光展量最接近匹配調變器處之光展量 時,該光學設計係有利的。 例如,增加數值孔徑來増加光展量使得該光學系統捕獲 更多光β同樣,增加源影像尺寸使得源自於一更大區域之 光來増加光展量。為在照明侧上使用一增加之光展量,該 光展量必須大於或等於照明源之光展量。然而,通常影像 越大’成本越高。對於其中矽基板及潛在缺陷隨尺寸增加 134048.doc -10- 200931159 之器件(例如LCOS及DLP組件)尤其如此。一般而言,光展 量增加導致一更複雜且更昂貴之光學設計。 當光源之光展量正好匹配空間光調變器之光展量時,效 率得到改良。較差匹配之光展量意味該光學系統光貧乏從 而不能夠向空間光調變器提供充足光,或效率低下,即實 際上拋棄產生用於調變之光的一實質部分。200931159 IX. DESCRIPTION OF THE INVENTION: FIELD OF THE INVENTION The present invention relates generally to a device for projecting a stereoscopic digital image, and more particularly to the use of a polarized solid state laser for establishing a projection of a digital cinema. An improved device and method for stereoscopic images. [Prior Art] In order to be considered as a suitable substitute for the conventional film projector, the digital projection system must meet the demanding requirements for image quality. This is especially important for multicolor film projection systems. One of the popular cinematic quality projectors, the Competing 2 digital projection alternative, must meet high performance standards, providing high resolution, wide color gamut, high brightness, and continuous frame contrast ratios over 1, 〇〇t i . The mobile industry has gradually moved towards producing and displaying three-dimensional (30) or perceived stereo content in order to provide consumers with a reluctant experience in one of the large venues. Although: For years, entertainment companies (such as Disney) have provided this content in their theme parks, and lmax has built special theaters for this content, but in both cases, 'slices have become the main medium for image creation. . In order to establish a stereoscopic image, two sets of film and projector simultaneously project orthogonal polarization, and each group wears corresponding red cross-polarized glasses for the H viewer (4), which blocks a polarized light image for each eye while transmitting orthogonality. Polarized light image. In the ongoing transition to digital imaging, some vendors (such as lmax) continue to use a two-dimensional projection system to provide a high-quality stereo image. More generally, however, conventional projectors have been modified to enable 3D projection. 134048.doc 200931159 The most promising conventional projection solution for ten-to-multicolor digital landscapes [Projection] uses two basic types of spatial light modulators (SLM) as image forming devices. The first type of spatial light modulator is a digital light processor (DLp) developed by Texas Instruments, Dallas, Texas, a digital micromirror device (DMD). Figure 1 shows a simplified block diagram of one of the projector devices 1 using a DLP spatial light modulator. A light source 12 provides multi-color unpolarized light to a unitary assembly 14, such as Philips. The 稜鏡 assembly μ separates the 彡 彡 light into red, green and blue component wavelength bands and directs each band to the corresponding spatial light modulator 2〇r, 2〇g or 2〇b. The 稜鏡 assembly 14 then recombines the modulated light from each SLM 2〇r, 2〇g, and 2 sen and provides this unpolarized light to a projection lens 3〇 for projection onto a display screen or other suitable surface on. DLP-based projectors demonstrate the ability to provide the necessary light output, contrast ratio, and color gamut in most projection applications from desktop to large movies. However, since existing devices usually provide no more than 2,148 χ 1 〇 8 〇 pixels, there is an inherent resolution limit. In addition, high component and system cost has limited the applicability of DLP design for higher quality digital cinema projection. In addition, the cost size, weight and complexity of Philips or other suitable combination prisms are also significant limitations. A second type of optical modulator for digital projection is a lcd (liquid crystal device). The LCD forms an image as a pixel array by selectively modulating the polarization state of the incident light for each corresponding pixel. As a spatial light modulator for high quality digital cinema projection systems, LCDs appear to have several advantages. The LC〇S (liquid crystal on-chip) device is considered to be very promising in large-scale image projections. However, the high-quality requirements of the digital components in maintaining digital movies, especially in terms of color and contrast, are difficult because of the high thermal load of high-brightness projection. The polarization quality of the material. Shaw's conventional methods of creating a volumetric image based on the microdisplays (see 卩 or LC〇s) are based on two main techniques. The commonly used technique (for example, the Dolby experiment to the technique used) is similar to the technique described in the U.S. Patent Application Publication No. 2/7/127,121, the entire disclosure of which is incorporated herein by reference. Distinguish between left and right eye content. The filter is used in a white light illumination system to temporarily block the frame time of a portion of each primary color portion. For example, the left eye 'will block the lower wavelength spectrum of red, blue, and green (RGB) for a period of time. The higher wavelength spectrum of red blue and green (RGB) is then blocked for the other eye. The stereoscopic content of the adjusted appropriate color associated with each eye is presented to each modulator for that eye. The viewer wears a corresponding filter set that also transmits only one of the two three color (RGB) spectrum sets. This system has an advantage in a projection system that is primarily polarized, where its image can be projected onto most screens without the need for a custom polarization-maintaining screen. However, the disadvantage is that the filter glasses are expensive and the viewing quality is degraded due to angular offset, thermal motion and tilt. In addition, adjusting the color space is not easy and there is significant light loss due to filtering, which results in a higher required lamp output or reduced image brightness. The second method uses polarized light. U.S. Patent No. 6,793,341 to Svardal et al., which is assigned to the two-segment space light modulator 134048.doc 200931159 by the 16th InFocus Corporation of Orleans State, USA. Each of the orthogonal polarization states. At the same time, the polarized light is cast from the two modulators. The viewer wears polarized glasses with polarized transmissions for the left/eye and right eyes that are oriented orthogonally relative to each other. Although this configuration provides efficient use of light, it is a very expensive configuration in a projector design where a spatial light modulator is required for each of the ribbons. In another method, a conventional projector is modified to modulate an alternating polarization state that is rapidly switched from one state to another. For example, one of the DLp projectors can have a polarizer that is placed in the output path of the light (e.g., by one of the positions 16 shown by the dashed line in Figure i ©). Since DLp is not inherently designed to maintain the polarization of the input light, this is required because the birefringence of the window of the device package is depolarized due to stress. An achromatic polarization switch of the type described in U.S. Patent Application Publication No. 2006/0291 053, the entire disclosure of which is incorporated herein by reference. One of the types of switches alternately rotates the polarized light between two orthogonal polarization states (eg, a linear polarization state) to allow two different images to be presented when the user wears polarized glasses, ie for each One eye presents an image. Historically, the Real-D system utilizes left and right circularly polarized light, which are made up of a combination of a % wave retarder and a polarizer to polarize the circular polarization before blocking a state. The light changes back to linearly polarized light. Obviously this is less sensitive to head tilt and the achromatic polarization switcher is easier to manufacture. However, such glasses add expense compared to the specific embodiment in which only one polarizer is used. In either case, the display screen must substantially maintain the polarization state of the incident bearing image light and is therefore typically silver plated. 134048.doc 200931159 The silver mine is more Φ and has an angular sensitivity to gain. Although this system has a fixed value, there is a significant loss of light in a MEMS-based system, which reduces the output by half because it requires polarization. Also, due to the polarization switcher, there is additional light loss and increased cost. The advantage of a LCOS-based projector is that it is usually polarized in most configurations. These projectors are generally more expensive due to the difficulty of maintaining high polarization control through high angle optics. Therefore, other costs offset any gain in efficiency. One of the continuous problems of illumination efficiency is related to the amount of light spread or, similarly, to the Lagrange invariant. In optical technology, it is well known that the amount of light spread is related to the amount of light that an optical system can handle. Potentially, the greater the amount of light spread, the brighter the image. Numerically, the amount of light spread is proportional to the product of two factors, the image area and the numerical aperture. In the simplified optical system having the light source 12, the optical element 18 and a spatial light modulator 2〇 shown in Fig. 2, the light spread is a factor of the light source area A1 multiplied by its output angle 01 and equal to the area of the modulator. A2 is multiplied by its acceptance angle θ2. In order to increase the brightness, it is necessary to provide as much light as possible from the light source area 12. As a general rule, this optical design is advantageous when the light spread at the source is closest to the light spread at the matching modulator. For example, increasing the numerical aperture to add light spread allows the optical system to capture more light. Similarly, increasing the source image size allows light from a larger area to add light. To use an increased amount of light on the illuminated side, the amount of light must be greater than or equal to the amount of light from the source. However, usually the larger the image, the higher the cost. This is especially true for devices in which the germanium substrate and potential defects increase in size with 134048.doc -10- 200931159, such as LCOS and DLP components. In general, an increase in light spread results in a more complex and more expensive optical design. When the light spread of the light source exactly matches the light spread of the spatial light modulator, the efficiency is improved. A poorly matched light spread means that the optical system is poorly light and cannot provide sufficient light to the spatial light modulator, or is inefficient, i.e., actually discarding a substantial portion of the light used to modulate the light.

在一可接受系統成本下,為數位電影應用提供足夠亮度 之目標已避開了 LCD與DLP系統兩者的設計者。以LCD為 主之系統已受到對經偏振之光之需求、減少效率及増加光 展量之影響,即使其中使用偏振復原技術。不需要經偏振 之光之DLP器件設計已證明在某種程度上更有效,但其仍 需要昂貴的壽命短暫之燈及成本很高的光學引擎,此使得 其太昂貴而無法與習知電影投影設備競爭。 為與習知高端以膠片為主之投影系統競爭且提供所謂電 子或數位電影,數位投影機必須能夠實現與此前設備相當 之電影亮度位準。在某些理念範圍中,典型電影院需要 1 〇’〇〇〇等級之流明投影至對角為40英尺等級之螢幕尺寸 上。在螢幕範圍中的任何位置均需要5,_流明至的,咖流 明以上。除此要求的亮度需求外,該等投影機亦必須實現 局解析度(2048x1080像素)且提供大約2〇〇〇〗之對比度及一 寬色域β 某些數位電影投影機設計已證明能夠實現此性能位準。 本及操作成本已成為障礙。滿足該等需求 的又景/裝置其成本每台通常超過$5Μ⑽且使用高瓦特數 I34048.doc 200931159 氣氣電孤燈’該燈需要在500至2000小時間之間隔置換一 次’一般的置換成本通常超過$1000 ^氙氣燈的大光展量 已顯著影響了成本與複雜性,因為其需要相對快之光學元 件以自該等光源收集且投射光。 DLP與LCOS LCD空間光調變器(Slm)兩者共有的缺點為 使用固態光源、尤其雷射光源之有限的能力。儘管在關於 相對光譜純度與潛在的高亮度位準方面,該等空間光調變 器對其他類型的光源佔有優勢,但固態光源需要不同的方 ❹ 法以有效使用該等優點。早期數位投影機設計中所使用的 用於調節、重定向及組合來自彩色光源之光的習知方法及 器件可限制雷射陣列光源所使用之程度。 固態雷射保證在光展量、壽命及整體光譜與亮度穩定性 方面之改良,但直至目前為止,其仍未能夠實現足夠程度 之可見光及數位電影可接受之成本。在最近的開發中, VCSEL(垂直腔式面射型雷射)雷射陣列已商品化且顯示具 φ 有作為潛在光源之一定的希望。然而,亮度仍不夠高;需 要來自多達九個個別陣列之組合光以便提供每一顏色所需 之亮度。 使用固態陣列用於數位投影機之習知方法亦存在其他困 難。可使用連貫雷射之一單石陣列,例如Kappel等人申請 之名稱為’’雷射照明之影像投影系統及其使用方法(Laser Illuminated Image Projection System and Method of Using Same)"的美國專利第5,7〇4,7〇〇號中所述之微雷射陣列。採 用此類型之方法,選定雷射數量以匹配該投影機之流明輸 134048.doc •12- 200931159 出之功率需求。然而,在一高流明招M 士 ^ . 冋/瓜明投影機中,此方法出現The goal of providing sufficient brightness for digital cinema applications at an acceptable system cost has circumvented the designers of both LCD and DLP systems. LCD-based systems have been affected by the need for polarized light, reduced efficiency, and increased light gain, even with polarization recovery techniques. DLP device designs that do not require polarized light have proven to be somewhat more efficient, but they still require expensive short-lived lamps and costly optical engines, which makes them too expensive to be used with conventional movie projections. Equipment competition. In order to compete with conventional high-end film-based projection systems and provide so-called electronic or digital cinema, digital projectors must be able to achieve film brightness levels comparable to previous devices. In some areas of the concept, a typical cinema requires a 1 〇'〇〇〇 level of lumen projection onto a 40-foot diagonal screen size. It takes 5, _ lumens to reach anywhere in the screen range. In addition to the required brightness requirements, these projectors must also achieve a local resolution (2048x1080 pixels) and provide a contrast ratio of about 2 inches and a wide color gamut. Some digital cinema projector designs have proven to be able to achieve this. Performance level. This and operating costs have become an obstacle. The cost of the scene/device that meets these needs is usually more than $5Μ(10) per unit and uses a high wattage I34048.doc 200931159 gas electric solitary lamp 'this lamp needs to be replaced once every 500 to 2000 hours' general replacement cost The large light spread, typically exceeding $1000 ^ xenon lamps, has significantly affected cost and complexity as it requires relatively fast optical components to collect and project light from such sources. A disadvantage shared by both DLP and LCOS LCD spatial light modulators (Slm) is the limited ability to use solid state light sources, especially laser light sources. Although these spatial light modulators have advantages over other types of light sources in terms of relative spectral purity and potential high brightness levels, solid state light sources require different methods to effectively use these advantages. Conventional methods and devices used in early digital projector designs to condition, redirect, and combine light from a colored source can limit the extent to which the laser array source is used. Solid-state lasers guarantee improvements in light spread, lifetime and overall spectral and brightness stability, but until now, they have not been able to achieve a sufficient level of visible light and digital cinema acceptable costs. In recent developments, VCSEL (Vertical Cavity Faceted Laser) laser arrays have been commercialized and show that φ has certain promise as a potential source of light. However, the brightness is still not high enough; combined light from up to nine individual arrays is needed to provide the brightness required for each color. There are other difficulties with the conventional methods of using solid state arrays for digital projectors. A single stone array of consecutive lasers can be used, such as the US Patent No. Kappel et al., entitled "Laser Illuminated Image Projection System and Method of Using Same" Micro-laser array as described in 5,7,4,7. Using this type of method, the number of lasers is selected to match the power requirements of the projector's lumens 134048.doc •12- 200931159. However, this method appears in a high-flowing M. ^ 冋 / 瓜明 projector.

=難。隨著器件數量之增加,製造產量下降且使用更 規模之陣列會帶來顯著的熱問題。相干性亦會對單石設 :十產生問題。雷射源的相干性通常導致人為因*,例如光 斑點因此,較佳使用其中相干性、空間與時間 :干性較弱或可忽略之一雷射陣歹,卜從改良色域觀點出 發,需要光譜相干性,同時f要少量的光譜加寬以降低對 干擾及斑點的敏感度同時減輕一單一光譜源之色移之效 應。此偏移可能發生在(例如)已分離紅色、綠色及藍色雷 射源之一三色投影系統中。若將單一顏色陣列中之所有雷 射連接在-起且其具有—窄波長,且在該操作波長中出現 一偏移,則整個投影機之白點及顏色會落在規格外。另一 方面,當以波長中之較小變化平均該陣列,則將大大降低 在整個輸出中對單一顏色偏移的敏感度。雖然可向該系統 增加組件以幫助減輕相干性,但除光源外減少相干性之大 多數構件利用組件(例如擴散器)以提高光源的有效範圍(光 展量)》此可導致額外的光損失且使系統費用增加。保持 雷射之較小光展量致能用於照明之光學列之一簡化,此係 極其需要的。 用於投影應用中之特別關注的雷射陣列係各種類型的 VCSEL陣列’其包括加州桑尼維爾(Sunnyvale)Novalux公 司的VECSEL(垂直延伸共振腔面射型雷射)及NECSEL (Novalux延伸共振腔面射型雷射)器件。然而,使用該等器 件的習知解決方法容易出現很多問題。一限制係關於器件 134048.doc •13· 200931159 產量。大部分由於關鍵組件的熱與封裝問題造成市售 VECSEL陣列在長度上延伸但在高度上受限·通常,一 慨肌陣列僅具有兩列發射組件。使用兩個以上列倾向 於大幅度增加產量困難。此實際限制使得難以提供用於投 影裝置中之-VECSEL照明系統。除該等問題外,習知 VECSEL設計容易產生功率連接及散熱困冑。該等雷射具 ❹ ❹ 有高功率;例如’帛率為⑽⑽之—雙列器件之兩倍的 一單-列雷射器件產生超過3 1之可用光。㈣,可能存 在顯著的電流需求及自未使用之電流之熱負載。壽命與光 束品質主要取決於穩定的溫度保持。 將該等雷射_合至投影系統存在不能使用習知方法完 全解決的另目難。例如,當使用Novak 雷射 時,每一顏色需要大約9個2列乘以24個雷射陣列以接近大 多、數影院之10,_流明需求。需要自主要熱敏感光學系統 分離該等f射源’以及電子遞送與連接及㈣聯之熱以允 許投影引擎的最佳性能。其他雷射源亦可行,例如習知邊 緣發射雷射—極體。然而,該等雷射源更難以—陣列形式 封裝且傳統上其在較高亮度位準下具有一較短壽命。 駕知解決方案不能完全解決雷射源與系統之光展量匹配 1題及刀離光學引擎熱與該等照明源之問題。此外,習知 解決方案不能解決更有效使用自該等雷射器件的經偏振之 光之方式。 可見’需要能夠利用偏振雷射光源之優點用於立體 數位電影投影系統的照明解決方案。 134048.doc 14 200931159 【發明内容】 本發明之一目的係解決利用數位空間光調變器(例如r)Lp 及lcos)立體成像及相關之微顯示空間光調變器器件之需 要。鑑於此目的’本發明提供一數位影像投影機,其包括 一第一經偏振之光源;一第二經偏振之光源,其與該第一 經偏振之光源在偏振狀態下正交;一偏振分光器,其係佈 置成沿一共同照明轴引導該第一或第二偏振之光;一 MEMS空間光調變器;及投影光學元件,其用於遞送來自 © 該MEMS空間光調變器之成像光。 本發明之一特徵係提供用於改良照明與調變組件之間光 展量匹配之方式。 熟S技術人士在結合附圖閱讀以下詳細說明之後,即可 明白本發明的此等及其他目的、特徵及優點,在該等附圖 中顯示並說明本發明之一解說性具體實施例。 【實施方式】 Φ 本說明特定言之係針對形成依據本發明的裝置之部分或 與所依據之裝置更直接配合之元件。應瞭解,未明確顯示 或說明之元件可採取熟習此項技術者所熟知的各種形式。 本文所示及所述之圖式係提供用於解說依據本發明之操 作原理且並非意欲顯示實際大小或規模而繪製。由於用於 本發明之雷射陣列之組件部分具有相對尺寸,因此某些放 大係必須的以強調基本結構、形狀及操作原理。 本發明可使用微機電結構(MEMS)基礎調變器,因為其 不會改變在一個別像素基礎上之傳入光之偏振。MEMS器 134048.doc 15 200931159 件包括微鏡結構(例如德州儀器dlp)、光柵閥器件(例如柯 達的GEM) ’及光快門器件(例如Unipixei 〇pcuity結構)。 本發明之具體實施例使用獨立定址之經偏振之雷射光源 解決一立體觀看系統中之改良亮度之需要且提供亦可允許 便於移除及模組取代雷射組合件之解決方案。本發明之具 體實施例額外提供減少熱效應之特徵,否則該等熱效應會 在用於以偏振為主之投影機中的光學組件中引起熱致應力 雙折射。本發明之具體實施例利用自一 VECSEL雷射陣列 或其他類型之固體光陣列發射之光的固有偏振。 參考圖3A及3B ’相對於一任意孔徑,斷面顯示一固態 光陣列44之縱橫比。如圖3 a所示,孔徑側填滿,此很容易= Difficult. As the number of devices increases, manufacturing yields drop and the use of larger scale arrays can present significant thermal issues. Coherence will also be set for a single stone: ten problems. The coherence of the laser source usually leads to artifacts, such as light spots. Therefore, it is better to use coherence, space and time: one of the weaker or negligible laser bursts, from the perspective of the improved color gamut. Spectral coherence is required, while f requires a small amount of spectral broadening to reduce sensitivity to interference and speckle while mitigating the effect of color shift of a single spectral source. This offset may occur, for example, in a three-color projection system that has separated red, green, and blue sources of lightning. If all of the lasers in a single color array are connected and have a narrow wavelength and an offset occurs in the operating wavelength, the white point and color of the entire projector will fall outside the specification. On the other hand, when the array is averaged with a small change in wavelength, the sensitivity to a single color shift across the output will be greatly reduced. While components can be added to the system to help reduce coherence, most components that reduce coherence other than the source utilize components (such as diffusers) to increase the effective range of the source (light spread). This can result in additional light loss. And increase the system cost. Maintaining a small amount of light spread from the laser enables a simplification of the optical column for illumination, which is highly desirable. Laser arrays of particular interest for projection applications are various types of VCSEL arrays, including VECSEL (Vertically Extended Resonator Emissivity Laser) and NECSEL (Novalux Extended Resonance) from Sunnyvale, California. Face-emitting laser device. However, conventional solutions using such devices are prone to many problems. A limitation relates to the device 134048.doc •13· 200931159 Yield. Most commercially available VECSEL arrays extend in length due to thermal and packaging issues of critical components but are limited in height. Typically, a muscle array has only two columns of firing assemblies. The use of more than two columns tends to significantly increase production difficulties. This practical limitation makes it difficult to provide a -VECSEL illumination system for use in a projection device. In addition to these problems, the conventional VECSEL design is prone to power connections and heat dissipation. The lasers have a high power; for example, a single-column laser device having twice the double-column device of (10) (10) produces more than 31 available light. (iv) There may be significant current demands and thermal loads from unused currents. Life and beam quality are primarily determined by stable temperature maintenance. The integration of these lasers into the projection system is difficult to solve with conventional methods. For example, when using a Novak laser, each color requires approximately 9 columns and 2 columns by 24 laser arrays to approximate the 10, lumens requirements of a large number of theaters. It is desirable to separate the f-sources and the electron delivery and connection and (4) heat from the primary heat sensitive optical system to allow optimal performance of the projection engine. Other laser sources are also possible, such as the conventional edge-emitting laser-pole. However, such laser sources are more difficult to package in an array format and traditionally have a shorter lifetime at higher brightness levels. The driver's solution can't completely solve the problem of the light source matching between the laser source and the system. The problem is that the knife is away from the optical engine and the lighting source. Moreover, conventional solutions do not address the manner in which polarized light from such laser devices is used more efficiently. It can be seen that there is a need for lighting solutions that can take advantage of polarized laser sources for stereoscopic digital cinema projection systems. SUMMARY OF THE INVENTION One object of the present invention is to address the need for digital imaging and related microdisplay spatial light modulator devices utilizing digital spatial light modulators (e.g., r) Lp and lcos). In view of the present invention, the present invention provides a digital image projector comprising a first polarized light source, a second polarized light source orthogonal to the first polarized light source in a polarization state, and a polarization splitting light. Arranging to direct the first or second polarized light along a common illumination axis; a MEMS spatial light modulator; and projection optics for delivering imaging from the MEMS spatial light modulator Light. One feature of the present invention provides a means for improving the amount of light matching between the illumination and the modulation component. These and other objects, features and advantages of the present invention will become apparent from the <RTIgt; [Embodiment] Φ This description is specifically directed to elements that form part of the apparatus according to the present invention or that more directly cooperate with the apparatus underlying it. It will be appreciated that elements not expressly shown or described may take various forms well known to those skilled in the art. The figures shown and described herein are provided to illustrate the principles of operation in accordance with the present invention and are not intended to depict actual size or scale. Since the component parts of the laser array used in the present invention have relative dimensions, certain amplifications are necessary to emphasize the basic structure, shape, and principle of operation. The present invention can use a microelectromechanical structure (MEMS) based modulator because it does not alter the polarization of incoming light on a different pixel basis. MEMS devices 134048.doc 15 200931159 pieces include micromirror structures (such as Texas Instruments dlp), grating valve devices (such as Kodak's GEM), and optical shutter devices (such as the Unipixei 〇pcuity structure). Embodiments of the present invention use a separately addressed polarized laser source to address the need for improved brightness in a stereoscopic viewing system and provide a solution that also allows for easy removal and module replacement of the laser assembly. Particular embodiments of the present invention additionally provide features that reduce thermal effects that would otherwise cause thermally induced stress birefringence in optical components used in polarization-based projectors. Embodiments of the invention utilize the inherent polarization of light emitted from a VECSEL laser array or other type of solid light array. Referring to Figures 3A and 3B', with respect to an arbitrary aperture, the cross-section shows the aspect ratio of a solid state light array 44. As shown in Figure 3a, the aperture side is filled, which is easy

導致在空間光調變器處之一較差的光展量匹配。在圖3B 中,該光源之縱橫比使用組合陣列44及44’,以與所示之圓 形孔徑達成一較佳匹配。接著描述組合多個陣列44之方 法。 藉由本發明之具體實施例用於減少熱負載之一方法係使 用一波導結構將光源與光調變組件隔離。將自多個固態光 源陣列之光耦合至光學波導中,由該光學波導該光遞送至 該調變器件。如此一來,光源至波導介面之幾何形狀可獲 得最佳化’使得該波導輸出與空間光調變器之縱橫比良好 匹配。實際上,此意味波導孔徑大體上填滿或稍微未填 滿’以保持最佳光展量程度。此配置亦有助於最小化照明 光學元件之速度要求。 為更加理解本發明,就本發明之裝置及方法之運作原理 134048.doc -16- 200931159 進行整體脈絡之說明將有所助益。圖4之示意圖顯示投影 裝置10之一基本配置,其用於本發明之多個具體實施例 中。圖中顯示三個光調變組合件4〇r、40g及40b,其中每 一者各調變來自一照明組合器42之紅色、綠色或藍色 (RGB)原色之一。在每一光調變組合件4〇r、4〇g及4〇b中, 一光學透鏡50將光引導至一偏振保持光導52中。在該光導 52之輸出處,一透鏡54透過一勻光器52(例如一蠅眼勻光 器或勻光管)將光引導至一空間光調變器6〇,該光調變器 〇 .可為一 DLP或其他MEMS空間光調變器組件。在本發明之 裝置中,此調變器必須接受兩個正交輸入偏振狀態之入射 光且必須保留該偏振差異,從而提供作為對應於個別輸入 狀1之兩個正交偏振狀態之輸出光。然而,該等輸出偏振 狀態可相對於該等輸入狀態旋轉。接著,圖4中一般以一 虛線輪廓指示(此係由於許多可能的具體實施例)之投影光 學元件70將調變光引導至一顯示表面8〇。觀眾所戴的經偏 φ 振之眼鏡58具有偏振器%及78 ,其具有正交偏振轴,此允 許獨立地觀看左眼與右眼的影像。圖4中所示之整體配置 糸用於隨後的本發明之具體實施例之一基本模型,其具有 用於照明組合器42中之各種配置。 圖5A顯示用於組合多個層44及44,以形成一較大陣列之 一方法。圖6以透視角度顯示圖5A之組態。在圖5八中,一 或夕個穿插配置之鏡面46可用於將額外陣列44,之光學軸與 陣列44對準放置,以提供圖3B以斷面顯示之配置。使用組 。陣列44之一更直接範例係顯示於圖5B中。然而,應瞭 134048.doc •17- 200931159 解,熱及間距需求會限制可以此方式堆疊多少陣列44。 可在一定程度上修改圖5A、5B及6中所示之配置以允許 使用具有不同偏振狀態之經偏振之光,如圖7八及78及圖8 之時序圖所示。 圖7A及7B顯示用於組合多個陣列44&amp;及44b以便形成一 較大陣列之一方法。圖7A顯示將光引導至一偏振分光器 (PBS)之固態光陣列44a,該偏振分光器朝透鏡50反射一偏 振狀態之光。圖7B顯示透過半波板64引導光從而改變發射 光之原始偏振狀態之固態光陣列44b。此光透射過偏振分 光器62。一邏輯控制器56控制固態光陣列44a及44b之時 序。 圖8之時序圖顯示,在光調變組合件4〇r、40g及40b之任 一者中’引導至相同空間光調變器60(圖4)之光如何在兩個 正交偏振狀態之間快速交替以相應地提供左眼與右眼影 像。此處,存在兩排經偏振之雷射,其顯示為固態雷射陣 列44a及44b。在陣列44a及44b處之經偏振雷射針對該等陣 列庫之一(例如)使用半波板64來提供正交偏振狀態之光。 在交替照明循環之一半期間,對陣列44a供電,如圖7A所 示。此光自一偏振分光器62反射。在交替照明循環之另一 半,給陣列44b通電,如圖7B所示。此光透射過偏振分光 器62。對於非立體應用而言,自經偏振之雷射44a及44b之 光可一起使用以提供一更免之成像器,或以一半功率使用 以平衡每一雷射源之壽命。 此配置有利地使任一偏振之光處在相同照明軸上。對於 134048.doc • 18· 200931159 圖5B中之-單-通道而言,此方法之光展量與先前所示之 組態保持相同。因此’在其中將兩個偏振狀態均成像之非 立體應用中,該光源之亮度有效加倍。然而,在其中需要 立體成像之情形中,在一特定時刻僅使用一單一光源,使 得有效亮度與圖5B之配置保持相同。 圖9A及9B分別顯示照明組合器42之一具體實施例之側 視與正交圖,該照明組合器42組合來自4個固態光陣列44 之雷射光’使其集中在-較小區域内。一光重定向稜鏡3〇 β 具有一入射面32,其接受自陣列44在一發射方向D1上發射 之光。將光重定向至一輸出方向D2,該方向大體上正交於 發射方向D1。光重定向稜鏡3〇具有一重定向表面刊,其具 有光重定向刻面38。光重定向刻面38相對於發射方向⑴成 一斜角,且向自雷射26發射之光提供全内反射(TIR)。當 如圖9A及9B所示錯開時,該等特徵有助於使此照明之光 路徑變窄,從而提供一更窄之光束。如圖9B所示,光陣列 ❹ 44具有在一長度方向L上延伸之多個雷射26 ^光重定向刻 面3 8及重定向表面36上之其他刻面亦在方向L上延伸。 可以有多種變化形式。例如,圖丨〇之斷面側視圖顯示一 替代具體實施例,其中按比例調整光重定向稜鏡3〇之光引 導刻面38以一次重定向來自雷射26之多列之光。入射面32 未必一定要與發射方向D1垂直,此允許光陣列44之配置具 有一定程度之偏移,且需要將光重定向稜鏡3〇之折射指數 η考慮在内。 圖11之方塊示意圖顯示’在使用交替偏振狀態之一具體 134048.doc -19- 200931159 實施例中’如何利用多個光重定向稜鏡30來提供更高的亮 度。如先前參考圖7A及7B所述,交替照射來自光陣列44a 及44b之照明,透過偏振分光器62將正交偏振狀態之光引 導至空間光調變器60以提供一立體影像。 圖12之斷面侧視圖顯示在照明組合器42中之光重定向稜 鏡30之另一具體實施例,其針對使用固態陣列,提供比圖 9A至1 0中所示之具體實施例更緊密之照明配置。在此具體 實施例中,光重定向稜鏡具有兩個重定向表面36,其接受 來自彼此對向之陣列44之具有相對發射方向〇1及di,之 光。每一重定向表面36具有兩種類型的刻面一光重定向 刻面38及一入射刻面28,該入射刻面28垂直於來自對應陣 列44之入射光。此允許藉由將來自一抗反射塗層面之少量 剩餘光倒反射回至各雷射中,而更容易將各種雷射模組與 光重定向稜鏡30對準》此倒反射可用作建立一極小的外部 共振腔之一構件,此會導致雷射中模式不穩定。雖然此模 式跳躍可視為通常應用下之雜訊,但此雜訊可藉由進一步 減少雷射相干性(及内部雷射相干性)增加投影值,從而減 少螢幕平面處的可見斑[此外’使用此雙側方法,雷射 模組與來自彼此相鄰之不同模組之光交錯,從而在將該光 進一步光學整合至該光學系統中時,提供更進一步空間混 合之H此同樣有助於減少可能的斑點且提高系統均 勻性。 雖然可見,對於雷射44,稜鏡3〇之此定向係較佳,但並 不需要相對於輸入或輸出面垂直之入射光用於組合該等照 134048.doc •20· 200931159 明源。然而,需要在表面34處離開稜鏡3〇之重定向光束大 體上彼此平行。實現此需要考慮多個因數。該等因數包括 至每一側上之輸入刻面的每一側上之雷射44之入射角的組 合(由於該等角度可不相同)及基於材料之折射指數之稜鏡 中之折射。此外,必須考慮自每一側之光重定向刻面3 8之 反射(同樣’該等角度在每一側上可不同),且其與稜鏡之 折射之組合必須協作使得來自離開面之輸出光束平行。 圖14之方塊示意圖顯示投影機裝置1〇之一具體實施例, 其在每一顏色通道中使用光重定向稜鏡3〇。每一光調變組 合件40r、40g及40b具有一對光重定向稜鏡30,該等稜鏡 3 〇具有與針對圖13所述之偏振引導組件之一類似配置。在 每一光調變組合件中,將來自一或其他光重定向稜鏡3〇之 經偏振之光透過偏振保持光導52引導至透鏡50且透過偏振 分光器62引導至勻光器51。空間光調變器60係一數位微鏡 或調變光之其他器件’其相對於輸入光之正交方位保持輸 出光之兩個正交方位。在設計成使用一微鏡器件之角度調 變的所示具體實施例中’塗布薄膜之表面68經處理以根據 入射光之入射角度反射或透射該入射光以便將調變光引導 至一二色性組合器82。二色性組合器82具有二色性表面84 之一配置’其根據波長選擇性地反射或透射光,從而將來 自每一光調變組合件40r、40g及40b之調變光透過投影光 學元件70組合成一單一光學路徑。 圖15之方塊不意圖顯不類似於圓14之具體實施例之一且 體實施例中之投影裝置10的一替代具體實施例,但其不包 134048.doc -21 · 200931159 括光導52。此具體實施例係有利的,因為光導52易於劣化 透射光之偏振。針對此一具體實施例,由於保持偏振狀 態’透鏡陣列將提供均勻化照明之優點。然而,此類型之 具體實施例不能享受光導52所提供之優點,例如改良之散 熱。在任一具體實施例中’雷射光均可用於近場條件或遠 場條件中’其中提供光之預混合以降低可能的斑點且進一 步改良進入勻光器5 1之均勻化光學元件中之光的均勻性。 藉由微鏡或其他微機電器件調變經偏振之光。大多數微 機電結構(MEMS)(例如DLP器件)使用通常由鋁形成的一金 屬反射器。金屬鏡面當處理自一偏斜角之光時,在反射時 建立極小的相移。較佳偏振方位具有與微鏡之鉸鏈樞轉傾 斜度對準或正交之偏振轴,其中該DLP器件在反射後保持 該偏振狀態,如圖15所示。轴A(參看圖16)指示一 DLP微鏡 之鉸鏈樞轉線。然而’相對於微鏡之平面沿其他轴定向之 偏振狀態可用於剩餘偏振之最小化效應。 本發明允許本文所述之範例性具體實施例之多個變化。 例如,可使用各種偏振雷射光源作為VECSE]L及其他雷射 陣列之替代。光重定向稜鏡30可由許多高度透射性材料製 成。對於低功率應用,可選擇塑膠,並使用對該零件引致 極小應力之模製程序。同樣,希望具有選定之材料以使得 該等材料引致最小應力或熱致雙折射。諸如。〇11化學公司 的丙烯酸或Ze〇nex之塑膠係此類材料之範例。其中在光重 定向稜鏡30用於以偏振為主之一光學系統中的情形下,此 尤其重要。 134048.doc •22- 200931159 對於其中需要許多高功率雷射之較高功率應用(例如數 位電影)而言’塑膠與光引導稜鏡30—起適用並不實際, 因為來自極小位準之光學吸收的熱積累會最終損壞該材料 且劣化透射。在此情形下,玻璃係較佳選擇。同樣,對於 以偏振為主之投影機,應力雙折射可能成為一問題。在此 情形下’可使用具有低雙折射應力係數之玻璃,例如 SF57 ° 另一選擇係使用一極低吸收的光學玻璃(例如熔融矽 石)’以防止加熱材料且因此阻止雙折射發生。該等類型 之材料可能並不有助於建立一模製玻璃組件,因此需要習 知拋光及/或多個零件之組裝以組成完整的稜鏡。當需要 模製時,較佳進行一緩慢的模製程序,且需要退火以減少 任何固有應力。可能需要一乾淨的偏振器來移除任何旋轉 的偏振狀態’該等狀態可能從任何剩餘雙折射發展。此主 要係效率、組件成本與所需偏振純度之間的一折衷。 本發明之具體實施例可用於成形光源之縱橫比,使得其 適合所使用之空間光調變器之縱橫比。 關於覆蓋板密封封裝,需要對現有DLP封裝進行修改β 現有封裝係設計成提供一環境密封以及無缺陷之表面以防 止散射影響影像品質。因此’將視窗雷射焊接且熱溶融於 機械極架中之程序引致顯著且不一致的雙折射至每一封 裝。在樣本器件上已觀察到超過3 nm之延遲變化。此將負 面影響該器件外的偏振狀態之保持。因此,需要新的視窗 封裝以適當使用DLP器件與經偏振之光。可藉由使用具有 134048.doc -23· 200931159 一低係數應力或熱致雙折射之玻璃(例如SF57)改良封來。 一替代方法提供視窗至窗框的無應力安裝,例如使用rtv 適當接合視窗。進一步隔離以使窗框之機械元件相對於該 視窗為剛性’但相對於晶片框架之接合表面為撓性亦同樣 有利。同#,此方法亦可反之。此外,若在小心控制的晶 片操作溫度下實施,從而避免來自一操作及封裝溫度差異 之應力,則用於將視窗接合至框架且將該框架接合至晶片 架座之程序係有利。 本發明之具體實施例可使用不同尺寸的光導52,從而允 許該光導不僅具撓性,且以與調變器之縱橫比實質相同之 縱橫比成形。對於數位電影而言,此比率大約為〗9:〗。一 替代具體實施例可使用一正方核心纖維。同樣可使用一 圓形核心光學波導,例如共同多模式光纖。 雖然對於多個具體實施例,在照明組合器42與勻光器51 之間顯示-光學波導’❻眾所❹,亦可使用將照明源與 投影光學引擎中繼及分離的其他方法。採用圖15所示之共 同透鏡中繼係實現所需熱及空間分離之一方法。 大多數微機電結構(MEMS)(例如DLP器件)使用通常由鋁 形成的一金屬反射器。金屬鏡面當處理自一偏斜角之光 時’在反射後建立極小的相移,丨中該平面經偏振之光在 入射平面中或垂直該平面振冑。較佳偏Μ方位具有與微鏡 74之鉸鏈樞轉傾斜度對準或正交之偏振軸其中該DLp器 件在反射後保持該偏振狀態(其中偏振平面3或p係在與該 鏡面之垂直入射處)’如圖16所示。軸A指示一DLp微鏡之 134048.doc •24- 200931159 欽鏈樞轉線。然而,相對於微鏡之平面沿其他袖定向之偏 、、可用於剩餘偏振之最小化效應。此剩餘橢圓率導致 兩個偏振狀態間之串擾。 使用經偏振之雷射光源為立體影像之投影提供顯著優 二先刚°才_之習知照明源上之效率增益允許該投影機更 容易實現與習知二維投影相當之亮度之影像。 已特疋參考本發明之特定較佳具體實施例詳細說明本發 月仁應明白可在本發明之精神及範疇内實現變化及修 改例如,其中在詳細具體實施例中說明雷射陣列中,其 他固態發射組件可用作一替代。亦可添加支援透鏡至每一 光予路徑。在本文所示之光學組合件中,在效果無顯著差 異的情況下,可反向均勻化或光整合及中繼之順序。 因此,所提供的係使用經偏振之照明以增強亮度或立體 數位電影投影之一裝置及方法。 【圖式簡單說明】 Φ 雖然本說明書最後會特別指出本發明的主題並清楚界定 本發明之主題’但咸信可從以上說明並結合附圖來更佳地 瞭解本發明,其中: 圖1係針對不同顏色光路徑使用一組合稜鏡之一習知投 影裝置的一示意性方塊圖; 圖2係顯示用於一光學系統之光展量之一代表性圖; 圖3 A及3B係顯示不同固態光陣列至光導組合之相對填 充因數的平面圖; 圖4係顯示一些具體實施例中的投影裝置之一般配置的 134048.doc -25- 200931159 示意性方塊圖; 圖5 A係顯示用於沿相同照明路徑組合來自多個固態光_ 列之光的—方法之示意性側視圖; 圖5B係顯示沿相同照明路徑組合來自多個固態光陣列之 光的一替代方法之示意性側視圖; 圖6係用於組合圖5 A中所示之光的組態之透視圖; 圖7A係顯示在一具體實施例中使用一偏振分光器以引導 來自多個固態光陣列的一偏振狀態之照明之示意性側視 ❹圖; 圖7B係顯示在一具體實施例中使用一偏振分光器以引導 來自多個固態光陣列的正交偏振狀態之照明的示意性側視 圃, 圖8係顯示用於立體影像呈現之偏振狀態的交替時序之 時序圖; 圖9A係顯示在一具體實施例中使用一光重定向稜鏡以組 ❹ 合來自多個固態光陣列之照明之示意性側視圖; 圖9B係圖9A之光重定向稜鏡之透視圖; 圖10係一替代具體實施例中之一光重定向棱鏡之示意性 侧視圖; 圖11係顯示使用兩個光重定向稜鏡以提供自一固態光陣 列之正交偏振之光的示意性側視圖; 圖12係顯示使用接受來自兩側之光的一光重定向稜鏡之 一具體實施例的示意性侧視圖; 圖13係使用用於每一偏振之光之圖12之光重定向稜鏡之 134048.doc -26- 200931159 照明裝置的示意性側視圖; 圖14係使用經偏振之照明與圖12之光重定向稜鏡的投影 裝置之示意圖; 圖15係使用經偏振之照明與圖12之光重定向稜鏡而無光 導的替代投影裝置之示意圖;及 圖16係顯示單一像素調變器及其旋轉轴之透視圖。 【主要元件符號說明】 10 投影機裝置This results in a poor light spread matching at one of the spatial light modulators. In Figure 3B, the aspect ratio of the source uses composite arrays 44 and 44' to achieve a better match to the circular aperture shown. Next, a method of combining a plurality of arrays 44 will be described. One method for reducing thermal load by a particular embodiment of the present invention uses a waveguide structure to isolate the light source from the light modulation assembly. Light from a plurality of solid state light source arrays is coupled into an optical waveguide from which the light is delivered to the modulation device. In this way, the geometry of the source-to-waveguide interface can be optimized so that the waveguide output matches the aspect ratio of the spatial light modulator. In practice, this means that the waveguide aperture is substantially filled or slightly unfilled to maintain optimum light spread. This configuration also helps to minimize the speed requirements of the lighting optics. For a better understanding of the present invention, it will be helpful to have an overall context for the operation of the apparatus and method of the present invention 134048.doc -16- 200931159. The schematic of Figure 4 shows a basic configuration of a projection device 10 for use in various embodiments of the present invention. Three light modulation assemblies 4〇r, 40g, and 40b are shown, each of which is modulated from one of the red, green, or blue (RGB) primary colors of an illumination combiner 42. In each of the light modulation assemblies 4〇r, 4〇g, and 4〇b, an optical lens 50 directs light into a polarization maintaining light guide 52. At the output of the light guide 52, a lens 54 is directed through a homogenizer 52 (e.g., a fly-eye homogenizer or a light-homogenizing tube) to direct light to a spatial light modulator 6A, the light modulator. Can be a DLP or other MEMS spatial light modulator component. In the apparatus of the present invention, the modulator must accept incident light of two orthogonal input polarization states and must retain the polarization difference to provide output light as two orthogonal polarization states corresponding to the individual input patterns 1. However, the output polarization states can be rotated relative to the input states. Next, the projection optical element 70, which is generally indicated by a dashed outline (this is due to many possible embodiments), directs the modulated light to a display surface 8A. The biased spectacles 58 worn by the viewer have polarizers % and 78 with orthogonal polarization axes which allow for independent viewing of images of the left and right eyes. The overall configuration shown in Figure 4 is used in a basic model of a subsequent embodiment of the present invention having various configurations for use in the lighting combiner 42. Figure 5A shows a method for combining multiple layers 44 and 44 to form a larger array. Figure 6 shows the configuration of Figure 5A in perspective. In Fig. 5, a mirrored surface 46 of one or more interposed configurations can be used to align the optical array of the additional array 44 with the array 44 to provide the configuration shown in cross-section in Fig. 3B. Use group. A more direct example of one of the arrays 44 is shown in Figure 5B. However, it should be 134048.doc •17- 200931159, the heat and spacing requirements will limit how many arrays 44 can be stacked in this way. The configurations shown in Figures 5A, 5B, and 6 can be modified to some extent to allow the use of polarized light having different polarization states, as shown in the timing diagrams of Figures 7 and 78 and Figure 8. Figures 7A and 7B show one method for combining a plurality of arrays 44 &amp; and 44b to form a larger array. Figure 7A shows a solid state light array 44a that directs light to a polarizing beam splitter (PBS) that reflects light in a polarized state toward lens 50. Figure 7B shows a solid state light array 44b that directs light through a half wave plate 64 to change the original polarization state of the emitted light. This light is transmitted through the polarization beam splitter 62. A logic controller 56 controls the timing of the solid state light arrays 44a and 44b. The timing diagram of Figure 8 shows how the light directed to the same spatial light modulator 60 (Fig. 4) is in two orthogonal polarization states in either of the optical modulation assemblies 4?r, 40g, and 40b. The moments alternate rapidly to provide left and right eye images accordingly. Here, there are two rows of polarized lasers, which are shown as solid state laser arrays 44a and 44b. Polarized lasers at arrays 44a and 44b use half-wave plates 64 for one of the arrays to provide light of orthogonal polarization states. Array 44a is powered during one and a half of the alternate illumination cycle, as shown in Figure 7A. This light is reflected from a polarization beam splitter 62. In the other half of the alternate illumination cycle, array 44b is energized as shown in Figure 7B. This light is transmitted through the polarizing beam splitter 62. For non-stereoscopic applications, the light from polarized lasers 44a and 44b can be used together to provide a more free imager or used at half the power to balance the lifetime of each laser source. This configuration advantageously places any polarized light on the same illumination axis. For the 134048.doc • 18· 200931159 – single-channel in Figure 5B, the light spread of this method remains the same as previously shown. Thus, in a non-stereoscopic application in which both polarization states are imaged, the brightness of the source is effectively doubled. However, in the case where stereo imaging is required, only a single light source is used at a particular time, so that the effective brightness remains the same as the configuration of Figure 5B. Figures 9A and 9B show side and orthogonal views, respectively, of one embodiment of a lighting combiner 42 that combines laser light from four solid state light arrays 44 to concentrate them in a - smaller area. A light redirect 稜鏡3〇 β has an entrance face 32 that receives light emitted from array 44 in a direction of emission D1. The light is redirected to an output direction D2 which is substantially orthogonal to the emission direction D1. The light redirector has a redirected surface with a light redirecting facet 38. The light redirecting facet 38 is at an oblique angle with respect to the direction of emission (1) and provides total internal reflection (TIR) to the light emitted from the laser 26. When staggered as shown in Figures 9A and 9B, these features help to narrow the path of the illumination to provide a narrower beam. As shown in Fig. 9B, the light array ❹ 44 has a plurality of laser beams 26 extending in the longitudinal direction L. The light redirecting faces 38 and other facets on the redirecting surface 36 also extend in the direction L. There are many variations. For example, a cross-sectional side view of the figure shows an alternative embodiment in which the light redirecting facets 38 are scaled to redirect light from the plurality of columns of lasers 26 at a time. The entrance face 32 does not necessarily have to be perpendicular to the direction of emission D1, which allows the arrangement of the array of light 44 to be offset to some extent and requires the refractive index η of the light redirected 〇3〇 to be taken into account. The block diagram of Figure 11 shows how multiple light redirects 稜鏡 30 can be utilized to provide higher brightness in the use of one of the alternate polarization states, specifically 134048.doc -19-200931159. The illumination from the arrays of light 44a and 44b is alternately illuminated as previously described with reference to Figures 7A and 7B, and the light of the orthogonal polarization state is directed through the polarization beam splitter 62 to the spatial light modulator 60 to provide a stereoscopic image. The cross-sectional side view of Figure 12 shows another embodiment of the light redirector 30 in the illumination combiner 42 that provides closer to the particular embodiment shown in Figures 9A through 10 for use with a solid state array. Lighting configuration. In this particular embodiment, the light redirecting aperture has two redirecting surfaces 36 that receive light from the array 44 opposite each other having relative emission directions 〇1 and di. Each redirecting surface 36 has two types of facet-light redirecting facets 38 and an incident facet 28 that is perpendicular to the incident light from the corresponding array 44. This allows for easier alignment of the various laser modules with the light redirector 30 by reflecting back a small amount of residual light from the anti-reflective coating surface back into each of the lasers. Establishing a component of a very small external cavity that causes instability in the laser mode. Although this mode jump can be regarded as the noise of the usual application, this noise can reduce the visible spot at the screen plane by further reducing the laser coherence (and internal laser coherence), thereby reducing the visible spot on the screen plane. In this two-sided approach, the laser module is interleaved with light from different modules adjacent to each other, thereby providing further spatial mixing when the light is further optically integrated into the optical system. Possible spots and improved system uniformity. Although it can be seen that this orientation is preferred for lasers 44, it does not require incident light that is perpendicular to the input or output surface for combining the illuminations 134048.doc • 20· 200931159 Mingyuan. However, the redirected beams that need to exit the surface at surface 34 are substantially parallel to each other. A number of factors need to be considered to achieve this. The factors include a combination of incident angles to the lasers 44 on each side of the input facets on each side (since the angles may be different) and a refraction based on the refractive index of the material. In addition, the reflection of the facet 38 from each side of the light must be considered (again, 'the angles can be different on each side), and the combination of their refractions with the turns must cooperate such that the output from the exit face The beams are parallel. Figure 14 is a block diagram showing one embodiment of a projector apparatus 1 that uses light redirecting in each color channel. Each of the light modulation assemblies 40r, 40g, and 40b has a pair of light redirecting turns 30 that have a similar configuration to one of the polarization guiding assemblies described with respect to FIG. In each of the light modulation assemblies, polarized light from one or other light redirects is directed through a polarization maintaining light guide 52 to a lens 50 and through a polarizing beam splitter 62 to a homogenizer 51. The spatial light modulator 60 is a digital micromirror or other device that modulates light. It maintains two orthogonal orientations of the output light with respect to the orthogonal orientation of the input light. In the illustrated embodiment designed to use an angular modulation of a micromirror device, the surface 68 of the coated film is treated to reflect or transmit the incident light in accordance with the angle of incidence of the incident light to direct the modulated light to a dichroic color. Sex combiner 82. The dichroic combiner 82 has a configuration of one of the dichroic surfaces 84 that selectively reflects or transmits light according to wavelengths, thereby transmitting modulated light from each of the light modulation assemblies 40r, 40g, and 40b through the projection optical element. 70 is combined into a single optical path. The block of Fig. 15 is not intended to be similar to an alternative embodiment of the projection device 10 of one of the specific embodiments of the circle 14, but it does not include a light guide 52 of 134048.doc -21 · 200931159. This particular embodiment is advantageous because the light guide 52 tends to degrade the polarization of the transmitted light. For this particular embodiment, the lens array will provide the advantage of uniform illumination since it remains polarized. However, embodiments of this type do not enjoy the advantages provided by the light guide 52, such as improved heat dissipation. In any particular embodiment, 'laser light can be used in near field conditions or far field conditions' where it provides premixing of light to reduce possible spots and further improve the light entering the homogenizing optics of the homogenizer 51. Uniformity. The polarized light is modulated by a micromirror or other microelectromechanical device. Most microelectromechanical structures (MEMS), such as DLP devices, use a metal reflector typically formed of aluminum. When the metal mirror processes light from a skewed angle, it creates a very small phase shift during reflection. The preferred polarization orientation has a polarization axis that is aligned or orthogonal to the hinge pivot tilt of the micromirror, wherein the DLP device maintains the polarization after reflection, as shown in FIG. Axis A (see Figure 16) indicates the hinge pivot line of a DLP micromirror. However, the polarization state oriented along the other axes relative to the plane of the micromirrors can be used to minimize the effects of residual polarization. The present invention allows for many variations of the exemplary embodiments described herein. For example, various polarized laser sources can be used as an alternative to VECSE]L and other laser arrays. Light redirector 30 can be made from a variety of highly transmissive materials. For low power applications, plastics can be selected and molded using minimal stress on the part. Again, it is desirable to have selected materials such that the materials induce minimal stress or thermally induced birefringence. Such as. 〇11 Chemical Company's acrylic or Ze〇nex plastic is an example of such materials. This is especially important where the light redirecting 稜鏡 30 is used in an optical system dominated by polarization. 134048.doc •22- 200931159 For higher power applications where high power lasers are required (eg digital cinema), it is not practical to use plastic and light guides 30 because of the optical absorption from very small levels. The heat buildup will eventually damage the material and degrade transmission. In this case, glass is preferred. Similarly, for a polarizer-based projector, stress birefringence can be a problem. In this case, a glass having a low birefringence stress coefficient can be used, for example, SF57 °. Another option is to use a very low absorption optical glass (e.g., molten vermiculite) to prevent heating of the material and thus to prevent birefringence from occurring. These types of materials may not help to create a molded glass component, so conventional polishing and/or assembly of multiple parts is required to form a complete crucible. When molding is desired, a slow molding process is preferred and annealing is required to reduce any inherent stresses. A clean polarizer may be required to remove any rotational polarization states. These states may evolve from any remaining birefringence. This is primarily a compromise between efficiency, component cost, and desired polarization purity. Embodiments of the invention can be used to shape the aspect ratio of the light source such that it is suitable for the aspect ratio of the spatial light modulator used. For overlay-sealed packages, modifications to existing DLP packages are required. Beta Existing packages are designed to provide an environmentally sealed and defect-free surface to prevent scattering from affecting image quality. Therefore, the procedure of welding and thermally melting the window laser into the mechanical frame results in significant and inconsistent birefringence to each package. A delay variation of more than 3 nm has been observed on the sample device. This will negatively affect the retention of the polarization state outside the device. Therefore, a new window package is needed to properly use DLP devices with polarized light. The seal can be modified by using a glass having a low coefficient stress or thermally induced birefringence (e.g., SF57) having 134048.doc -23. 200931159. An alternative method provides a stress-free installation of the window to window frame, such as using rtv to properly engage the window. Further isolation is also advantageous to make the mechanical elements of the sash rigid relative to the window but flexible relative to the mating surface of the wafer frame. Same as #, this method can also be reversed. Moreover, if implemented at a carefully controlled wafer operating temperature to avoid stresses from a difference in operation and package temperature, the procedure for bonding the window to the frame and joining the frame to the wafer holder is advantageous. Embodiments of the invention may use different sizes of light guides 52 to allow the light guide to be not only flexible, but also shaped to be substantially the same aspect ratio as the aspect ratio of the modulator. For digital movies, this ratio is approximately 〖9:〗. An alternate embodiment may use a square core fiber. A circular core optical waveguide, such as a common multimode fiber, can likewise be used. While for the particular embodiment, the display-optical waveguide is shown between the illumination combiner 42 and the homogenizer 51, other methods of relaying and separating the illumination source from the projection optical engine may be used. One of the methods of thermal and spatial separation required is achieved using the common lens relay shown in FIG. Most microelectromechanical structures (MEMS), such as DLP devices, use a metal reflector typically formed of aluminum. The metal mirror, when processed from a skewed angle of light, creates a very small phase shift after reflection, in which the plane is polarized in the plane of incidence or perpendicular to the plane. Preferably, the biased orientation has a polarization axis that is aligned or orthogonal to the hinge pivoting tilt of the micromirror 74, wherein the DLp device maintains the polarization state after reflection (where the polarization plane 3 or p is perpendicular to the mirror surface) ()) as shown in Figure 16. Axis A indicates a DLp micromirror 134048.doc •24- 200931159 Qin chain pivot line. However, the orientation of the plane relative to the micromirrors along the other sleeves can be used to minimize the effects of residual polarization. This residual ellipticity results in crosstalk between the two polarization states. The use of a polarized laser source to provide a significant image for the projection of a stereoscopic image yields an efficiency gain on a conventional illumination source that allows the projector to more easily achieve images of brightness comparable to conventional two-dimensional projections. The present invention has been described with reference to the specific preferred embodiments of the present invention. It should be understood that the present invention can be modified and modified within the spirit and scope of the present invention, for example, in the detailed embodiment, the laser array is described. Solid state emitting components can be used as an alternative. A support lens can also be added to each light path. In the optical assembly shown herein, the order of reverse homogenization or light integration and relaying can be reversed without significant differences in effect. Accordingly, apparatus and methods are provided for using polarized illumination to enhance brightness or stereoscopic movie projection. BRIEF DESCRIPTION OF THE DRAWINGS Although the subject matter of the present invention is particularly pointed out and the subject matter of the present invention is clearly defined in the present specification, the present invention will be better understood from the above description and the accompanying drawings in which: FIG. A schematic block diagram of a conventional projection device for a different color light path; Figure 2 is a representative diagram showing light spread for an optical system; Figure 3 A and 3B show different A plan view of the relative fill factor of the solid state light array to the lightguide combination; Figure 4 is a schematic block diagram showing the general configuration of the projection apparatus in some embodiments 134048.doc -25- 200931159; Figure 5A is shown for use along the same A schematic side view of a method of combining illumination paths from multiple solid-state light--columns; Figure 5B is a schematic side view showing an alternative method of combining light from multiple solid-state light arrays along the same illumination path; A perspective view for the configuration of the light shown in Figure 5A; Figure 7A shows the use of a polarizing beam splitter in a particular embodiment to direct one from a plurality of solid state light arrays. A schematic side view of the illumination of the oscillating state; FIG. 7B is a schematic side view showing the use of a polarizing beam splitter to direct illumination from orthogonal polarization states of a plurality of solid state light arrays in a particular embodiment, 8 shows a timing diagram of alternating timing for the polarization state of stereoscopic image presentation; Figure 9A shows an exemplary use of a light redirector to combine illumination from multiple solid state light arrays in a particular embodiment. Figure 9B is a perspective view of the light redirecting cymbal of Figure 9A; Figure 10 is a schematic side view of an alternative light redirecting prism; Figure 11 is a diagram showing the use of two light redirecting ribs Mirror to provide a schematic side view of orthogonally polarized light from a solid state light array; Figure 12 is a schematic side view showing one embodiment of the use of a light redirector that receives light from both sides; 13 is a schematic side view of a lighting device using light redirecting of Figure 12 for each polarized light. Figure 14 is a view of the use of polarized illumination and light redirecting of Figure 12. Awkward vote BRIEF DESCRIPTION OF THE DRAWINGS Figure 15 is a schematic illustration of an alternative projection apparatus using polarized illumination and light redirection of Figure 12 without light guide; and Figure 16 is a perspective view showing a single pixel modulator and its axis of rotation. [Main component symbol description] 10 Projector device

12 光源 14 稜鏡組合件 16 位置 18 光學元件 20、20r、20g、20b 空間光調變器 26 雷射 ❹ 28 入 30 光 32 入 34 表 36 重 射刻面 重定向稜鏡(投影透鏡-圖〇 射面 面 定向表面 38 光重定向刻面 40r、40g、40b 光調變組合件 42 照明組合器 44、44'、44a、44b 固態光陣列 46 鏡面 134048.doc -27- 20093115912 Light source 14 稜鏡 Assembly 16 Position 18 Optical elements 20, 20r, 20g, 20b Spatial light modulator 26 Laser ❹ 28 Into 30 light 32 In 34 Table 36 Recursive facet redirection 稜鏡 (projection lens - diagram Radial facet oriented surface 38 light redirected facets 40r, 40g, 40b light modulation assembly 42 illumination combiner 44, 44', 44a, 44b solid state light array 46 mirror 134048.doc -27- 200931159

50 透鏡 51 勻光器 52 光導 54 透鏡 56 邏輯控制器 58 經偏振之眼鏡 60 空間光調變器 62 偏振分光器 64 半波板 68 膜塗布表面 70 投影光學元件 74 微鏡 76 &gt; 78 偏振 80 顯示表面 82 二色性組合器 84 二色性表面 A 軸 A1 光源 A2 調變器 D1、Dl, 發射方向 D2 輸出方向 L 長度方向 Θ1 輸出角 Θ2 接受角 134048.doc -28-50 Lens 51 Homogen 52 Light Guide 54 Lens 56 Logic Controller 58 Polarized Glasses 60 Spatial Light Modulator 62 Polarization Beam Splitter 64 Half Wave Plate 68 Film Coating Surface 70 Projection Optics 74 Micromirrors 76 &gt; 78 Polarization 80 Display surface 82 dichroic combiner 84 dichroic surface A axis A1 light source A2 modulator D1, Dl, emission direction D2 output direction L length direction Θ 1 output angle Θ 2 acceptance angle 134048.doc -28-

Claims (1)

200931159 十、申請專利範園: 1. 一種數位影像投影機,其包括: 一第一經偏振之光源; 一第二經偏振之光源,其與該第一經偏振之光源在偏 振狀態下正交; 一偏振分光器’其係佈置成沿一共同照明軸引導該第 一或第二偏振之光; 一 MEMS空間光調變器;及 投影光學元件’其用於遞送來自該MEMS空間光調變 器之成像光。 2.如請求項1之數位影像投影機,其中該第一或第二經偏 振之光源係垂直腔式器件。 3,如請求項1之數位影像投影機,其_該空間光調變器係 一數位微鏡器件。 ^ 4_如請求項1之數位影像投影機,其中該投影光學元 送成像光以提供一彩色影像。 遞 5. 如請求項1之數位影像投影機,其中該MEMS空間来= 器包括微鏡之一陣列,每一微鏡具有一旋轉輛,且調變 入射在該等微鏡之至少一者上的經偏振之光之傷且其中 大體上正交或平行於該微鏡之該旋轉轴。 振軸係 6. —種立體數位影像投影機,其包括: 一照明系統,其包括:200931159 X. Patent Application Park: 1. A digital image projector comprising: a first polarized light source; a second polarized light source orthogonal to the first polarized light source in a polarization state a polarization beam splitter 'which is arranged to direct the first or second polarized light along a common illumination axis; a MEMS spatial light modulator; and a projection optical element 'for delivering light modulation from the MEMS space Imaging light of the device. 2. The digital image projector of claim 1, wherein the first or second polarized light source is a vertical cavity device. 3. The digital image projector of claim 1, wherein the spatial light modulator is a digital micromirror device. ^ 4_ The digital image projector of claim 1, wherein the projection optical element delivers imaging light to provide a color image. The digital image projector of claim 1, wherein the MEMS space source comprises an array of micromirrors, each micromirror has a rotating vehicle, and the modulation is incident on at least one of the micromirrors The polarized light is injured and is substantially orthogonal or parallel to the axis of rotation of the micromirror. A system of stereoscopic digital image projectors, comprising: an illumination system comprising: 第一及第二經偏振之光源,其中該等第 偏振之光源具有正交佈置之偏振軸; 134048.doc 200931159 一偏振分光器,其係佈置成沿一共同照明軸引導該 第一或第二偏振之光; 一控制器系統,其對該等第一及第二經偏振之光源 父替供電以每次提供一偏振之照明.; 一 MEMS空間光調變器; 投影光學元件,其在來自該MEMS空間光調變器之 調變光的路徑中且將該光引導至一顯示表面上;及 濾光眼鏡,其用於選擇性地觀看在該顯示表面上形 成之該立體影像。 7. 如請求項6之立體數位影像投影機’其中該照明系統係 一第一照明系,统,其中該偏振分光(器係一第一偏振分光 器,其中該共同照明軸係一第一共同照明軸,其中該 MEMS空間光調變器係一第一 MEMS空間光調變器,且 其中該立體數位影像投影機進一步包括: 至少一第二照明系統,其包括: 第三及第四經偏振之光源,其中該等第三及第四經 偏振之光源具有正交佈置之偏振軸; 一第二偏振分光器,其係佈置成沿一第二共同照明 轴引導該第三或第四偏振之光;及 一第二MEMS空間光調變器;且 其中該投影光學元件提供一彩色影像。 8. 如請求項6之立體數位影像投影機,其中該MEMS空間光 調變器包括一反射金屬結構,且其中入射在該金屬結構 上之該經線性偏振之光之偏振平面大體上垂直於該反射 134048.doc • 2· 200931159 is之平面。 9. 如請求項6之立體數位影像投影機,其中該MEMS空間光 調變器包括一反射結構,且其中該平面經偏振之光在該 入射平面内或垂直於該反射結構而振動。 10. —種用於一數位影像投影機之照明裝置,該照明裝置包 括: a) —第一經偏振之光源,其包括: (i) 兩個或兩個以上固態雷射陣列,其在一第一發射 © 方向上提供一第一偏振之光, 其中每一雷射包括在一第一長度方向上延伸之複數 個雷射;及 (ii) 一第一光重定向稜鏡,其包括: 一第一入射表面,其係佈置成接收在該第一發射 方向上入射之光; 第一重疋向表面,其具有複數個光重定向刻面,每 _ 一光重定向刻面在該長度方向上延伸且以相對於該第一 發射方向之一斜角定向,其中該斜角定向對入射光提供 一反射表面; 一輸出表面,其用於提供來自該等光重定向刻面之該 第一偏振之重定向光; b) —第二經偏振之光源,其包括: ⑴兩個或兩個以上固態雷射陣列’其係佈置成在一 第二發射方向上提供該第一偏振之光, 其中每-雷射陣列包括在一第二長度方向上延伸的 134048.doc 200931159 複數個雷射; (ii)一偏振器,其用於調節來自該第二經偏振之光源 之光,以提供與該第一偏振正交之一第二偏振之光;及 (Hi)—第二光重定向稜鏡,其包括: 一第二入射表面,其係佈置成接收在該第二發射 方向上入射之光; 一第二重定向表面,其具有複數個光重定向刻面,每 一光重定向刻面在該第二長度方向上延伸且以相對於該 第二發射方向之-斜角定向,其中該斜角定向對入射光 提供一反射表面; 一輸出表面,其用於提供來自該等光重定向刻面之該 第一偏振之重定向光;及 0—偏振分光器,其係佈置成沿一共同照明軸引導該 第一或第二偏振之光。 ❹ U·如請求項1〇之照明裝置,其進一步包括佈置成接受沿該 照明軸引導之光的一光導。 12·如請求項1G之照明裝置,其中該第—經偏振之光源進-步包括兩個或兩個以上額外固態雷射陣列,其係在該第 -長度方向上延伸且佈置成在與該第一發射方向大體上 相反之-第三發射方向上提供該第—偏振之光其中該 第-光重定向稜鏡進一步包括佈置成接收在該第三發射 方向上入射之光的一第三入射表面。 13. —種彩色投影裝置,其包括: 其用於一數位影像投 兩個或兩個以上光調變組合件 134048.doc 200931159 影機中,每一光調變組合件提供一預定波長帶之光,且 包括: (i) 一第一經偏振之光源,其包括 兩個或兩個以上固態雷射陣列,其係佈置成在一 第一發射方向上提供一第一偏振之光, 其中每一雷射陣列包括在一第一長度方向上延伸 之複數個雷射;及 一第一光重定向稜鏡,其包括: 一第一入射表面,其係佈置成接收在該第一發 射方向上入射之光; 一第一重定向表面,其具有複數個光重定向刻 面’母一光重定向刻面在該長度方向上延伸且以相對於 該第一發射方向之一斜角定向,其中該斜角定向對入射 光提供一反射表面; 一輸出表面’其用於提供來自該等光重定向刻 面之該第一偏振之重定向光; (ii) 一第二經偏振之光源,其包括 兩個或兩個以上固態雷射陣列,其係佈置成在一 第一發射方向上提供該第一偏振之光, 其中每一雷射陣列包括在一第二長度方向上延伸 的複數個雷射; 一偏振器,其用於調節來自該第二經偏振之光源 之光,以提供與該第一偏振正交之一第二偏振之光;及 一第二光重定向稜鏡,其包括: 134048.doc 200931159 一第二入射表面,其係佈置成接收在該第二發 射方向上入射之光; 一第二重定向表面,其具有複數個光重定向刻 面,每一光重定向刻面在該第二長度方向上延伸且以相 對於該第二發射方向之一斜角定向,其中該斜角定向對 入射光提供一反射表面; 一輸出表面,其用於提供來自該等光重定向刻 面之該第一偏振之重定向光; (in)—偏振分光器,其係佈置成沿一共同照明軸引 導用作照明之該第一或第二偏振之光; Ον)—空間光調變器,其係佈置成接受該照明且提 供一調變光輸出; 一色彩組合器’其係佈置成接受來自該兩個或兩個 以上光調變組合件之每一個的該調變光輸出且將該調變 光引導至一輸出轴上;及 —投影透鏡’其係佈置成朝一顯示表面引導該調變 14. 如明求項13之彩色投影裝置其進一步包括一光導其 係佈置成朝該空間光調變器引導來自該共同照明軸之 光。 15. 如清求項13之彩色投影裝置,其中波導元件大體上匹配 該工間光調變器之比例。 16. 如請求 $13之彩色投影裝置,其中該波導元件大體上係 該空間光調變器之該等比例的一半。 134048.doc 200931159 17. 如請求項13之彩色投影裝置,其中該波導元件大體上保 持該輸入照明光之偏振特性。 18. 如請求項13之彩色投影裝置,其中該空間光調變器係一 數位微鏡器件。First and second polarized light sources, wherein the first polarized light sources have orthogonally disposed polarization axes; 134048.doc 200931159 A polarizing beam splitter arranged to direct the first or second along a common illumination axis Polarized light; a controller system that supplies power to the first and second polarized light sources to provide illumination for each polarization; a MEMS spatial light modulator; a projection optical element that is The MEMS spatial light modulator modulates light in a path and directs the light onto a display surface; and filter glasses for selectively viewing the stereoscopic image formed on the display surface. 7. The stereoscopic digital image projector of claim 6, wherein the illumination system is a first illumination system, wherein the polarization is splitter (the first polarization polarizer is a first polarization splitter, wherein the common illumination axis is a first common An illumination axis, wherein the MEMS spatial light modulator is a first MEMS spatial light modulator, and wherein the stereoscopic digital image projector further comprises: at least one second illumination system, comprising: third and fourth polarization a light source, wherein the third and fourth polarized light sources have orthogonally disposed polarization axes; and a second polarization beam splitter arranged to direct the third or fourth polarization along a second common illumination axis And a second MEMS spatial light modulator; and wherein the projection optical element provides a color image. 8. The stereoscopic digital image projector of claim 6, wherein the MEMS spatial light modulator comprises a reflective metal structure And wherein the plane of polarization of the linearly polarized light incident on the metal structure is substantially perpendicular to the plane of the reflection 134048.doc • 2· 200931159 is. A digital image projector, wherein the MEMS spatial light modulator comprises a reflective structure, and wherein the plane polarized light vibrates in the incident plane or perpendicular to the reflective structure. 10. - For a digital image projection An illumination device comprising: a) a first polarized light source comprising: (i) two or more solid state laser arrays providing a first in a first emission © direction Polarized light, wherein each of the lasers comprises a plurality of lasers extending in a first length direction; and (ii) a first light redirecting cymbal comprising: a first incident surface arranged to Receiving light incident in the first emission direction; a first redirecting surface having a plurality of light redirecting facets, each of the light redirecting facets extending in the length direction and opposite to the first One of the directions of the oblique direction of the emission direction, wherein the oblique orientation provides a reflective surface for the incident light; an output surface for providing the redirected light from the first polarization of the light redirecting facets; b) Second a source of vibration, comprising: (1) two or more solid state laser arrays arranged to provide the first polarized light in a second emission direction, wherein each laser array comprises a second length a plurality of lasers extending in a direction; (ii) a polarizer for adjusting light from the second polarized light source to provide a second polarization orthogonal to the first polarization And a (Hi)-second light redirecting cymbal comprising: a second incident surface arranged to receive light incident in the second emission direction; a second redirecting surface having a plurality Light redirecting facets, each light redirecting facet extending in the second length direction and oriented at an oblique angle relative to the second direction of emission, wherein the beveled orientation provides a reflective surface for incident light; An output surface for providing redirected light from the first polarization of the light redirecting facets; and a 0-polarization beam splitter arranged to direct the first or second polarization along a common illumination axis Light. U. The lighting device of claim 1 further comprising a light guide arranged to receive light directed along the illumination axis. 12. The illumination device of claim 1 , wherein the first polarized light source further comprises two or more additional solid state laser arrays extending in the first-length direction and arranged to The first emission direction is substantially opposite - the third polarization direction provides the first polarization light, wherein the first light redirector further comprises a third incident arranged to receive light incident in the third emission direction surface. 13. A color projection device comprising: for a digital image projection of two or more optical modulation assemblies 134048.doc 200931159 In a video camera, each optical modulation assembly provides a predetermined wavelength band Light, and comprising: (i) a first polarized light source comprising two or more solid state laser arrays arranged to provide a first polarized light in a first emission direction, wherein each a laser array comprising a plurality of lasers extending in a first length direction; and a first light redirecting cymbal comprising: a first incident surface arranged to be received in the first emission direction Incident light; a first redirecting surface having a plurality of light redirecting facets 'mother-light redirecting facets extending in the length direction and oriented at an oblique angle relative to the first direction of emission, wherein The beveled orientation provides a reflective surface for the incident light; an output surface 'which is used to provide redirected light from the first polarization of the light redirecting facets; (ii) a second polarized light source, Including two Two or more solid state laser arrays arranged to provide the first polarized light in a first emission direction, wherein each laser array comprises a plurality of lasers extending in a second length direction; And means for adjusting light from the second polarized light source to provide a second polarized light orthogonal to the first polarization; and a second light redirecting chirp comprising: 134048.doc 200931159 a second incident surface arranged to receive light incident in the second emission direction; a second redirecting surface having a plurality of light redirecting facets, each light redirecting facet being at the Extending in a length direction and at an oblique angle relative to the second emission direction, wherein the oblique orientation provides a reflective surface for incident light; an output surface for providing light redirecting facets from the light The first polarized redirected light; (in) a polarizing beam splitter arranged to direct the first or second polarized light for illumination along a common illumination axis; Ον) - a spatial light modulator, Its system is arranged Subject to the illumination and providing a modulated light output; a color combiner 'arranged to receive the modulated light output from each of the two or more light modulation assemblies and to direct the modulated light And the projection lens is arranged to guide the modulation to a display surface. 14. The color projection device of claim 13 further comprising a light guide arranged to guide the spatial light modulator Light from the common illumination axis. 15. The color projection device of claim 13, wherein the waveguide element substantially matches the ratio of the inter-work optical modulator. 16. The color projection device of claim 13 wherein the waveguide element is substantially half the ratio of the spatial light modulator. 17. The color projection device of claim 13, wherein the waveguide element substantially maintains polarization characteristics of the input illumination light. 18. The color projection device of claim 13, wherein the spatial light modulator is a digital micromirror device. 134048.doc134048.doc
TW097146481A 2007-11-30 2008-11-28 Stereo projection apparatus using polarized solid state light sources TWI450017B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/948,048 US7871165B2 (en) 2007-11-30 2007-11-30 Stereo projection apparatus using polarized solid state light sources

Publications (2)

Publication Number Publication Date
TW200931159A true TW200931159A (en) 2009-07-16
TWI450017B TWI450017B (en) 2014-08-21

Family

ID=40377472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097146481A TWI450017B (en) 2007-11-30 2008-11-28 Stereo projection apparatus using polarized solid state light sources

Country Status (7)

Country Link
US (1) US7871165B2 (en)
EP (1) EP2215848B1 (en)
JP (1) JP2011505593A (en)
CN (1) CN101878655B (en)
CA (1) CA2704029A1 (en)
TW (1) TWI450017B (en)
WO (1) WO2009073089A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8794770B2 (en) 2010-06-15 2014-08-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Projection display and method of displaying an overall picture
TWI461740B (en) * 2012-10-31 2014-11-21 Delta Electronics Inc Solid state illuminator for stereoscopic display
TWI467242B (en) * 2012-05-29 2015-01-01 Delta Electronics Inc Projection apparatus for providing multiple viewing angle images
TWI498598B (en) * 2013-11-12 2015-09-01 Delta Electronics Inc Autostereoscopic projection device and display apparatus comprising thereof

Families Citing this family (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8274715B2 (en) 2005-07-28 2012-09-25 Omnivision Technologies, Inc. Processing color and panchromatic pixels
US8139130B2 (en) 2005-07-28 2012-03-20 Omnivision Technologies, Inc. Image sensor with improved light sensitivity
US7916362B2 (en) 2006-05-22 2011-03-29 Eastman Kodak Company Image sensor with improved light sensitivity
US8031258B2 (en) 2006-10-04 2011-10-04 Omnivision Technologies, Inc. Providing multiple video signals from single sensor
CN101377572A (en) * 2007-08-28 2009-03-04 鸿富锦精密工业(深圳)有限公司 Stereo projection optical system
US7959297B2 (en) 2008-05-15 2011-06-14 Eastman Kodak Company Uniform speckle reduced laser projection using spatial and temporal mixing
US7915067B2 (en) * 2008-07-09 2011-03-29 Eastman Kodak Company Backside illuminated image sensor with reduced dark current
US7859033B2 (en) 2008-07-09 2010-12-28 Eastman Kodak Company Wafer level processing for backside illuminated sensors
US7926951B2 (en) * 2008-07-11 2011-04-19 Eastman Kodak Company Laser illuminated micro-mirror projector
DE102008051252B4 (en) * 2008-10-10 2016-09-08 Sypro Optics Gmbh Projection lens and projector
US8016422B2 (en) * 2008-10-28 2011-09-13 Eastman Kodak Company Etendue maintaining polarization switching system and related methods
US10038304B2 (en) 2009-02-17 2018-07-31 Trilumina Corp. Laser arrays for variable optical properties
US20130223846A1 (en) 2009-02-17 2013-08-29 Trilumina Corporation High speed free-space optical communications
US8995493B2 (en) 2009-02-17 2015-03-31 Trilumina Corp. Microlenses for multibeam arrays of optoelectronic devices for high frequency operation
US10244181B2 (en) 2009-02-17 2019-03-26 Trilumina Corp. Compact multi-zone infrared laser illuminator
US8995485B2 (en) 2009-02-17 2015-03-31 Trilumina Corp. High brightness pulsed VCSEL sources
US8224082B2 (en) * 2009-03-10 2012-07-17 Omnivision Technologies, Inc. CFA image with synthetic panchromatic image
US8068153B2 (en) * 2009-03-27 2011-11-29 Omnivision Technologies, Inc. Producing full-color image using CFA image
US8045024B2 (en) * 2009-04-15 2011-10-25 Omnivision Technologies, Inc. Producing full-color image with reduced motion blur
US8203633B2 (en) * 2009-05-27 2012-06-19 Omnivision Technologies, Inc. Four-channel color filter array pattern
US8237831B2 (en) * 2009-05-28 2012-08-07 Omnivision Technologies, Inc. Four-channel color filter array interpolation
US10108079B2 (en) 2009-05-29 2018-10-23 Soraa Laser Diode, Inc. Laser light source for a vehicle
JP2012529063A (en) 2009-05-29 2012-11-15 ソラア インコーポレーテッド Display method and system using laser
US8125546B2 (en) * 2009-06-05 2012-02-28 Omnivision Technologies, Inc. Color filter array pattern having four-channels
US8253832B2 (en) * 2009-06-09 2012-08-28 Omnivision Technologies, Inc. Interpolation for four-channel color filter array
US8864313B2 (en) * 2009-06-15 2014-10-21 Eastman Kodak Company Dynamic illumination control for laser projection display
US8142021B2 (en) * 2009-06-25 2012-03-27 Eastman Kodak Company Dump path light intensity sensing in light projector
US20100328611A1 (en) * 2009-06-25 2010-12-30 Silverstein Barry D Leakage light intensity sensing in light projector
US8237777B2 (en) * 2009-06-25 2012-08-07 Eastman Kodak Company Stereoscopic image intensity balancing in light projector
US8162483B2 (en) * 2009-06-25 2012-04-24 Eastman Kodak Company Hierarchical light intensity control in light projector
US8220938B2 (en) * 2009-06-25 2012-07-17 Eastman Kodak Company Image path light intensity sensing during a blanking period between a left-eye light beam and a right-eye light beam in a stereoscopic light projector
US8220931B2 (en) * 2009-07-07 2012-07-17 Eastman Kodak Company Etendue reduced stereo projection using segmented disk
US8066382B2 (en) * 2009-07-14 2011-11-29 Eastman Kodak Company Stereoscopic projector with rotating segmented disk
US8979338B2 (en) 2009-12-19 2015-03-17 Trilumina Corp. System for combining laser array outputs into a single beam carrying digital data
CN102959811B (en) * 2009-12-19 2016-06-29 三流明公司 For combining the system and method for the laser array for numeral output
JP2011133782A (en) * 2009-12-25 2011-07-07 Casio Computer Co Ltd Light source unit and projector
US20110261174A1 (en) * 2010-04-27 2011-10-27 Silverstein Barry D Stereoscopic digital projection apparatus using polarized light
US20120021150A1 (en) * 2010-07-21 2012-01-26 Ulrich Wilhelm Heinz Neukirch Optical window assembly having low birefringence
WO2012017263A1 (en) * 2010-08-06 2012-02-09 Fci Optical coupling system
JP5333472B2 (en) * 2011-02-04 2013-11-06 カシオ計算機株式会社 Light source unit, light source device and projector
JP5842167B2 (en) * 2011-02-28 2016-01-13 パナソニックIpマネジメント株式会社 Light source device and projection display device
CN102759846B (en) * 2011-04-29 2015-02-04 台达电子工业股份有限公司 Light source system
TWI447435B (en) * 2011-04-29 2014-08-01 Delta Electronics Inc Light source system
GB201108000D0 (en) * 2011-05-13 2011-06-29 Barco Nv Polarization preserving dlp optical architecture
GB201109208D0 (en) 2011-06-01 2011-07-13 Barco Nv Apparatus and method for combining laser beams of different polarization
DE102011052802B4 (en) * 2011-08-18 2014-03-13 Sick Ag 3D camera and method for monitoring a room area
US11095365B2 (en) 2011-08-26 2021-08-17 Lumentum Operations Llc Wide-angle illuminator module
CN103048792B (en) 2011-10-11 2015-10-07 深圳市光峰光电技术有限公司 Light-source system and LASER Light Source
US9411219B2 (en) 2011-12-27 2016-08-09 Nec Display Solutions, Ltd. Excitation light synthesizing unit, light source unit, and projection-type display apparatus
US8864314B2 (en) * 2012-01-17 2014-10-21 Eastman Kodak Company Stereoscopic projection system using tunable light emitters
US9004700B2 (en) 2012-01-25 2015-04-14 International Business Machines Corporation Three dimensional image projector stabilization circuit
US20130188149A1 (en) 2012-01-25 2013-07-25 International Business Machines Corporation Three dimensional image projector
US9325977B2 (en) 2012-01-25 2016-04-26 International Business Machines Corporation Three dimensional LCD monitor display
US8992024B2 (en) 2012-01-25 2015-03-31 International Business Machines Corporation Three dimensional image projector with circular light polarization
US9104048B2 (en) 2012-01-25 2015-08-11 International Business Machines Corporation Three dimensional image projector with single modulator
US8985785B2 (en) 2012-01-25 2015-03-24 International Business Machines Corporation Three dimensional laser image projector
US8960913B2 (en) 2012-01-25 2015-02-24 International Busniess Machines Corporation Three dimensional image projector with two color imaging
US9910301B2 (en) 2012-02-23 2018-03-06 Switch Materials, Inc. Switchable optical filter apparatus with light
CN102591123B (en) * 2012-03-13 2014-12-10 苏州大学 Real-time three-dimensional display device and display method
US8872985B2 (en) 2012-04-13 2014-10-28 Red.Com, Inc. Video projector system
US9025086B2 (en) 2012-04-13 2015-05-05 Red.Com, Inc. Video projector system
JP2012230403A (en) * 2012-06-29 2012-11-22 Casio Comput Co Ltd Light source device and projector
KR102135345B1 (en) * 2013-01-22 2020-07-17 엘지전자 주식회사 Image projection apparatus
CN103809360A (en) * 2013-08-02 2014-05-21 吴震 Projection display system
CN103809356B (en) * 2013-08-02 2019-12-10 杨毅 screen
CN103809361B (en) * 2013-08-02 2017-11-14 杨毅 Projection display system
CN103809359B (en) * 2013-08-02 2017-11-14 杨毅 Screen
EP3058722B1 (en) 2013-10-20 2021-12-15 Mtt Innovation Incorporated Light field projectors and methods
TWI512334B (en) * 2013-11-28 2015-12-11 Delta Electronics Inc Light source system and display apparatus comprising the same
CN104678691A (en) * 2013-11-28 2015-06-03 台达电子工业股份有限公司 Light source system and display device
CN103676186A (en) * 2013-12-25 2014-03-26 中国华录集团有限公司 Laser diode layout system and method
CN106537899B (en) 2014-05-15 2022-01-18 Mtt创新公司 Optimizing drive schemes for multi-projector systems
TWI598633B (en) 2014-08-05 2017-09-11 佳能股份有限公司 Light source apparatus, illumination device, exposure apparatus, and device manufacturing method
WO2016023133A1 (en) * 2014-08-14 2016-02-18 Mtt Innovation Incorporated Multiple-laser light source
EP3809201A1 (en) 2014-12-31 2021-04-21 Dolby Laboratories Licensing Corporation High contrast discrete input prism for image projectors
TWI553392B (en) * 2015-01-06 2016-10-11 台達電子工業股份有限公司 Polarized projection device and polarized projection system using the same
US9874805B2 (en) 2015-01-30 2018-01-23 Panasonic Intellectual Property Management Co., Ltd. Light source apparatus and projection display apparatus
JP6244558B2 (en) * 2015-01-30 2017-12-13 パナソニックIpマネジメント株式会社 Light source device and projection display device
US11437774B2 (en) 2015-08-19 2022-09-06 Kyocera Sld Laser, Inc. High-luminous flux laser-based white light source
CN105573023B (en) * 2015-11-25 2017-11-10 全普光电科技(上海)有限公司 More MEMS laser projection devices and its method
KR102589283B1 (en) * 2015-12-08 2023-10-16 한국전기연구원 Multiple light source plate using mirror
WO2017130121A1 (en) 2016-01-26 2017-08-03 Imax Corporation Stereo image projection with high intra-frame contrast
CN107463057A (en) * 2016-06-02 2017-12-12 中强光电股份有限公司 Projection system and illumination system
WO2018045040A1 (en) 2016-08-30 2018-03-08 The Kalidas Corporation Optical device for enhancing human color vision
CN110234499B (en) * 2016-08-30 2022-04-12 Hue人工智能科技有限责任公司 Optical device for enhancing human color vision
ES2831431T3 (en) 2016-09-30 2021-06-08 Dolby Laboratories Licensing Corp Beam Combination for Highlight Projection
CN111344605B (en) 2017-11-14 2023-10-20 图像影院国际有限公司 Light adjustment for cinema direct-view displays
CN110082998A (en) * 2018-01-25 2019-08-02 深圳光峰科技股份有限公司 Laser Multiplexing apparatus and display equipment
CN111258159B (en) * 2018-11-30 2022-07-12 中强光电股份有限公司 Lighting system and projection device
US11421843B2 (en) 2018-12-21 2022-08-23 Kyocera Sld Laser, Inc. Fiber-delivered laser-induced dynamic light system
US11239637B2 (en) 2018-12-21 2022-02-01 Kyocera Sld Laser, Inc. Fiber delivered laser induced white light system
US12152742B2 (en) 2019-01-18 2024-11-26 Kyocera Sld Laser, Inc. Laser-based light guide-coupled wide-spectrum light system
US12000552B2 (en) 2019-01-18 2024-06-04 Kyocera Sld Laser, Inc. Laser-based fiber-coupled white light system for a vehicle
JP7361274B2 (en) 2019-12-18 2023-10-16 パナソニックIpマネジメント株式会社 Light source device and projection type image display device
CN111025836A (en) * 2019-12-31 2020-04-17 深圳市中科创激光技术有限公司 Optical path system and projector

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19626097C1 (en) * 1996-06-28 1997-10-30 Siemens Nixdorf Inf Syst Three-dimensional image display method for large screen projector
GB2317524A (en) * 1996-09-19 1998-03-25 Sharp Kk Three dimensional stereoscopic projection display
US6240116B1 (en) * 1997-08-14 2001-05-29 Sdl, Inc. Laser diode array assemblies with optimized brightness conservation
US5987043A (en) * 1997-11-12 1999-11-16 Opto Power Corp. Laser diode arrays with offset components
US6583921B2 (en) * 1999-12-28 2003-06-24 Texas Instruments Incorporated Micromechanical device and method for non-contacting edge-coupled operation
JP2003031872A (en) * 2001-07-19 2003-01-31 Ricoh Co Ltd Laser illuminator and image display device using the same
US6594090B2 (en) * 2001-08-27 2003-07-15 Eastman Kodak Company Laser projection display system
US6547396B1 (en) * 2001-12-27 2003-04-15 Infocus Corporation Stereographic projection system
JP4387688B2 (en) * 2002-11-07 2009-12-16 Necディスプレイソリューションズ株式会社 LCD projector
JP2004205919A (en) * 2002-12-26 2004-07-22 Victor Co Of Japan Ltd Projection type stereoscopic display device
EP1676449B1 (en) * 2003-10-21 2008-11-26 Barco N.V. Method and device for performing stereoscopic image display based on color selective filters
JP4063213B2 (en) * 2003-12-09 2008-03-19 カシオ計算機株式会社 LIGHT SOURCE DEVICE AND PROJECTOR HAVING THE SAME
DE10361915B4 (en) * 2003-12-29 2009-03-05 Bausenwein, Bernhard, Dr. 2-channel stereo image display device with microelectromechanical systems
US7360900B2 (en) * 2004-03-10 2008-04-22 Seiko Epson Corporation Illuminating apparatus, image display apparatus, and projector
GB0405747D0 (en) * 2004-03-15 2004-04-21 Imec Inter Uni Micro Electr Projector system comprising pulsed light sources
JP2007003847A (en) * 2005-06-24 2007-01-11 Sanyo Electric Co Ltd Illuminator and projection type image display device
JP2006065054A (en) * 2004-08-27 2006-03-09 Nitto Kogaku Kk Optical engine for projector
JP4289288B2 (en) * 2004-12-03 2009-07-01 セイコーエプソン株式会社 Light source device and image display device
JP2006220911A (en) * 2005-02-10 2006-08-24 Seiko Epson Corp Illumination device and image display device
JP4244957B2 (en) * 2005-05-19 2009-03-25 カシオ計算機株式会社 Light source device and projection device
JP4254747B2 (en) * 2005-05-31 2009-04-15 カシオ計算機株式会社 Light source device and projection device
JP4085395B2 (en) * 2005-06-10 2008-05-14 ミネベア株式会社 Light source device and image display device using the same
JP2007017536A (en) * 2005-07-05 2007-01-25 Ricoh Co Ltd Projector apparatus
US20070024959A1 (en) * 2005-07-26 2007-02-01 Infocus Corporation Laser combiner
US7559653B2 (en) * 2005-12-14 2009-07-14 Eastman Kodak Company Stereoscopic display apparatus using LCD panel
US7528906B2 (en) * 2006-01-23 2009-05-05 Real D Achromatic polarization switches
KR101206031B1 (en) * 2006-01-25 2012-11-28 삼성전자주식회사 VECSEL having modulating mirror and display apparatus using the same
KR100796766B1 (en) 2006-05-29 2008-01-22 (주)레드로버 Stereo optical engine structure for projection
WO2007149189A2 (en) * 2006-05-31 2007-12-27 University Of New Hampshire Spectral-narrowing diode laser array system
WO2008076104A1 (en) 2006-12-18 2008-06-26 Thomson Licensing Wide color gamut projector
US20080276379A1 (en) 2007-05-10 2008-11-13 Macdonald John Gavin Methods for discharging colorants
US20090122272A1 (en) * 2007-11-09 2009-05-14 Silverstein Barry D Projection apparatus using solid-state light source array
US20090153752A1 (en) * 2007-12-14 2009-06-18 Silverstein Barry D Projector using independent multiple wavelength light sources
US7891816B2 (en) * 2008-02-25 2011-02-22 Eastman Kodak Company Stereo projection using polarized solid state light sources
US7959297B2 (en) * 2008-05-15 2011-06-14 Eastman Kodak Company Uniform speckle reduced laser projection using spatial and temporal mixing
US7926951B2 (en) * 2008-07-11 2011-04-19 Eastman Kodak Company Laser illuminated micro-mirror projector
US8016422B2 (en) * 2008-10-28 2011-09-13 Eastman Kodak Company Etendue maintaining polarization switching system and related methods

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8794770B2 (en) 2010-06-15 2014-08-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Projection display and method of displaying an overall picture
TWI454826B (en) * 2010-06-15 2014-10-01 Fraunhofer Ges Forschung Projection display and method of displaying an overall picture
TWI467242B (en) * 2012-05-29 2015-01-01 Delta Electronics Inc Projection apparatus for providing multiple viewing angle images
TWI461740B (en) * 2012-10-31 2014-11-21 Delta Electronics Inc Solid state illuminator for stereoscopic display
US9049437B2 (en) 2012-10-31 2015-06-02 Delta Electronics, Inc. Solid state illuminator for stereoscopic display
TWI498598B (en) * 2013-11-12 2015-09-01 Delta Electronics Inc Autostereoscopic projection device and display apparatus comprising thereof
US9535255B2 (en) 2013-11-12 2017-01-03 Delta Electronics, Inc. Autostereoscopic projection device and display apparatus

Also Published As

Publication number Publication date
TWI450017B (en) 2014-08-21
US20090141242A1 (en) 2009-06-04
WO2009073089A1 (en) 2009-06-11
JP2011505593A (en) 2011-02-24
CA2704029A1 (en) 2009-06-11
EP2215848A1 (en) 2010-08-11
US7871165B2 (en) 2011-01-18
EP2215848B1 (en) 2013-07-31
CN101878655A (en) 2010-11-03
CN101878655B (en) 2013-02-06

Similar Documents

Publication Publication Date Title
TWI450017B (en) Stereo projection apparatus using polarized solid state light sources
TWI439733B (en) Projector using independent multiple wavelength light sources
US7891816B2 (en) Stereo projection using polarized solid state light sources
US8220931B2 (en) Etendue reduced stereo projection using segmented disk
EP2454633B1 (en) Stereoscopic projector with rotating segmented disk
TWI444748B (en) Laser projection using spatial and temporal mixing
EP2423744B1 (en) Laser illuminated micro-mirror projector
US20110261174A1 (en) Stereoscopic digital projection apparatus using polarized light

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees