[go: up one dir, main page]

TW200906694A - Liquid carrying robot and control method thereof - Google Patents

Liquid carrying robot and control method thereof Download PDF

Info

Publication number
TW200906694A
TW200906694A TW097118138A TW97118138A TW200906694A TW 200906694 A TW200906694 A TW 200906694A TW 097118138 A TW097118138 A TW 097118138A TW 97118138 A TW97118138 A TW 97118138A TW 200906694 A TW200906694 A TW 200906694A
Authority
TW
Taiwan
Prior art keywords
substrate
liquid crystal
column
transfer robot
rotation
Prior art date
Application number
TW097118138A
Other languages
Chinese (zh)
Other versions
TWI471257B (en
Inventor
Masaaki Kiritani
Hirofumi Kato
Tetsuya Yamasaki
Original Assignee
Yaskawa Denki Seisakusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Denki Seisakusho Kk filed Critical Yaskawa Denki Seisakusho Kk
Publication of TW200906694A publication Critical patent/TW200906694A/en
Application granted granted Critical
Publication of TWI471257B publication Critical patent/TWI471257B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0014Gripping heads and other end effectors having fork, comb or plate shaped means for engaging the lower surface on a object to be transported
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/06Programme-controlled manipulators characterised by multi-articulated arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G61/00Use of pick-up or transfer devices or of manipulators for stacking or de-stacking articles not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/042Sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Manipulator (AREA)

Abstract

The present invention provides a liquid handling robot which can accurately detect out the location of a glass substrate, then regulate the position and implement transportation. The liquid handling robot (1) comprises a winding gear (1C, 2C) composed of link mechanisms (1A, 2A), a horizontal multi-joint mechanism (3C, 4C)composed of link mechanisms(3A, 4A),a hand part(9) of a rectangle substrate W and a mobile trolley(12). The hand part (9) of the rectangle substrate W is loaded on the horizontal multi-joint mechanism, the mobile trolley is arranged in the winding gear (1C, 2C).A pillar (8) is provided between the hand part (9) and the horizontal multi-joint mechanism (3C, 4C).The pillar (8) is provided with a sensor (10) to detect the location of substrate W.

Description

200906694 九、發明說明 【發明所屬之技術領域】 本發明是關於液晶搬運裝置的控制方法。 【先前技術】 習知的液晶搬運機器人,對於液晶基板橫向偏位的修 正方法已揭示有使用距離感測器計測橫向偏位,將機器人 朝橫向移動修正橫向偏位的方法(例如參照專利文獻1 ) 。第4圖中圖示著習知的液晶搬運機器人。連結部1 〇 6的 上端部1 0 6 a ’如第4圖所示’安裝有位置檢測感測器1 1 4 支撐用的支撐臂1 1 5。此時最好是將支撐臂丨丨5安裝成可 讓位置檢測感測器1 1 4配置在機器人手部彎折方向相對側 地安裝在連結部1 0 6的上端部1 0 6 a爲佳。接著,將位置 檢測感測器1 14形成爲朝玻璃基板W側(第4圖的右側 )開口的「C」字型,以在機器人手部1〇5吸附著玻璃基 板後,移動至機器人的原點位置時,可檢測車玻璃基板左 端緣位置。 此外,手臂1 3 1 C的上面安裝有2處和玻璃基板前面 部大致平行的第1距離感測器1 1 3,在第1距離感測器 1 1 3的後方部,可轉動地配設有安裝著位置檢測感測器 的支撐臂。支撐臂是形成爲「L」字型,於前端部形 成有朝玻璃基板側開口的「:3」字型位置檢測感測器n 4 。支撐臂是由未圖示的驅使馬達驅動成如第5圖所示以機 器人手部1 3 1 C的後方安裝部爲中心朝順時針方向轉動, -5- 200906694 其轉動終端,在玻璃基板移動至原點位置時,可讓玻璃基 板的左端緣位於插入在位置檢測感測器1 1 4開口部的位置 〇 [專利文獻1]日本特開平9- 1 6225 7號(第4-5頁、第 4圖、第7圖) 【發明內容】 [發明欲解決之課題] 液晶搬運機器人,是以機器人手部從多段配置有玻璃 基板的匣盒吸附玻璃基板,進行作業區域的玻璃基板配置 作業。於配置有玻璃基板的匣盒,玻璃基板是需配置在指 定位置,然而實際上在匣盒內會產生旋轉偏位或橫向偏位 ,該狀態下的玻璃基板以機器人手部取出時,在包括有載 置誤差的狀態搬運至作業區域,以致在作業區域執行的描 繪或曝光步驟出現誤差,導致玻璃基板成爲瑕疵品。此外 ,近年來玻璃基板大型化的趨勢,以致微小量的旋轉偏位 或橫向偏位也因爲基板大型化的影響而變大。另外,玻璃 基板大型化的趨勢,導致搬運物慣性變大,另一方面又被 要求縮短生產間隔時間。即,對於液晶搬運機器人要求需 具高剛性的構造,需爲難以振動的構造。 相對於此,習知的液晶搬運機器人,具備有修正載置 在機器人手部上的液晶基板的旋轉偏位及橫向偏位用的感 測器,藉此進行位置修正,但連結部上所配備的支撐臂具 備有位置檢測感測器之構造的液晶搬運機器人,在移動載 -6 - 200906694 置有大慣性液晶玻璃基板的機器人手部時連結部也會作用 著反力,以致從該連結部延伸至上方的位置上配置的位置 感測器因支撐臂剛性低而產生振動。在該振動產生中即使 對橫向偏位進行計測但位置感測器本身的振動値也會受到 檢測,所以就產生無法檢測出真正橫向偏位量的問題。 此外,對於轉動著安裝有位置檢測感測器的支撐臂對 玻璃基板橫向偏位進行計測的方法,是將安裝有位置檢測 感測器的支撐臂進行轉動使其配置在計測位置,因此在位 置檢測感測器的計測位置,會產生某種程度以上的轉動運 動誤差,以致產生無法檢測出正確橫向偏位量的問題。 本發明是有鑑於上述問題點而爲的發明,目的是提供 一種能夠正確檢測出玻璃基板的位置,對位置進行修正後 進行搬運的液晶搬運機器人。 [用以解決課題之手段] 爲了解決上述問題,本發明的構成如下述。 申請專利範圍第1項所記載的發明,是於連桿機構形 成的昇降機構,和連桿機構形成的水平多關節機構,和可 將矩形形狀的基板載置在上述水平多關節機構的手部,及 配備在上述昇降機構的行走台車所構成的液晶搬運機器人 中,構成爲在上述手部和水平多關節機構之間配備著立柱 ,在上述立柱配備有可對上述基板位置進行檢測的感測器 〇 此外’申請專利範圍第2項所記載的發明,構成爲上 -7- 200906694 述感測器以可讓上述矩形形狀基板一邊通過的狀態配置在 上述立柱。 另外,申請專利範圍第3項所記載的發明,構成爲上 述水平多關節機構針對上述基板的搬運方向構成爲對稱構 造,此外配備在上述立柱的上述感測器也以可成爲上述對 稱構造的狀態配置。 又’申請專利範圍第4項所記載的發明,構成爲上述 感測器由穿透型的光感測器形成,上述立柱形成爲3字形 狀,上述立柱的上下面具備有上述感測元件。 此外,申請專利範圍第5項所記載的發明,構成爲上 述光感測器是以矩形形狀基板一邊通過時的上述基板造成 的遮光量檢測出上述基板的橫向偏位量。 另外,申請專利範圍第6項所記載的發明,是由可載 置矩形形狀基板的手部至少具備1個旋繞軸的連桿機構形 成的昇降機構,和由至少2個旋繞軸形成的連桿機構所構 成的水平多關節機構,及配在上述昇降機構的行走台車所 共同操作的液晶搬運機器人中,構成爲在上述手部和上述 水平多關節機構之間配備著立柱,於上述立柱根據上述基 板位置檢測的感測訊號操作修正上述基板位置。 又,申請專利範圍第7項所記載的發明,構成爲當根 據上述感測訊號檢測出上述基板旋轉偏位時,將上述旋轉 偏位轉換成上述立柱所具備的旋轉軸的旋轉角度藉此修正 上述旋轉偏位。 此外,申請專利範圍第8項所記載的發明,構成爲當 -8 - 200906694 根據上述感測訊號檢測出上述基板橫向偏位時,將上述橫 向偏位轉換成上述行走台車的移動量進行修正。 另外,申請專利範圍第9項所記載的發明,構成爲當 根據上述感測訊號檢測出上述基板的旋轉偏位和橫向偏位 時,在上述旋轉偏位的修正步驟之後執行上述橫向偏位的 修正步驟。 又,申請專利範圍第1 0項所記載的發明,構成爲上 述感測訊號爲距離檢測感測器的訊號,在根據上述距離檢 測感測器的訊號執行旋轉偏位的修正步驟之後執行橫向偏 位的修正步驟。 [發明效果] 根據申請專利範圍第1項至第5項的發明時,由於在 剛性高的立柱具備有基板位置檢測用的感測器,所以即使 高加速暨高速移動手部,但其反力不會直接對立柱造成振 動,因此能夠獲得正確的位置資訊。如此一來就能夠檢測 出基板的正確位置,能夠實現正確修正,解決目前爲止成 爲問題之作業區域的描繪或曝光步驟產生瑕疵品的問題, 同時還可適用於大型化的玻璃基板。 此外,根據申請專利範圍第6項至第1 0項的發明時 ,由於能夠根據正確的位置資訊執行修正,所以能夠讓玻 璃基板在被搬運往作業區域時定位在正確位置,因此能夠 提昇製品的加工精度。另外,因是於玻璃基板通過時檢測 出位置資訊,根據檢測結果轉換成各關節的旋轉角度,所 -9- 200906694 以玻璃基板移動中也能夠獲得修正,因此能夠縮短生 隔時間。 【實施方式】 [發明之最佳實施形態] 以下,參照圖面對本發明實施形態進行說明。 [實施例1] 第1圖爲本發明液晶搬運機器人透視圖。第1圖 示左腕臂朝前方伸出的狀態,第2圖是表示右腕臂朝 伸出的狀態。圖中,圖號1爲液晶搬運機器人,圖勒 爲第1旋繞軸,圖號2C爲第2旋繞軸,圖號3C爲第 繞軸,圖號4C爲第4旋繞軸,圖號1A爲第1臂體, 2A爲第2臂體,圖號3 A爲第3臂體,圖號4A爲第 體,圖號7爲水平底座,圖號8爲3字立柱,圖號9 器人手部,圖號1 〇爲距離檢測感測器,圖號1 1爲固 座,圖號12爲行走台車。 本發明和專利文獻1不同之處,在於玻璃基板橫 位檢測用的距離檢測感測器配備在3字立柱的部份。 液晶搬運機器人1是大區分爲3個構造所構成。 是由可移動成讓固定底座11朝垂直方向上昇的第1 軸1C形成,由水平底座7上在水平面內進行旋繞的 旋繞軸3 C形成。此外’針對以第2旋繞軸2 C爲中心 有玻璃基板W的機器人手部9的行進方向在左右對 產間 是表 •上/- r - 即方 =1C 3旋 圖號 4臂 爲機 定底 向偏 其一 旋繞 第3 載置 稱配 -10- 200906694 置有第3及第4臂體3A、4A,以第2旋繞軸2C左右對稱 旋繞第3及第4臂體3A、4A及機器人手部9。 另外,固定底座11是安裝在行走台車12,行走台車 12是朝玻璃基板進退方向的正交方向移動。 以下是詳細說明機器人的構造。 配置在固定底座11,水平面內具備旋轉軸的第1旋繞 軸1C是以皮帶驅動第!及第2臂體ΙΑ、2A,讓第1臂體 1A及第2臂體2A以第1旋繞軸1C爲中心進行旋繞,使 液晶搬運機器人1上下移動。第2臂體2A的前端是安裝 在水平底座7,具備著垂直面內具有旋繞軸的第2旋繞軸 2C,由第2旋繞軸2C讓水平底座7形成旋繞,於水平底 座7 ’左腕和右腕的臂體3 A、4 A是以對稱構造配置,分 別加標有L和R,L表示左腕,R表示右腕。在水平底座 7分別配置有第3臂體3AR、3AL,第3臂體3AR、3AL 的另一端,配備著垂直面內具有旋繞軸的第3旋繞軸3 CR 、3CL,利用第3旋繞軸3CR、3CL讓第3臂體3AR、 3AL和第4臂體4AR、4AL皮帶驅動成旋繞。第4臂體 4AR、4AL的另一端是連結著具備機器人手部9的3字立 柱 8R、8L。 於3字立柱8R、8L,如第2圖所示在玻璃基板W通 過的部份成相向配置有例如穿透型光感測器的距離檢測感 測器1 0R、1 。例如:從光的遮光量換算成玻璃基板w 的位置。此外,機器人手部9爲獲得輕型和高剛性是以 CFRP (碳纖維強化塑膠)形成,但玻璃基板W隨著大型 -11 - 200906694 化其重量將達到數l〇kg,因此立柱8R、8L也是以可具備 高剛性的最佳厚度及材質形成。 其次,針對液晶搬運機器人1的動作進行說明。液晶 搬運機器人1,對於在指定高度的未圖示玻璃基板W是利 用第1旋繞軸1 C的控制進行移動,讓機器人手部9和玻 璃基板W的高度相同,利用第3旋繞軸3 C的控制讓臂體 3A、4A進退藉此將玻璃基板W載置在機器人手部9上移 動至玻璃基板W的作業區域。 其次,針對玻璃基板在機器人手部上的位置修正方法 是使用第3圖說明其步驟。 (1 )將玻璃基板載置在上。 (2 )從未圖示的機器人手部所具備的2個感測器的 相對角度檢測出角度偏位。例如也可利用專利文獻1所揭 檢 位 偏 度 角 的 示 驟 步 將 旋 3 第 成 換 轉 位 偏 度 角 。 的 測出 檢測 行檢 進所 法} 方2 /|\ 測 角載* 繞 載 旋4)搭 的{ 以 軸 則 繞 ’ 藉在 置 若II維 量 5 動 6 C 移 C 的 車 動 度 H1L Π 產 此 持 況位 狀偏 的向 入橫 縮出 爲測 若檢 板器 基測 璃感 玻測 。 的 檢 度部離 角手距 正人的 修器柱 此機立 字 台 移 走 域 行 區 成 業 換 作 轉 往 量 勢 位 姿 偏 的 將 置 則 位 ’ 及 時 度 位 。 角 偏置正 向位修 橫正已 生0著 -12- 200906694 【圖式簡單說明】 第1圖爲表示本發明的液晶搬運機器人透視圖。 第2圖爲本發明的機器人手部的構成圖。 第3圖爲表示本發明位置修正方法的流程圖。 第4圖爲表示習知的液晶搬運機器人正面圖。 第5圖爲表示習知的液晶搬運機器人的感測部圖。 【主要元件符號說明】 1 :液晶搬運機器人 1C :第1旋繞軸 2 C :第2旋繞軸 3 C :第3旋繞軸 4C :第4旋繞軸 1A :第1臂體 2A :第2臂體 3A :第3臂體 4A :第4臂體 7 :水平底座 8 : =3字立柱 -13-200906694 IX. Description of the Invention Technical Field of the Invention The present invention relates to a method of controlling a liquid crystal conveying apparatus. [Prior Art] A conventional liquid crystal transfer robot has a method of correcting a lateral misalignment of a liquid crystal substrate, and has disclosed a method of measuring a lateral misalignment using a distance sensor and correcting a lateral misalignment by moving the robot in a lateral direction (for example, refer to Patent Document 1) ). A conventional liquid crystal transfer robot is illustrated in Fig. 4. The upper end portion 1 0 6 a ' of the joint portion 1 〇 6 is attached to the support arm 1 15 for supporting the position detecting sensor 1 1 4 as shown in Fig. 4 . In this case, it is preferable to mount the support arm 5 so that the position detecting sensor 1 14 is disposed on the opposite side of the bending direction of the robot hand and is mounted on the upper end portion of the connecting portion 106. . Next, the position detecting sensor 1 14 is formed in a "C" shape that opens toward the glass substrate W side (the right side of FIG. 4), and moves to the robot after the glass substrate is adsorbed by the robot hand 1〇5. At the origin position, the position of the left edge of the car glass substrate can be detected. Further, the first distance sensor 1 1 3 which is substantially parallel to the front surface of the glass substrate is attached to the upper surface of the arm 13 1 C, and is rotatably disposed at the rear portion of the first distance sensor 1 1 3 There is a support arm with a position detection sensor mounted. The support arm is formed in an "L" shape, and a ":3"-shaped position detecting sensor n 4 opening toward the glass substrate side is formed at the tip end portion. The support arm is driven by a drive motor (not shown) to rotate clockwise around the rear attachment portion of the robot hand 1 3 1 C as shown in Fig. 5, -5-200906694 its rotation terminal, moving on the glass substrate When the position is to the origin position, the left end edge of the glass substrate can be placed at the position of the opening of the position detecting sensor 1 1 4 [Patent Document 1] Japanese Patent Laid-Open No. Hei 9- 1 6225 7 (page 4-5, 4 and 7) [Problems to be Solved by the Invention] The liquid crystal transfer robot is a glass substrate in which a glass substrate is placed on a glass substrate from a plurality of stages, and a glass substrate is placed in a work area. In a cassette equipped with a glass substrate, the glass substrate needs to be disposed at a specified position, but actually, a rotation misalignment or a lateral deviation occurs in the cassette, and when the glass substrate is taken out by the robot hand in this state, The state in which the error is placed is transported to the work area, so that an error occurs in the drawing or exposure step performed in the work area, resulting in the glass substrate becoming a defective product. Further, in recent years, the tendency of the glass substrate to increase in size has been such that a slight amount of rotational misalignment or lateral misalignment also becomes large due to the influence of the enlargement of the substrate. In addition, the tendency of the glass substrate to be enlarged has led to an increase in the inertia of the carrier, and on the other hand, it has been required to shorten the production interval. In other words, a structure requiring a high rigidity for a liquid crystal handling robot requires a structure that is difficult to vibrate. On the other hand, the conventional liquid crystal transfer robot includes a sensor for correcting the rotational offset and the lateral misalignment of the liquid crystal substrate placed on the robot hand, thereby performing position correction, but is provided on the connection portion. The support arm is provided with a liquid crystal transfer robot having a structure of a position detecting sensor. When the mobile hand is mounted on the robot hand of the large inertia liquid crystal glass substrate, the connecting portion also acts on the reaction force, so that the connecting portion is actuated from the connecting portion. The position sensor disposed at the position extending upward is vibrated due to the low rigidity of the support arm. Even if the lateral eccentricity is measured in the vibration generation, the vibration 値 of the position sensor itself is detected, so that the problem that the true lateral offset amount cannot be detected is generated. Further, the method of measuring the lateral deviation of the glass substrate by the support arm on which the position detecting sensor is mounted is to rotate the support arm to which the position detecting sensor is mounted to be placed at the measurement position, so that the position is Detecting the measurement position of the sensor generates a certain degree of rotational motion error, so that the problem that the correct lateral offset cannot be detected is generated. The present invention has been made in view of the above problems, and an object of the invention is to provide a liquid crystal transfer robot capable of accurately detecting a position of a glass substrate and correcting the position and then transporting the same. [Means for Solving the Problem] In order to solve the above problems, the configuration of the present invention is as follows. The invention described in claim 1 is a horizontal multi-joint mechanism formed by a lifting mechanism formed by a link mechanism and a link mechanism, and a rectangular substrate can be placed on the hand of the horizontal multi-joint mechanism. And a liquid crystal conveying robot including the traveling vehicle provided in the lifting mechanism, wherein a column is provided between the hand and the horizontal multi-joint mechanism, and the column is provided with a sensing capable of detecting the position of the substrate. In the invention described in the second aspect of the invention, the sensor is configured such that the sensor can be placed on the column in a state in which the rectangular substrate can pass while being passed. Further, in the invention according to the third aspect of the invention, the horizontal multi-joint mechanism is configured to have a symmetrical structure with respect to a conveyance direction of the substrate, and the sensor provided in the column is also in a state of being symmetrical. Configuration. In the invention according to the fourth aspect of the invention, the sensor is formed by a transmissive photosensor, the column is formed in a three-shape, and the sensing element is provided on the upper and lower surfaces of the column. In the invention described in the fifth aspect of the invention, the photosensor detects the amount of lateral misalignment of the substrate by the amount of light blocking caused by the substrate when the rectangular substrate passes. Further, the invention described in claim 6 is an elevating mechanism formed by a link mechanism having at least one winding shaft for a hand on which a rectangular-shaped substrate can be placed, and a connecting rod formed of at least two winding shafts a horizontal multi-joint mechanism composed of a mechanism and a liquid crystal transport robot that is operated by a traveling vehicle equipped with the elevating mechanism, wherein a column is disposed between the hand and the horizontal multi-joint mechanism, and the column is configured according to the above The sensing signal operation of the substrate position detection corrects the substrate position. Further, the invention according to claim 7 is characterized in that, when the substrate rotation deviation is detected based on the sensing signal, the rotation deviation is converted into a rotation angle of a rotation axis of the column to correct The above rotation deviation. Further, the invention according to claim 8 is characterized in that, when -8 - 200906694 detects the lateral deviation of the substrate based on the sensing signal, the lateral displacement is converted into the amount of movement of the traveling carriage to be corrected. Further, the invention according to claim 9 is characterized in that, when the rotational offset and the lateral misalignment of the substrate are detected based on the sensing signal, the lateral offset is performed after the correcting step of the rotational offset Correction steps. Further, in the invention described in claim 10, the sensing signal is a signal of the distance detecting sensor, and the lateral shift is performed after the correcting step of performing the rotational offset based on the signal of the distance detecting sensor. Bit correction step. [Effect of the Invention] According to the inventions of the first to fifth aspects of the patent application, since the sensor for detecting the position of the substrate is provided in the column having high rigidity, the reaction force is high even if the hand is moved at a high speed and high speed. It does not directly vibrate the column, so you can get the correct position information. In this way, the correct position of the substrate can be detected, and correct correction can be realized, and the problem of the defective drawing or the exposure step of the work area which has hitherto been a problem can be solved, and the glass substrate can be applied to a large-sized glass substrate. Further, according to the inventions of the sixth to tenth aspects of the patent application, since the correction can be performed based on the correct position information, the glass substrate can be positioned at the correct position when being transported to the work area, so that the product can be lifted. Precision. In addition, since the position information is detected when the glass substrate passes, and the rotation angle of each joint is converted according to the detection result, the correction can be obtained even when the glass substrate is moved, so that the separation time can be shortened. [Embodiment] BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. [Embodiment 1] Fig. 1 is a perspective view of a liquid crystal handling robot of the present invention. Fig. 1 shows a state in which the left wrist arm protrudes forward, and Fig. 2 shows a state in which the right wrist arm is extended. In the figure, Figure 1 is a liquid crystal handling robot, Tulle is the first winding axis, Figure 2C is the second winding axis, Figure 3C is the winding axis, Figure 4C is the 4th winding axis, Figure 1A is the first 1 arm body, 2A is the 2nd arm body, figure 3 A is the 3rd arm body, figure 4A is the first body, figure 7 is the horizontal base, figure 8 is the 3 word column, figure No. 9 hand, Figure 1 is the distance detection sensor, Figure 1 is the fixed seat, and Figure 12 is the walking trolley. The present invention differs from Patent Document 1 in that the distance detecting sensor for detecting the lateral position of the glass substrate is provided in a portion of the 3-character column. The liquid crystal transfer robot 1 is composed of three structures. It is formed by a first shaft 1C that is movable so that the fixed base 11 ascends in the vertical direction, and is formed by a winding shaft 3 C that is wound in a horizontal plane on the horizontal base 7. In addition, the direction of travel of the robot hand 9 having the glass substrate W centering on the second winding axis 2 C is on the left and right sides of the production table. / / r - that is, the square = 1 C 3 rotation chart No. 4 arm is determined The bottom is biased to the third. The third load is placed. -10- 200906694 The third and fourth arm bodies 3A and 4A are placed, and the third and fourth arm bodies 3A and 4A are symmetrically wound around the second winding axis 2C. Hand 9. Further, the fixed base 11 is attached to the traveling carriage 12, and the traveling carriage 12 is moved in the orthogonal direction in the direction in which the glass substrate advances and retracts. The following is a detailed description of the construction of the robot. The first winding shaft 1C, which is disposed on the fixed base 11 and has a rotating shaft in the horizontal plane, is driven by a belt! In the second arm body 2A, the first arm body 1A and the second arm body 2A are wound around the first winding shaft 1C, and the liquid crystal conveying robot 1 is moved up and down. The front end of the second arm body 2A is attached to the horizontal base 7, and has a second winding shaft 2C having a winding axis in a vertical plane. The horizontal winding base 2 is formed by the second winding shaft 2C, and the horizontal base 7' is the left and right wrists. The arm bodies 3 A, 4 A are arranged in a symmetrical configuration, respectively labeled with L and R, L for the left wrist, and R for the right wrist. The third arm bodies 3AR and 3AL are disposed on the horizontal base 7, and the other ends of the third arm bodies 3AR and 3AL are provided with third winding shafts 3 CR and 3CL having a winding axis in a vertical plane, and the third winding shaft 3CR is used. 3CL drives the third arm bodies 3AR, 3AL and the fourth arm bodies 4AR, 4AL belts to be wound. The other ends of the fourth arm bodies 4AR and 4AL are connected to the three-character posts 8R and 8L including the robot hand 9. In the three-character posts 8R and 8L, as shown in Fig. 2, distance detecting sensors 10R and 1 are disposed, for example, in a direction in which the glass substrate W passes, for example, a penetrating photosensor. For example, the amount of light blocking is converted into the position of the glass substrate w. In addition, the robot hand 9 is formed of CFRP (carbon fiber reinforced plastic) for light weight and high rigidity, but the glass substrate W will reach several 〇kg with the weight of the large -11 - 200906694, so the columns 8R, 8L are also It can be formed with the best thickness and material with high rigidity. Next, the operation of the liquid crystal transfer robot 1 will be described. In the liquid crystal transfer robot 1, the glass substrate W (not shown) at a predetermined height is moved by the control of the first winding axis 1 C, and the heights of the robot hand 9 and the glass substrate W are the same, and the third winding axis 3 C is used. By controlling the arm bodies 3A and 4A to advance and retract, the glass substrate W is placed on the robot hand 9 and moved to the work area of the glass substrate W. Next, the method of correcting the position of the glass substrate on the robot hand is described using Fig. 3 . (1) The glass substrate is placed on top. (2) The angular misalignment is detected from the relative angles of the two sensors provided in the robot hand (not shown). For example, it is also possible to use the step of detecting the skewness angle of the patent document 1 to change the rotation angle of the first rotation. Measured detection line check method} square 2 /|\ angling load * winding rotation 4) lap {to the axis then around ' borrowed if the II dimension 5 movement 6 C shift C the movement H1L Π The orientation of the positional orientation is measured by the horizontal measurement of the glass. The inspection unit is separated from the corner of the hand. The position of the machine is changed. The position of the position is changed to the position and the position of the position. The angle-biased positive position correction has been completed. -12- 200906694 [Schematic description of the drawings] Fig. 1 is a perspective view showing the liquid crystal transfer robot of the present invention. Fig. 2 is a view showing the configuration of a robot hand of the present invention. Fig. 3 is a flow chart showing the position correction method of the present invention. Fig. 4 is a front elevational view showing a conventional liquid crystal transfer robot. Fig. 5 is a view showing a sensing portion of a conventional liquid crystal transfer robot. [Description of main component symbols] 1 : Liquid crystal transfer robot 1C : 1st winding axis 2 C : 2nd winding axis 3 C : 3rd winding axis 4C : 4th winding axis 1A : 1st arm body 2A : 2nd arm body 3A : 3rd arm body 4A: 4th arm body 7: Horizontal base 8: = 3 word column-13-

Claims (1)

200906694 十、申請專利範圍 1 · 一種液晶搬運機器人,係連桿機構形成的昇降機 構;連桿機構形成的水平多關節機構;可將矩形形狀的基 板載置在上述水平多關節機構的手部;及配備在上述昇降 機構的行走台車所構成的液晶搬運機器人,其特徵爲: 於上述手部和上述水平多關節機構之間配備著立柱, 在上述立柱配備有可對上述基板位置進行檢測的感測器。 2. 如申請專利範圍第1項所記載的液晶搬運機器人 ,其中,上述感測器是可讓上述矩形形狀基板的一邊通過 的狀態配置在上述立柱。 3. 如申請專利範圍第1項所記載的液晶搬運機器人 ,其中,上述水平多關節機構是針對上述基板的搬運方向 構成爲對稱構造,此外配備在上述立柱的上述感測器成爲 上述對稱構造的狀態配置。 4. 如申請專利範圍第1項所記載的液晶搬運機器人 ,其中,上述感測器是由穿透型的光感測器形成,上述立 柱是形成爲3字形狀,上述立柱的上下面具備有上述感測 元件。 5. 如申請專利範圍第4項所記載的液晶搬運機器人 ,其中,上述光感測器是以矩形形狀基板的一邊通過時的 上述基板產生的遮光墓檢測出上述基板的橫向偏位量。 6. —種液晶搬運機器人控制方法,係由可載置矩形 形狀基板的手部的至少具備1個旋繞軸的連桿機構形成的 舁降機構;由至少2個旋繞軸形成的連桿機構所構成的水 -14- 200906694 平多關節機構;及配備在上述昇降機構的行走台車所操作 的液晶搬運機器人控制方法,其特徵爲·· 於上述手部和上述水平多關節機構之間配備著立柱’ 於上述立柱根據上述基板位置檢測的感測訊號操作修正上 述基板的位置。 7 ·如申請專利範圍第6項所記載的液晶搬運機器人 控制方法,其中,根據上述感測訊號檢測出上述基板旋轉 偏位時,將上述旋轉偏位轉換成上述立柱所具備的旋轉軸 的旋轉角度以修正上述旋轉偏位。 8 .如申請專利範圍第6項所記載的液晶搬運機器人 控制方法,其中,根據上述感測訊號檢測出上述基板橫向 偏位時,將上述橫向偏位轉換成上述行走台車的移動量進 行修正。 9 ·如申請專利範圍第6項所記載的液晶搬運機器人 控制方法,其中,根據上述感測訊號檢測出上述基板的旋 轉偏位和橫向偏位時,在上述旋轉偏位的修正步驟之後執 行上述橫向偏位的修正步驟。 1 0·如申請專利範圍第6項所記載的液晶搬運機器人 控制方法,其中,上述感測訊號爲距離檢測感測器的訊號 ,在根據上述距離檢測感測器的訊號執行旋轉偏位的修正 步驟之後執行橫向偏位的修正步驟。200906694 X. Patent application scope 1 · A liquid crystal handling robot, which is a lifting mechanism formed by a link mechanism; a horizontal multi-joint mechanism formed by a link mechanism; a rectangular shaped substrate can be placed on the hand of the horizontal multi-joint mechanism; And a liquid crystal conveying robot comprising the traveling carriage provided in the lifting mechanism, wherein a column is provided between the hand and the horizontal multi-joint mechanism, and the column is provided with a feeling of detecting the position of the substrate. Detector. 2. The liquid crystal transfer robot according to the first aspect of the invention, wherein the sensor is disposed on the column in a state in which one side of the rectangular substrate is allowed to pass. 3. The liquid crystal transfer robot according to the first aspect of the invention, wherein the horizontal multi-joint mechanism is configured to have a symmetrical structure with respect to a conveyance direction of the substrate, and the sensor provided on the column has the symmetrical structure. Status configuration. 4. The liquid crystal transfer robot according to the first aspect of the invention, wherein the sensor is formed by a transmissive photosensor, the column is formed in a three-shape, and the upper and lower surfaces of the column are provided The above sensing element. 5. The liquid crystal transfer robot according to the fourth aspect of the invention, wherein the photosensor detects a lateral misalignment amount of the substrate by a shading tomb generated by the substrate when one side of the rectangular substrate passes. 6. A liquid crystal transfer robot control method comprising: a pick-up mechanism formed by a link mechanism having at least one winding shaft of a hand on which a rectangular-shaped substrate can be placed; and a link mechanism formed of at least two winding shafts The water--14-200906694 flat multi-joint mechanism; and the liquid crystal conveying robot control method operated by the traveling trolley equipped with the above-mentioned lifting mechanism, characterized in that: the column is provided between the hand and the horizontal multi-joint mechanism The position of the substrate is corrected on the column by the sensing signal operation of the substrate position detection. The liquid crystal transfer robot control method according to claim 6, wherein when the substrate rotation deviation is detected based on the sensing signal, the rotation offset is converted into a rotation of a rotation axis of the column. Angle to correct the above rotation misalignment. The liquid crystal transfer robot control method according to claim 6, wherein when the lateral displacement of the substrate is detected based on the sensing signal, the lateral offset is converted into the amount of movement of the traveling carriage to be corrected. The liquid crystal transfer robot control method according to claim 6, wherein when the rotation misalignment and the lateral misalignment of the substrate are detected based on the sensing signal, the above-described rotation deviation correction step is performed. Correction step for lateral offset. The liquid crystal transfer robot control method according to claim 6, wherein the sensing signal is a signal of the distance detecting sensor, and the rotation offset is corrected according to the signal of the distance detecting sensor. The step of correcting the lateral offset is performed after the step.
TW97118138A 2007-06-06 2008-05-16 Liquid crystal handling robot and its control method TWI471257B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007150636A JP5146641B2 (en) 2007-06-06 2007-06-06 Substrate transfer robot and control method of substrate transfer robot

Publications (2)

Publication Number Publication Date
TW200906694A true TW200906694A (en) 2009-02-16
TWI471257B TWI471257B (en) 2015-02-01

Family

ID=40178725

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97118138A TWI471257B (en) 2007-06-06 2008-05-16 Liquid crystal handling robot and its control method

Country Status (4)

Country Link
JP (1) JP5146641B2 (en)
KR (1) KR101440158B1 (en)
CN (1) CN101318328B (en)
TW (1) TWI471257B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562946B (en) * 2014-04-02 2016-12-21 Hyun Dai Heavy Ind Co Ltd Driving device for transferring substrate robot and method for transfreeing substrate

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353500B2 (en) * 2009-07-08 2013-11-27 株式会社安川電機 robot
JP2012032805A (en) * 2010-06-30 2012-02-16 Nsk Technology Co Ltd Exposure unit
JP5746483B2 (en) * 2010-07-13 2015-07-08 日本電産サンキョー株式会社 Industrial robot
CN102126612B (en) * 2011-01-18 2013-05-22 东莞宏威数码机械有限公司 Position correction device
JP5387622B2 (en) * 2011-06-17 2014-01-15 株式会社安川電機 Transfer robot
JP5429256B2 (en) * 2011-10-03 2014-02-26 株式会社安川電機 Robot system
CN102506708B (en) * 2011-10-19 2014-03-05 中国建材国际工程集团有限公司 Position detecting method of glass in manipulator glass stacking system
JP5459292B2 (en) * 2011-10-31 2014-04-02 株式会社安川電機 Transfer robot
CH706473A1 (en) * 2012-05-04 2013-11-15 Erowa Ag Überwachugungseinrichtung to monitor positions of a robot and production line with a monitoring device.
JP5532110B2 (en) * 2012-11-16 2014-06-25 株式会社安川電機 Substrate transfer robot and substrate transfer method
CN104029455B (en) * 2013-03-07 2016-12-28 营口金辰机械股份有限公司 Automatic upper and lower assembly glass machine
KR101478480B1 (en) * 2014-01-17 2014-12-31 두산중공업 주식회사 Multi-articulated manipulator
CN104690736B (en) * 2015-02-12 2017-03-08 成都天马微电子有限公司 Mechanical arm and its detecting system and detection method
JP2018140455A (en) * 2017-02-27 2018-09-13 川崎重工業株式会社 Robot and robot system
CN106882596B (en) 2017-03-23 2019-07-16 京东方科技集团股份有限公司 Substrate loading and unloading system, substrate loading method and substrate blanking method
CN109877824A (en) * 2017-12-06 2019-06-14 沈阳新松机器人自动化股份有限公司 It is a kind of singly to take correction robot and its method for correcting error
JP7008609B2 (en) * 2018-10-18 2022-01-25 東京エレクトロン株式会社 Board processing device and transfer position correction method
JP7303686B2 (en) 2019-07-26 2023-07-05 ニデックインスツルメンツ株式会社 Work position detection method for robots
CN110865620B (en) * 2019-11-27 2022-01-25 郑州旭飞光电科技有限公司 Online sampling inspection system and method for substrate glass and packaging system
CN111591763A (en) * 2020-06-09 2020-08-28 苏州芯慧联半导体科技有限公司 Accurate correction walking trolley device and position correction method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162257A (en) * 1995-12-05 1997-06-20 Metsukusu:Kk Thin-type substrate transfer device
US5768125A (en) * 1995-12-08 1998-06-16 Asm International N.V. Apparatus for transferring a substantially circular article
JPH10279050A (en) * 1997-04-10 1998-10-20 Mecs:Kk Non-contact type displacement of glass base detecting device
KR100309920B1 (en) * 1998-12-16 2002-10-25 삼성전자 주식회사 An unloading apparatus of a substrate and unloading method thereof
JP4558981B2 (en) * 2000-11-14 2010-10-06 株式会社ダイヘン Transfer robot
TW550651B (en) * 2001-08-08 2003-09-01 Tokyo Electron Ltd Substrate conveying apparatus, substrate processing system, and substrate conveying method
JP2003060004A (en) * 2001-08-20 2003-02-28 Yaskawa Electric Corp Robot hand
KR20040091850A (en) * 2003-04-22 2004-11-02 엘지.필립스 엘시디 주식회사 Substrate transfer device for liquid crystal display device
WO2005004227A1 (en) 2003-07-07 2005-01-13 Rorze Corporation Thin sheet-like article displacement detection method and displacement correction method
JP2006088235A (en) * 2004-09-21 2006-04-06 Hirata Corp Substrate transfer-loading robot device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI562946B (en) * 2014-04-02 2016-12-21 Hyun Dai Heavy Ind Co Ltd Driving device for transferring substrate robot and method for transfreeing substrate

Also Published As

Publication number Publication date
CN101318328A (en) 2008-12-10
CN101318328B (en) 2012-11-07
JP5146641B2 (en) 2013-02-20
KR20080107255A (en) 2008-12-10
JP2008302451A (en) 2008-12-18
TWI471257B (en) 2015-02-01
KR101440158B1 (en) 2014-09-16

Similar Documents

Publication Publication Date Title
TW200906694A (en) Liquid carrying robot and control method thereof
JP5532110B2 (en) Substrate transfer robot and substrate transfer method
JP5387622B2 (en) Transfer robot
CN100407395C (en) Transporting device for thin-plate-shaped substrate and transporting control method thereof
JP5128148B2 (en) Transport device
JP2009168860A (en) Stage device for substrate
TWI546172B (en) Industrial robots
JP2010208816A (en) Transfer device
CN101859036B (en) Substrate bonding apparatus and substrate bonding method
JP2013018617A (en) Carrying vehicle
JPH0699382A (en) Article setting device
JP5146642B2 (en) Substrate transfer robot and control method of substrate transfer robot
KR20230085202A (en) Aligner device and alignment method
JP3019871B2 (en) Ceiling construction robot and ceiling construction method
CN212291947U (en) Accurate correction walking trolley device
JPH11312726A (en) Substrate carrying device
KR102597834B1 (en) Industrial robot
JP5222222B2 (en) Metal plate positioning device
JP2012106318A (en) Conveying device of panel
JP2009141152A (en) Panel carrying apparatus, and panel carrying method
JP2009233789A (en) Method of controlling carrier robot
TW201336643A (en) Handling robot
JPH0810719B2 (en) External lead joining method and device
JP2000040735A (en) Substrate transfer device
CN216793642U (en) Wafer shifting device