[go: up one dir, main page]

TW200840066A - Fabrication system of CIS based thin film solar cell sub-module - Google Patents

Fabrication system of CIS based thin film solar cell sub-module Download PDF

Info

Publication number
TW200840066A
TW200840066A TW096115593A TW96115593A TW200840066A TW 200840066 A TW200840066 A TW 200840066A TW 096115593 A TW096115593 A TW 096115593A TW 96115593 A TW96115593 A TW 96115593A TW 200840066 A TW200840066 A TW 200840066A
Authority
TW
Taiwan
Prior art keywords
cis
film
solar cell
thin film
type
Prior art date
Application number
TW096115593A
Other languages
Chinese (zh)
Inventor
Katsumi Kushiya
Original Assignee
Showa Shell Sekiyu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu filed Critical Showa Shell Sekiyu
Publication of TW200840066A publication Critical patent/TW200840066A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/12Active materials
    • H10F77/126Active materials comprising only Group I-III-VI chalcopyrite materials, e.g. CuInSe2, CuGaSe2 or CuInGaSe2 [CIGS]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/138Manufacture of transparent electrodes, e.g. transparent conductive oxides [TCO] or indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

To the subject of the present invention is to connect respective batch steps for depositing thin film layers collectively on a predetermined unit number of substrates in an in-line type to eliminate the difference in processing speed in the fabrication process of a CIS based thin film solar cell comprising steps for depositing the thin films such as a metal backside electrode layer, a p-type CIS based light absorbing layer, an n-type high resistance buffer layer, and an n-type transparent conductive film window layer. The fabrication process of a CIS based thin film solar cell sub-module comprises steps of depositing a metal backside electrode layer, a p-type CIS based light absorbing layer, an n-type high resistance buffer layer, and an n-type transparent conductive film window layer sequentially on a substrate, which is characterized in that a line buffer for storing the substrate temporarily is provided before each film deposition step.

Description

200840066 (1) 九、發明說明 【發明所屬之技術領域】 本發明是關於CIS系薄膜太陽電池副模組之製造系統 ,詳細上是關於令全體製膜步驟連結來成爲一貫的製程之 技術。 【先前技術】 積體構造之CIS系薄膜太陽電池副模組之製造步驟, 具有將金屬背面電極層、p型CIS系光吸收層、η型高阻 抗緩衝層、η型透明導電膜窗膜層等進行製膜在基板上之 步驟。 然而,上述各製膜步驟,因該製膜速度的不一致等, 要連結成爲一貫的製程會有困難,必須以各別獨立的分批 步驟來進行處理。 針對這點,提案薄膜太陽電池製造系統,該薄膜太陽 電池製造系統是一種在基板搬送路上裝設複數個處理機器 ,經過該複數個處理機器,將薄膜形成在基板而成爲薄膜 太陽電池面板之薄膜太陽電池製造系統,前述各處理機器 以直列排列,並形成爲會折返的路徑,可以抑制製造成本 (參考日本專利文獻1 )。 另外,提案可以達到無塵室的省空間化之半導體的製 造方法,該半導體的製造方法,其特徵爲:將半導體製造 中抗蝕劑塗佈等的各製程當中相互處理上有關連性之各製 程予以連結,以形成複數個單元步驟,僅以與前述半導體 -4- (2) (2)200840066 製造的全體製程相對應的單元數,連結這些單元步驟(參 考日本專利文獻2 )。 專利文獻1 :日本專利特開2005 — 23 5 9 1 6號公報 專利文獻2 :日本專利特開平6 — 3 1 0424號公報 【發明內容】 <發明所欲解決之課題> 然而,專利文獻1和專利文獻2的任一文獻所揭示的 技術,只不過是將各步驟的機器予以直列排列以縮短線上 全長,對於解決各步驟之處理速度的不一致之技術卻沒有 具體的記載,尤其,實現適於CIS系薄膜太陽電池副模組 的製造系統之技術並沒有記載。 於是,本發明的目的是提供一種具有金屬背面電極層 、P型CIS系光吸收層、η型高阻抗緩衝層、η型透明導 電膜窗膜層等的薄膜製膜步驟之CIS系薄膜太陽電池副模 組之製造系統,該CIS系薄膜太陽電池副模組之製造系統 係令將上述薄膜層進行製膜在特定單位張數的基板上之各 分批步驟,連結成直列型,以解決該處理速度的不一致。 <用以解決課題之手段> 爲了要達成上述目的,本發明的CIS系薄膜太陽電池 副模組之製造系統,是一種由依序令金屬背面電極層、p 型CIS系光吸收層、n型高阻抗緩衝層以及η型透明導電 膜窗膜層層積在一起來進行製膜在基板上的步驟所組成的 -5- 200840066 (3) CIS系薄膜太陽電池副模組之製造系統,其特徵爲:在上 述各製膜步驟前,配置暫時保管基板之列緩衝器(line buffer ) ° 列緩衝器可以聚集特定單位張數來保持基板,例如, 可以以隔著特定的間隔來保持複數張基板之支架來構成。 另外,也可以在上述各製膜步驟後,設置用來形成複 數個槽直列連接的積體構造之圖案成形步驟。 另外,上述P型CIS系光吸收層製膜過程,由金屬前 導膜製膜步驟、及硒化步驟所組成,在上述金屬前導膜製 膜步驟與上述硒化步驟間所設置之列緩衝器,也可以對水 平面成平行地保持複數張基板。 另外,也可以具有第1控制機構,該第1控制機構係 用來令在上述金屬前導膜製膜步驟與上述硒化步驟間設置 的列緩衝器所保持之複數張基板翻轉,而從上述水平狀態 變成對水平面成垂直的狀態。 另外,上述P型CIS系光吸收層製膜過程,由金屬前 導膜製膜步驟、及硒化步驟所組成,在上述硒化步驟與上 述高阻抗緩衝層製膜步驟間設置之列緩衝器,也可以對水 平面成垂直地保持複數張基板。 另外,也可以具有第2控制機構,該第2控制機構係 用來令在上述硒化步驟與上述高阻抗緩衝層製膜步驟間設 置的列緩衝器所保持之複數張基板翻轉,而從上述垂直狀 態變成對水平面成水平的狀態。 另外,上述第2控制機構,也可以是當該基板的溫度 -6 - 200840066 (4) 變成特定的溫度以下時,令在上述硒化步驟與 緩衝層製膜步驟間設置的列緩衝器所保持之複 轉’而從上述垂直狀態變成對水平面成平行的 〔發明效果〕 依據本發明,不必對既有的CIS系薄膜太 組之製造系統施予大幅的變更,就可以將各分 一貫的製程。 另外,將各分批步驟變成一貫的製程, CIS系薄膜太陽電池副模組之製造系統的成本 【實施方式】 其次,參照圖面來說明本發明的實施形態 首先,第1圖中係針對利用本實施形態的 太陽電池副模組之製造系統所製造出來之CIS 電池副模組的一個例子,來呈現薄膜層的層積 即是利用本實施形態的CIS系薄膜太陽電 製造系統所製造出來之CIS系薄膜太陽電池副 鹼障壁層1B、金屬背面電極層1C、p型CIS ID、η型高阻抗緩衝層ΙΕ、η型透明導電膜雀 依序進行製膜在基板1 Α上。 基板1 A除了例如可以採用鹼石灰玻璃之 採用不銹鋼基板。 鹼障壁層1B係在p型CIS系光吸收層1 上述高阻抗 數張基板翻 狀態。 陽電池副模 批步驟變成 則可以削減 CIS系薄膜 系薄膜太陽 構造。 池副模組之 模組1,係 系光吸收層 讀膜層1 F, 外,還可以 D進行製膜 200840066 (5) 時,爲了要防止來自基板1A的鹼成分熱擴散在p型CIS 系光吸收層1 D中而任意地設置,可以由氧化物或氮化物 等來形成。 金屬背面電極層1 C可以由導電性的材料來形成,例 如由鉬(Mo )等的金屬來形成,經由蒸鍍法或濺鍍法來 形成。 P型CIS系光吸收層1D中,光吸收層可以採用由lb 族元素、II lb族元素以及VIb族元素所組成之屬於I 一 III —VI族化合物半導體薄膜(黃銅礦(chalcopyrite)構造 化合物半導體膜)之CuInSe2或者在該CuInSe2中固熔Ga 之Cu(In,Ga)Se2。η型高阻抗緩衝層1E可以由例如含有 CdS、ZnO、ZnS、Zn(S,OH)x、Z η ( Ο,Ο Η,S ) x、Zn ( S,Ο) x、 ZnMgO、111(8,011)乂等的至少II族元素及VIb族元素之化 合物來形成。 η型透明導電膜窗膜層1 F可以由透光性的導電材料 來形成,具體上可以採用ZnO膜、ZnO : Α1膜、ZnO : Β 膜、ZnO : In膜、ITO膜等的透明導電膜,這些透明導電 膜可以藉由濺鍍法或CVD法等來形成。 第2圖和第3圖中表示本發明的第1實施形態的CIS 系薄膜太陽電池副模組之製造系統的製程。 即是上述製程的一個例子係如第2圖所示,依照基板 洗淨步驟1 0 1、鹼障壁層製膜步驟1 02、金屬背面電極層 製膜步驟103、圖案1形成步驟104、p型CIS系光吸收 層製膜步驟105、η型高阻抗緩衝層製膜步驟1〇6、圖案2 -8- 200840066 (6) 形成步驟107、η型透明導電膜窗膜層製膜步驟108、圖 案3形成步驟109、最終整理步驟1 10、匯流條帶狀焊接 步驟1 1 1、輸出測定步驟1 1 2的順序來實施。 此外,圖案1形成步驟1 〇 4、圖案2形成步驟1 〇 7、 圖案3形成步驟1 09係指所謂的圖案成形,以使用前端尖 銳的金屬針等的加工工具之機械繪圖法等來進行,藉由此 方式,可以形成複數個槽以直列連接在一起之積體構造。 一個步驟結束後的複數張基板在前往下一個步驟前暫 時保管之列緩衝器(line buffer ),爲了要調整製膜速度 的不一致所導致的處理時序,被設置在基板洗淨步驟1 0 1 與鹼障壁層製膜步驟102間(301)、金屬背面電極層製 膜步驟103與圖案1形成步驟104間(3 02 )、圖案2形 成步驟107與η型透明導電膜窗膜層製膜步驟108間( 303) 、η型透明導電膜窗膜層製膜步驟108與圖案3形 成步驟109間(3 04 )。 該列緩衝器可以聚集特定單位張數來保持基板,且可 以以隔著特定的間隔來保持複數張基板之支架來構成。 此外,本第1實施形態也可以如第3圖所示,以在圖 案2形成步驟之後,實施η型高阻抗緩衝層製膜步驟1 06 的方式構成。 然後,該情況,列緩衝器係設置在基板洗淨步驟1 〇 1 與鹼障壁層製膜步驟1〇2間(301)、金屬背面電極層製 膜步驟1〇3與圖案1形成步驟104間(3 02 )、透明導電 膜窗膜層製膜步驟108與圖案3形成步驟109間(3 04 ) 200840066 (7) ,不過在圖案2形成步驟107與透明導電膜窗膜層製膜步 驟108間(3 03 )則不設置。 藉由此方式,可以將要施予特定的製膜步驟之基板暫 時保管一定張數在列緩衝器,再將聚集在該列緩衝器的基 板整體在接下來的製程進行製膜,所以不論各製膜步驟之 製膜速度的不一致,都能夠將各每個製膜步驟的分批步驟 連結成直列型。 另外,可以在各分批步驟間設置列緩衝器來將各分批 步驟連結成直列型,所以不必對既有的CIS系薄膜太陽電 池副模組之製造系統施予大幅的變更,就可以形成本系統 〇 另外,可以將該分批步驟變成一貫的製程來削減CIS 系薄膜太陽電池副模組的製造成本。 第4圖和第5圖中表示本發明的第2實施形態的CIS 系薄膜太陽電池副模組之製造系統的製程。 本第2實施形態係如第4圖所示,除了前述過第1實 施形態的製程之外,在由金屬前導膜製膜步驟l〇5a及硒 化/硫化1 〇5b所組成之光吸收層製膜步驟,列緩衝器設 置在金屬前導膜製膜步驟l〇5a與硒化/硫化步驟l〇5b間 (401 )、硒化/硫化步驟l〇5b與高阻抗緩衝層製膜步驟 106 間(402 )。 此外,本第2實施形態也可以如第5圖所示,以在圖 案2形成步驟之後,實施高阻抗緩衝層製膜步驟1 〇6的方 式構成。 -10- 200840066 (8) 該列緩衝器401,可以採用金屬前導膜製膜步驟i〇5a 結束處理之基板達到要聚集的數量爲止,仍呈水平狀態保 持複數張基板之儲存櫃,該儲存櫃的一個例子顯示在第6 圖中。 如第6圖所示,儲存櫃2係由中空箱形狀所組成,在 左右兩面具備有用來將複數張基板呈水平保持在內部之導 引槽2 1。此外,本實施形態中儲存櫃2之四方的側面, 由透明的樹脂或者玻璃等所構成,能夠目視辨認內部。 基板係沿著導引槽2 1插入到內部,呈水平保管。 另外,列緩衝器40 1具有令呈水平狀態結束金屬前導 膜製膜步驟l〇5a爲止的處理之基板翻轉,而從水平狀態 變成垂直狀態之控制機構,在基板成垂直豎立的狀態下, 與硒化/硫化步驟1 〇 5 b進行交接。該控制機構係例如用 臂等的保持機構來保持儲存櫃2,在該保持機構已保持了 儲存櫃2的狀態下,以儲存櫃2的頂面和底面來到側面的 方式翻轉,進行控制。 此外,儲存櫃2與上述控制機構,除了可以一體構成 來作爲列緩衝器40 1之外,還可以物理式分離的個體來構 成。 然後,複數張基板聚集在儲存櫃2 ’成垂直豎立的基 板,與硒化/硫化步驟l〇5b進行交接。 硒化/硫化步驟1 〇 5 b結束的基板’暫時保管在列緩 衝器4 0 2。 該列緩衝器4 0 2,可以採用硒化/硫化步驟1 0 5 b結 -11 - 200840066 Ο) 束處理之基板達到要聚集的數量 直的狀態保持複數張基板之儲存 顯示在第7圖中。 如第7圖所不,儲存櫃3係 上下兩面具備有用來與水平面成 在內部之導引槽3 1。 基板係沿著導引槽31插入 直來予以保管。 另外,列緩衝器402具有令 化步驟l〇5b爲止的處理之基板 水平狀態之控制機構,在基板變 抗緩衝層製膜步驟106進行交接 器40 1的控制機構同樣,例如用 存櫃3,在該保持機構已保持了 存櫃2的頂面和底面來到側面的 此外,儲存櫃3與上述控制 來成爲列緩衝器401之外,還可 成。 另外,本實施形態係由各別 40 1所使用的儲存櫃2、及列緩彳 3,不過具有令儲存櫃2、3翻轉 或垂直來保持儲存櫃2、3內的 衝器401和列緩衝器402可以共 另外,上述列緩衝器402的 爲止,仍呈對水平面成垂 櫃,該儲存櫃的一個例子 由中空箱形狀所組成,在 垂直地將複數張基板保持 到內部,對於水平面成垂 呈垂直狀態結束硒化/硫 翻轉,而從垂直狀態變成 成水平的狀態下,與高阻 。該控制機構係與列緩衝 臂等的保持機構來保持儲 儲存櫃3的狀態下,以儲 方式翻轉,進行控制。 機構,除了可以一體構成 以物理式分離的個體來構 的儲存櫃來構成列緩衝器 S器402所使用的儲存櫃 的控制機構,可以呈水平 基板,所以也可以由列緩 同使用的儲存樞來構成。 控制機構可以直到經由硒 -12- 200840066 (10) 化/硫化步驟105b被加熱過之基板的熱被冷卻爲止’將 該基板呈垂直狀態保持在儲存櫃3內,在熱已被冷卻時’ 令該基板翻轉來變成水平狀態。此外,判別熱是否已冷卻 係例如利用具有上述控制機構的溫度測定機構,測定儲存 櫃3內的溫度或者基板本身的溫度。 藉由此方式,因可以對於水平面成垂直地保持經由變 成高溫的硒化/硫化步驟l〇5b而成爲高溫的基板,所以 與呈水平保持基板的情況不同,可以防止基板受到本身重 量而彎曲變形。 此外,上述本發明的實施形態中,可以在圖案1形成 步驟1 04後,設置以機械式折斷圖案端部所產生的毛邊來 予以除去之步驟。 另外,可以在圖案3形成步驟109後,設置:爲了要 焊接正/負2個電極,而在將進行製膜至單位槽的長軸方 向之基板兩端的端部之薄膜層當中之金屬背面電極層予以 餘留,在全長爲止的範圍內,利用金屬刀鋒或者鋼絲刷等 來除去必要的寬度之步驟。 另外,還可以設置:從基板的端面,用磨石來進行機 械式硏磨,以除去附著在基板端面之薄膜層,確保與背面 的電絕緣之步驟。 【圖式簡單說明】 第1圖爲本發明的實施形態的CIS系薄膜太陽電池副 模組之製造系統所製造出來之薄膜太陽電池副模組的層積 -13- 200840066 (11) 構造之圖。 第2圖爲表示本發明的第1實施形態的CIS系薄膜太 陽電池副模組之製造系統的製程之處理流程圖。 第3圖爲表示本發明的第1實施形態的CIS系薄膜太 陽電池副模組之製造系統的製程另一個例子之處理流程圖 〇 第4圖爲表示本發明的第2實施形態的CIS系薄膜太 陽電池副模組之製造系統的製程之處理流程圖。 第5圖爲表示本發明的第2實施形態的CIS系薄膜太 陽電池副模組之製造系統的製程另一個例子之處理流程圖 〇 第6圖爲表示本發明的第2實施形態的CIS系薄膜太 陽電池副模組之製造系統所使用之儲存櫃的一個例子之立 體圖。 第7圖爲表示本發明的第2實施形態的CIS系薄膜太 陽電池副模組之製造系統所使用之儲存櫃的另一個例子之 立體圖。 【主要元件符號說明】 1 : CIS系薄膜太陽電池副模組 1 A :基板 1 B :鹼障壁層 1 C :金屬背面電極層 ID : p型CIS系光吸收層 -14- 200840066 (12) 1 E : η型高阻抗緩衝層 IF: η型透明導電膜窗膜層 2 :儲存櫃 21 :導引槽 3 :儲存櫃 31 :導引槽 -15[Technical Field] The present invention relates to a manufacturing system of a CIS-based thin film solar cell sub-module, and in detail relates to a technique for connecting a whole-system film step to a consistent process. [Previous Art] A manufacturing step of a CIS-based thin film solar cell sub-module having an integrated structure includes a metal back electrode layer, a p-type CIS-based light absorbing layer, an n-type high-resistance buffer layer, and an n-type transparent conductive film window layer The step of forming a film on the substrate. However, in the above-described respective film forming steps, it is difficult to connect them into a consistent process due to the inconsistency in the film forming speed, and the like, and it is necessary to perform the processing in separate batch steps. In view of the above, a thin film solar cell manufacturing system is proposed in which a plurality of processing apparatuses are mounted on a substrate transfer path, and a film is formed on a substrate through the plurality of processing apparatuses to form a thin film solar cell panel film. In the solar cell manufacturing system, each of the above-described processing apparatuses is arranged in a line and formed into a path that can be folded back, and the manufacturing cost can be suppressed (refer to Japanese Patent Laid-Open Publication No. Hei. In addition, it is proposed to achieve a method for manufacturing a semiconductor which is space-saving in a clean room, and a method for manufacturing the semiconductor, which is characterized in that each of the processes such as resist coating in semiconductor manufacturing is processed in a related manner. The process is connected to form a plurality of unit steps, and these unit steps are connected only by the number of cells corresponding to the entire process of the semiconductor-4-(2)(2)200840066 (refer to Japanese Patent Laid-Open No. 2). [Patent Document 1] Japanese Patent Laid-Open Publication No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. No. Hei. The technique disclosed in any of the documents of Patent Document 2 is merely to arrange the machines of the respective steps in an in-line arrangement to shorten the total length of the line, and there is no specific description on the technique for solving the inconsistency in the processing speed of each step, in particular, The technique of a manufacturing system suitable for a CIS-based thin film solar cell sub-module is not described. Accordingly, an object of the present invention is to provide a CIS-based thin film solar cell having a film forming step of a metal back electrode layer, a P-type CIS-based light absorbing layer, an n-type high-resistance buffer layer, an n-type transparent conductive film window layer, and the like. In the manufacturing system of the sub-module, the manufacturing system of the CIS-based thin film solar cell sub-module is configured to form the in-line type of the film layer on the substrate of a specific unit number of sheets, and to connect the in-line type to solve the problem. Inconsistent processing speed. <Means for Solving the Problem> In order to achieve the above object, the manufacturing system of the CIS-based thin film solar cell sub-module of the present invention is a sequential metal back electrode layer, a p-type CIS-based light absorbing layer, and n A high-impedance buffer layer and an n-type transparent conductive film window layer are laminated together to form a film on a substrate, and the manufacturing system of the CIS-based thin film solar cell sub-module is composed of a step of forming a film on a substrate. It is characterized in that before the respective film forming steps, a column buffer for temporarily storing the substrate is arranged. The column buffer can collect a specific number of units to hold the substrate. For example, the plurality of sheets can be held at a specific interval. The base plate is constructed by a bracket. Further, after each of the above-described film forming steps, a pattern forming step for forming an integrated structure in which a plurality of grooves are connected in series may be provided. Further, the P-type CIS-based light absorbing layer film forming process is composed of a metal lead film forming step and a selenization step, and a column buffer is provided between the metal leading film forming step and the selenization step. It is also possible to hold a plurality of substrates in parallel with respect to the horizontal plane. Further, the first control means may be configured to invert a plurality of substrates held by the column buffer provided between the metal leading film forming step and the selenization step, and from the above level The state becomes a state perpendicular to the horizontal plane. Further, the P-type CIS-based light absorbing layer film forming process is composed of a metal lead film forming step and a selenization step, and a column buffer is provided between the selenization step and the high-impedance buffer layer forming step. It is also possible to hold a plurality of substrates perpendicular to the horizontal plane. Further, the second control means may be configured to invert a plurality of substrates held by the column buffer provided between the selenization step and the high-impedance buffer layer forming step, and The vertical state becomes a state of being horizontal to the horizontal plane. Further, in the second control means, when the temperature of the substrate -6 - 200840066 (4) becomes equal to or lower than a specific temperature, the column buffer provided between the selenization step and the buffer layer forming step may be held. According to the present invention, it is possible to apply a separate process to the manufacturing system of the existing CIS-based film Tai-group without changing the vertical direction to the horizontal plane. . In addition, the cost of the manufacturing system of the CIS-based thin-film solar cell sub-module is changed to a consistent process. [Embodiment] Next, an embodiment of the present invention will be described with reference to the drawings. An example of a CIS battery sub-module manufactured by the manufacturing system of the solar cell sub-module of the present embodiment is a laminate of a thin film layer produced by the CIS-based thin film solar power manufacturing system of the present embodiment. The CIS-based thin film solar cell sub-alkali barrier layer 1B, the metal back electrode layer 1C, the p-type CIS ID, the n-type high-resistance buffer layer ΙΕ, and the n-type transparent conductive film are sequentially formed on the substrate 1 Α. The substrate 1 A may be a stainless steel substrate other than, for example, soda lime glass. The alkali barrier layer 1B is in the state in which the high-impedance substrate is turned over in the p-type CIS-based light absorbing layer 1. The solar cell sub-module batch step is changed to reduce the CIS-based thin film solar structure. The module 1 of the pool sub-module is the light-absorbing layer reading layer 1 F, and can also be used to form the film 200840066 (5), in order to prevent the alkali component from the substrate 1A from being thermally diffused in the p-type CIS system. The light absorbing layer 1 D is arbitrarily provided and may be formed of an oxide, a nitride or the like. The metal back electrode layer 1 C may be formed of a conductive material, for example, a metal such as molybdenum (Mo), and formed by a vapor deposition method or a sputtering method. In the P-type CIS-based light absorbing layer 1D, the light-absorbing layer may be a compound film of a group I-III-VI compound composed of a lb group element, a group II lb element, and a group VIb element (chalcopyrite structure compound) CuInSe2 of the semiconductor film) or Cu(In,Ga)Se2 of G in the CuInSe2. The n-type high-resistance buffer layer 1E may be, for example, containing CdS, ZnO, ZnS, Zn(S, OH) x, Z η ( Ο, Ο Η, S ) x, Zn ( S, Ο) x, ZnMgO, 111 (8, 011 A compound of at least a Group II element and a Group VIb element of ruthenium or the like is formed. The n-type transparent conductive film window layer 1 F may be formed of a light-transmitting conductive material, and specifically, a transparent conductive film of a ZnO film, a ZnO: Α1 film, a ZnO: ruthenium film, a ZnO: In film, an ITO film, or the like may be used. These transparent conductive films can be formed by a sputtering method, a CVD method, or the like. In the second and third drawings, the manufacturing process of the manufacturing system of the CIS-based thin film solar cell sub-module according to the first embodiment of the present invention is shown. That is, an example of the above-described process is as shown in Fig. 2, in accordance with the substrate cleaning step 101, the alkali barrier layer film forming step 102, the metal back electrode layer film forming step 103, the pattern 1 forming step 104, and the p-type. CIS-based light-absorbing layer film forming step 105, n-type high-impedance buffer layer film forming step 1〇6, pattern 2 -8- 200840066 (6) Forming step 107, n-type transparent conductive film window layer film forming step 108, pattern The formation step 109, the final finishing step 1 10, the bus bar strip welding step 1 1 1 , and the output measurement step 1 1 2 are performed in the order. Further, the pattern 1 forming step 1 〇 4, the pattern 2 forming step 1 〇 7 , and the pattern 3 forming step 119 refer to so-called pattern forming, using a mechanical drawing method or the like using a processing tool such as a sharp metal needle at the tip end, In this way, it is possible to form an integrated structure in which a plurality of grooves are connected in series. The plurality of substrates after the completion of one step are temporarily stored in a line buffer before proceeding to the next step, and the processing timing caused by the inconsistency in film formation speed is set in the substrate cleaning step 1 0 1 and The base barrier layer film forming step 102 (301), the metal back surface electrode layer forming step 103 and the pattern 1 forming step 104 (302), the pattern 2 forming step 107, and the n-type transparent conductive film window layer forming step 108 The inter- (303), n-type transparent conductive film window film layer forming step 108 and the pattern 3 forming step 109 (3 04). The column buffer can collect a specific unit number of sheets to hold the substrate, and can be constructed by holding a plurality of substrate holders at specific intervals. Further, in the first embodiment, as shown in Fig. 3, the n-type high-impedance buffer layer film forming step 106 may be carried out after the pattern 2 forming step. Then, in this case, the column buffer is disposed between the substrate cleaning step 1 〇1 and the alkali barrier layer film forming step 1〇2 (301), the metal back electrode layer forming step 1〇3, and the pattern 1 forming step 104. (3 02 ), the transparent conductive film window film forming step 108 and the pattern 3 forming step 109 (3 04 ) 200840066 (7), but between the pattern 2 forming step 107 and the transparent conductive film film layer forming step 108 (3 03 ) is not set. In this way, the substrate to be subjected to the specific film forming step can be temporarily stored in a predetermined number of rows in the column buffer, and the entire substrate stacked in the column buffer can be formed into a film in the subsequent process. In the case where the film forming speed in the film step is not uniform, the batch steps of each film forming step can be connected in an in-line type. In addition, a column buffer can be provided between the respective batch steps to connect the batch steps into an in-line type, so that it is possible to form a large change without changing the manufacturing system of the existing CIS-based thin film solar cell sub-module. In addition, the batch process can be changed into a consistent process to reduce the manufacturing cost of the CIS-based thin film solar cell sub-module. Fig. 4 and Fig. 5 show the manufacturing process of the manufacturing system of the CIS-based thin film solar cell sub-module according to the second embodiment of the present invention. In the second embodiment, as shown in Fig. 4, in addition to the above-described process of the first embodiment, the light absorbing layer composed of the metal leading film forming step 10a and the selenization/sulfiding 1 〇 5b is used. In the film forming step, the column buffer is disposed between the metal leading film forming step l〇5a and the selenization/vulcanization step 10b (401), the selenization/vulcanization step l〇5b, and the high-impedance buffer layer film forming step 106. (402). Further, in the second embodiment, as shown in Fig. 5, the high-impedance buffer layer film forming step 1 〇 6 may be employed after the pattern 2 forming step. -10- 200840066 (8) The column buffer 401 can be a storage cabinet that maintains a plurality of substrates in a horizontal state by using a metal leading film forming step i〇5a to reach a number of substrates to be processed. An example of this is shown in Figure 6. As shown in Fig. 6, the storage cabinet 2 is composed of a hollow box shape, and has guide grooves 21 for holding a plurality of substrates horizontally inside on the left and right sides. Further, in the present embodiment, the side faces of the four sides of the storage cabinet 2 are made of transparent resin or glass, and the inside can be visually recognized. The substrate is inserted into the inside along the guide groove 21, and is horizontally stored. In addition, the column buffer 40 1 has a control mechanism for inverting the substrate in the horizontal state from the metal leading film forming step 10a, and changing from the horizontal state to the vertical state, and in a state where the substrate is vertically erected, The selenization/vulcanization step 1 〇5 b is carried out. The control mechanism holds the storage cabinet 2 by, for example, a holding mechanism such as an arm. When the holding mechanism has held the storage cabinet 2, the top surface and the bottom surface of the storage cabinet 2 are turned over to the side to be controlled. Further, the storage cabinet 2 and the above-described control means may be integrally formed as a column buffer 40 1 or may be physically separated. Then, a plurality of substrates are gathered on the substrate which is vertically erected in the storage cabinet 2', and are subjected to the selenization/vulcanization step l〇5b. The substrate of the selenization/vulcanization step 1 〇 5 b is temporarily stored in the column buffer 420. The column buffer 4 0 2 can be selenized/vulcanized step 1 0 5 b junction -11 - 200840066 Ο) The substrate processed by the beam reaches a state in which the number of substrates to be collected is kept straight to keep the storage of the plurality of substrates displayed in Fig. 7 . As shown in Fig. 7, the storage cabinet 3 is provided with guide grooves 31 for being internally formed with the horizontal plane on both upper and lower sides. The substrate is inserted and placed along the guide groove 31 for storage. Further, the column buffer 402 has a control mechanism for the substrate horizontal state of the processing up to the step l5b, and the storage mechanism 3 is used, for example, by the storage cabinet 3 in the substrate-resistant buffer layer forming step 106. Further, the holding mechanism has kept the top surface and the bottom surface of the storage cabinet 2 to the side, and the storage cabinet 3 and the above-described control become the column buffer 401. In addition, this embodiment is a storage cabinet 2 and a column buffer 3 used by the respective 40 1 , but has a buffer 401 and a column buffer for keeping the storage cabinets 2, 3 inverted or vertical to hold the storage cabinets 2, 3. In addition, the above-mentioned column buffer 402 may still be in a horizontal plane, and an example of the storage cabinet is composed of a hollow box shape, which vertically holds a plurality of substrates to the inside and is suspended from the horizontal plane. The selenization/sulfur inversion is ended in a vertical state, and the state is changed from a vertical state to a horizontal state, and a high resistance is obtained. This control mechanism is turned over in a storage mode while holding the storage cabinet 3 with a holding mechanism such as a column buffer arm, and is controlled. The mechanism, in addition to the storage cabinet constructed by physically separating the individual to constitute the storage cabinet used by the column buffer S 402, may be a horizontal substrate, so the storage hub can also be used by the column Come to form. The control mechanism may hold the substrate in a vertical state in the storage cabinet 3 until the heat of the substrate heated by the selenium-12-200840066 (10) chemical/sulfurization step 105b is cooled, when the heat has been cooled The substrate is flipped to become a horizontal state. Further, it is determined whether or not the heat has been cooled. For example, the temperature in the storage cabinet 3 or the temperature of the substrate itself is measured by a temperature measuring mechanism having the above-described control means. In this way, since the substrate which becomes a high temperature can be maintained perpendicularly to the horizontal plane via the selenization/vulcanization step 10b which becomes a high temperature, unlike the case where the substrate is held horizontally, the substrate can be prevented from being bent and deformed by its own weight. . Further, in the above-described embodiment of the present invention, after the pattern 1 is formed in step 104, the step of mechanically breaking the burrs generated at the ends of the pattern may be provided. Further, after the pattern 3 forming step 109, a metal back surface electrode in which a positive/negative two electrodes are to be welded and a film layer to be formed at an end portion of both ends of the substrate in the long-axis direction of the unit groove may be provided. The layer is left, and the step of removing the necessary width by a metal blade or a wire brush is performed within the entire length. Further, it is also possible to provide a step of mechanically honing the end face of the substrate with a grindstone to remove the film layer adhering to the end face of the substrate to ensure electrical insulation from the back surface. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the structure of a thin film solar cell sub-module manufactured by a manufacturing system of a CIS-based thin film solar cell sub-module according to an embodiment of the present invention-13 - 200840066 (11) . Fig. 2 is a flow chart showing the process of the manufacturing process of the manufacturing system of the CIS-based thin film solar cell sub-module according to the first embodiment of the present invention. 3 is a process flow diagram showing another example of the process of the manufacturing system of the CIS-based thin film solar cell sub-module according to the first embodiment of the present invention. FIG. 4 is a view showing a CIS-based film according to the second embodiment of the present invention. Flow chart of the process of manufacturing the solar cell sub-module manufacturing system. Fig. 5 is a flow chart showing another example of the process of the manufacturing system of the CIS-based thin film solar cell sub-module according to the second embodiment of the present invention. FIG. 6 is a view showing a CIS film according to the second embodiment of the present invention. A perspective view of an example of a storage cabinet used in a manufacturing system for a solar cell sub-module. Fig. 7 is a perspective view showing another example of a storage cabinet used in the manufacturing system of the CIS-based thin film solar cell sub-module according to the second embodiment of the present invention. [Description of main component symbols] 1 : CIS thin film solar cell submodule 1 A : Substrate 1 B : Alkali barrier layer 1 C : Metal back electrode layer ID : p type CIS light absorption layer-14 - 200840066 (12) 1 E : η-type high-impedance buffer layer IF: η-type transparent conductive film window film layer 2 : storage cabinet 21 : guiding groove 3 : storage cabinet 31 : guiding groove -15

Claims (1)

200840066 (1) 十、申請專利範圍 1·一種cis系薄膜太陽電池副模組之製造系 依序令金屬背面電極層、p型CIS系光吸收層、 抗緩衝層以及η型透明導電膜窗膜層層積在一起 膜在基板上的步驟所組成的CIS系薄膜太陽電池 製造系統,其特徵爲: 在上述各製膜步驟前,配置暫時保管基板之 (line buffer )。 2.如申請專利範圍第1項所述的cis系薄膜 副模組之製造系統,其中,上述各製膜步驟後, 形成複數個槽直列連接的積體構造之圖案成形步 3·如申請專利範圍第1或2項所述的CIS系 電池副模組之製造系統,其中,上述p型CIS系 製膜過程,是由金屬前導膜製膜步驟、及硒化步 ’ 在上述金屬前導膜製膜步驟與上述硒化步驟 列緩衝器,係對水平面成平行地保持複數張基板 4.如申請專利範圍第3項所述的CIS系薄膜 副模組之製造系統,其中,具有第1控制機構, 制機構係用來令在上述金屬前導膜製膜步驟與上 驟間設置的列緩衝器所保持之複數張基板翻轉, 水平狀態變成對水平面成垂直的狀態。 5 ·如申請專利範圍第1至4項中任一項所述 薄膜太陽電池副模組之製造系統,其中,上述p 統,是由 η型高阻 來進行製 副模組之 列緩衝器 太陽電池 設有用來 驟。 薄膜太陽 光吸收層 驟所組成 間設置之 〇 太陽電池 該第1控 述硒化步 而從上述 的CIS系 型CIS系 -16- 200840066 (2) 光吸收層製膜過程,是由金屬前導膜製膜步驟、及硒化步 驟所組成, 在上述硒化步驟與上述高阻抗緩衝層製膜步驟間設置 之列緩衝器,係對水平面成垂直地保持複數張基板。 6. 如申請專利範圍第5項所述的C IS系薄膜太陽電池 副模組之製造系統,其中,具有第2控制機構,該第2控 制機構係用來令在上述硒化步驟與上述高阻抗緩衝層製膜 步驟間設置的列緩衝器所保持之複數張基板翻轉,而從上 述垂直狀態變成對水平面成水平的狀態。 7. 如申請專利範圍第6項所述的CIS系薄膜太陽電池 副模組之製造系統,其中,上述第2控制機構,係用來當 該基板的溫度變成特定的溫度以下時,令在上述硒化步驟 與上述高阻抗緩衝層製膜步驟間設置的列緩衝器所保持之 複數張基板翻轉,而從上述垂直狀態變成對水平面成水平 的狀態。 -17-200840066 (1) X. Patent application scope 1. The manufacturing system of a cis-based thin film solar cell sub-module is followed by a metal back electrode layer, a p-type CIS light absorbing layer, an anti-buffer layer, and an n-type transparent conductive film window film. A CIS-based thin film solar cell manufacturing system comprising a step of laminating a film on a substrate, wherein a line buffer is temporarily stored before each of the film forming steps. 2. The manufacturing system of the cis-based film sub-module according to the first aspect of the invention, wherein the pattern forming step of forming an integrated structure in which a plurality of grooves are connected in series after the film forming step is as follows: The manufacturing system of the CIS-based battery sub-module according to the first or second aspect, wherein the p-type CIS-based film forming process is a film forming step of a metal leading film, and a selenization step is performed on the metal leading film. The film step and the above-described selenization step column buffer are used to hold a plurality of substrates in parallel with the horizontal plane. The manufacturing system of the CIS-based film sub-module according to claim 3, wherein the first control mechanism is provided The mechanism is used to invert a plurality of substrates held by the column buffer provided between the metal leading film forming step and the upper step, and the horizontal state is perpendicular to the horizontal plane. The manufacturing system of the thin film solar cell sub-module according to any one of claims 1 to 4, wherein the p system is a sub-module array buffer sun by n-type high resistance The battery is provided for the purpose of the step. The thin film solar light absorbing layer is formed between the components of the solar cell, the first controlled selenization step, and the above-mentioned CIS type CIS system-16-200840066 (2) light absorbing layer film forming process is a metal front film The film forming step and the selenization step are composed of a column buffer disposed between the selenization step and the high-impedance buffer layer forming step to hold a plurality of substrates perpendicular to the horizontal plane. 6. The manufacturing system of the CIS-based thin film solar cell sub-module according to claim 5, further comprising a second control mechanism for making the selenization step and the high The plurality of substrates held by the column buffer provided between the impedance buffer layer forming steps are inverted, and are changed from the vertical state to the horizontal plane. 7. The manufacturing system of the CIS-based thin film solar cell sub-module according to claim 6, wherein the second control means is configured to be used when the temperature of the substrate is lower than a specific temperature. The selenization step is reversed with the plurality of substrates held by the column buffer provided between the high-impedance buffer layer forming steps, and is changed from the vertical state to the horizontal plane. -17-
TW096115593A 2007-03-28 2007-05-02 Fabrication system of CIS based thin film solar cell sub-module TW200840066A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2007/056624 WO2008120307A1 (en) 2007-03-28 2007-03-28 Fabrication system of cis based thin film solar cell submodule

Publications (1)

Publication Number Publication Date
TW200840066A true TW200840066A (en) 2008-10-01

Family

ID=39807898

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096115593A TW200840066A (en) 2007-03-28 2007-05-02 Fabrication system of CIS based thin film solar cell sub-module

Country Status (2)

Country Link
TW (1) TW200840066A (en)
WO (1) WO2008120307A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02209744A (en) * 1989-02-09 1990-08-21 Nitto Denko Corp Multibranched transfer processor for semiconductor wafer
JPH07297258A (en) * 1994-04-26 1995-11-10 Tokyo Electron Ltd Carrying equipment of plate body
JPH10335267A (en) * 1997-05-30 1998-12-18 Mitsubishi Electric Corp Method for manufacturing semiconductor device
JP2001206543A (en) * 2000-01-31 2001-07-31 Mitsubishi Electric Corp Automatic sheet processing line
JP4817618B2 (en) * 2004-06-28 2011-11-16 京セラ株式会社 Method for manufacturing solar cell element
JP2006165386A (en) * 2004-12-09 2006-06-22 Showa Shell Sekiyu Kk CIS thin film solar cell and method for producing the same
JP2006186200A (en) * 2004-12-28 2006-07-13 Showa Shell Sekiyu Kk Precursor film and film forming method thereof
JP4841173B2 (en) * 2005-05-27 2011-12-21 昭和シェル石油株式会社 High resistance buffer layer / window layer continuous film forming method and film forming apparatus for CIS thin film solar cell

Also Published As

Publication number Publication date
WO2008120307A1 (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP6408616B2 (en) Solar cell
CN103681892B (en) Solar cell
KR101324292B1 (en) High efficiency solar cell and manufacturing method thereof, and solar cell manufacturing apparatus for the same
US20140352751A1 (en) Solar cell or tandem solar cell and method of forming same
US20140238461A1 (en) Solar cell unit and method for manufacturing the same
KR102366935B1 (en) Solar cell and solar cell module including the same
US8828780B2 (en) Substrate for photoelectric conversion device and method of manufacturing the substrate, thin-film photoelectric conversion device and method of manufacturing the thin-film photoelectric conversion device, and solar cell module
KR20150133244A (en) Photovoltaic element and manufacturing method therefor
WO2012024557A2 (en) Photovoltaic device front contact
KR20100070753A (en) Manufacturing method of photovoltaic devices
TW200840066A (en) Fabrication system of CIS based thin film solar cell sub-module
CN102074598A (en) Solar cell module and method for manufacturing the same
KR100958707B1 (en) CIS solar cell patterning method using a mask
CN104835861B (en) Solar cell front contact layer and method of making same
CN112928175B (en) Preparation method of solar cell module
JP2014232797A (en) Semiconductor precursor structure, cigs semiconductor structure produced by use thereof, cigs solar battery arranged by use thereof, and manufacturing method thereof
CN103053031B (en) Solar cell and manufacture method thereof
US20120012168A1 (en) Photovoltaic device
CN106711284B (en) A kind of manufacturing process method of cadmium telluride thin-film solar cell with double-junction stacked in parallel
Van Erven et al. Gen5 production tool for light management textures
US20140045293A1 (en) Fabrication of interconnected thin-film concentrator cells using shadow masks
US20120135545A1 (en) Laser apparatus and method for manufacturing a solar cell module using the same
KR20100128852A (en) Solar cell and barrier manufacturing method comprising barrier layer
KR101777453B1 (en) Method for Manufacturing Thin Film Solar Cell Implementing P2 Patterning and P3 Patterning at One Step and Apparatus Used Therefor
KR20100116833A (en) Solar cell including metallic silicide layer and method for fabricating the same