[go: up one dir, main page]

TW200837440A - Transflective type liquid crystal display device - Google Patents

Transflective type liquid crystal display device Download PDF

Info

Publication number
TW200837440A
TW200837440A TW096145402A TW96145402A TW200837440A TW 200837440 A TW200837440 A TW 200837440A TW 096145402 A TW096145402 A TW 096145402A TW 96145402 A TW96145402 A TW 96145402A TW 200837440 A TW200837440 A TW 200837440A
Authority
TW
Taiwan
Prior art keywords
liquid crystal
crystal display
reflective
lcd
substrate
Prior art date
Application number
TW096145402A
Other languages
Chinese (zh)
Other versions
TWI381210B (en
Inventor
Hyeon-Ho Son
Ku-Hyun Park
Original Assignee
Lg Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lg Display Co Ltd filed Critical Lg Display Co Ltd
Publication of TW200837440A publication Critical patent/TW200837440A/en
Application granted granted Critical
Publication of TWI381210B publication Critical patent/TWI381210B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)

Abstract

A transflective type (transmitting-reflective type) LCD device is disclosed, to solve problems generated in a dual cell gap, which comprises a unit pixel region divided into reflective and transmitting parts; first and second substrate facing each other; a pixel electrode formed in the pixel region of first substrate; a reflective sheet formed in the reflective part of first substrate; a common electrode formed on the second substrate; at least one first open pattern formed in at least one of the pixel and common electrodes so as to form multi-domains; and a plurality of second open patterns formed in the reflective part of at least one of the pixel and common electrodes so as to induce a fringe field.

Description

200837440 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種液晶顯示(LCD)裝置,尤其涉及一種反射_透射式(透 射-反射式)液晶顯示裝置,以解決在一二重單元間隙中所產生的問題。 【先前技術】 通常,液晶顯示(LCD)裝置藉由液晶的光學各向異性和偏極化性驅 動。液晶分子利用方向特性對準,因為所述液晶分子各具有長而薄的形狀。 在這個方面中,在所述液晶上施加一感應電場,因而控制液晶分子的對準 / 方向。 因此,如果液晶分子的對準方向藉由所述感應電場控制,藉由液晶的 光學各向異性將光線偏極化並改變,因而顯示晝面影像。 所述液晶顯示(LCD)裝置包括:一薄膜電晶體陣列基板,提供一薄 膜電晶體和-像素電極;一彩色遽光片陣列基板,提供一彩色滤光片層; 以及一液晶層形成在所述兩個基板之間。 最近,一主動矩陣(AM)式液晶顯示(LCD)裝置具有很大的吸引力, 由於其咼的解析度和良好的晝面品質,其中,所述AM式液晶顯示(lcd) 裝置包括、配置在一矩陣結構中之··一薄膜電晶體、和一像素電極。 所述液晶顯示(LCD)裝置其自身不發出光。結果,必須對於液晶顯 、 示(LCD)裝置中使用一額外光源,例如一背光單元。然而,通過所述液 晶顯示(LCD)裝置的光的數量大約占所述背光單元中發出的光的總量的 7%。因此,具有高亮度的液晶顯示(LCD)裝置需要大量的光,以致於增 加背光單元的功耗。為了提供足夠的功率用以驅動所述背光單元,這就需 要利用一巨大的電池。但是,使用電池之背光單元之操作時間是非常有限 的。 在明亮的環境中,很難識別顯示在所述液晶顯示(LCD)裝置上的影 像。 因此,一反射-透射式液晶顯示(LCD)裝置已經積極地研究和發展起 來,其能夠既使用所述周圍光線也使用自所述背光單元發出的光。所述反 200837440 ’各單元像素具 射-透射式液晶顯示(LCD)裝置包括單元像素區域,其中 有:一透射部份、一反射部份。200837440 IX. The invention relates to a liquid crystal display (LCD) device, and more particularly to a reflective-transmissive (transmissive-reflective) liquid crystal display device for solving a double-cell gap The problem that arises. [Prior Art] Generally, a liquid crystal display (LCD) device is driven by optical anisotropy and polarization of a liquid crystal. The liquid crystal molecules are aligned by directional characteristics because the liquid crystal molecules each have a long and thin shape. In this aspect, an induced electric field is applied to the liquid crystal, thereby controlling the alignment/direction of the liquid crystal molecules. Therefore, if the alignment direction of the liquid crystal molecules is controlled by the induced electric field, the light is polarized and changed by the optical anisotropy of the liquid crystal, thereby displaying a face image. The liquid crystal display (LCD) device includes: a thin film transistor array substrate, providing a thin film transistor and a pixel electrode; a color filter array substrate, providing a color filter layer; and a liquid crystal layer formed at the Between the two substrates. Recently, an active matrix (AM) type liquid crystal display (LCD) device has great appeal due to its resolution and good kneading quality, wherein the AM liquid crystal display (LCD) device includes and configures In a matrix structure, a thin film transistor, and a pixel electrode. The liquid crystal display (LCD) device does not emit light by itself. As a result, an additional light source, such as a backlight unit, must be used in a liquid crystal display (LCD) device. However, the amount of light passing through the liquid crystal display (LCD) device accounts for about 7% of the total amount of light emitted in the backlight unit. Therefore, a liquid crystal display (LCD) device having high luminance requires a large amount of light so as to increase the power consumption of the backlight unit. In order to provide sufficient power to drive the backlight unit, it is necessary to utilize a huge battery. However, the operating time of a backlight unit using a battery is very limited. In a bright environment, it is difficult to recognize an image displayed on the liquid crystal display (LCD) device. Therefore, a reflection-transmission liquid crystal display (LCD) device has been actively researched and developed which is capable of using both the ambient light and the light emitted from the backlight unit. The anti-200837440' unit pixel-transmission liquid crystal display (LCD) device includes a unit pixel area, wherein: a transmissive portion and a reflective portion.

在反射-透射式液晶顯示(LCD)裝置中的反射部份中,所 或自所述背光單元發㈣光藉由所述液晶層通過,織反射再_次通過所 述液晶層,因輯述絲過所魏晶層兩次。對於反射_透射式液晶顯示 (LCD)裝置的透射部份,所述光通過所述液晶層一次。因此,如果相同 的電壓施加在反射和透射部份上,並不會顯示影像。在這個方面中,所述 反射-透射式液晶顯示(LCD)裝置必須提供一雙重單元間隙結構,在此處, 透射部份的單·隙與反射部份的單元_不同。也就是說,藉由在透射 部份和反射部份巾形成具有不同厚度的_鈍化層,透射部份的單元間隙 (CG2)大約為反射部份的單元間隙(CG1)的兩倍。 在一垂直對準(VA)模式反射-透射式液晶顯示(LCD)裝置中,藉 由在-像素或共同電極中形成—隙縫的圖案而形成—多領域,而以彩色遽 光片陣列基板的一反射部份上所形成之覆蓋層以實現雙重單元間隙結構。 以下參考第1圖說明習知技術中的垂直對準(VA)模式反射遗射式 液晶顯示(LCD)裝置。 第1圖為一習知技術中的垂直對準(VA)模式反射-透射式液晶顯示 (LCD)裝置的橫截面圖。 如同於第1圖中所示,習知技術中的垂直對準模式反射_透射 式液晶顯示(LCD)裝置包括:一單元晶胞,其被分割成一反射部份和一 透射部份,其中,反射部份的一單元間隙與投射部份的一單元間隙不同, 此種結構稱作一雙重單元間隙結構。 這即是,第一基板10和第二基板30彼此相對設置,且一液晶層50形 成在所述第一基板10和第二基板3〇之間。然後,一背光單元(未圖示) 設置在所述第一基板10下面,其中,所述背光單元發出光線。 所述第一基板10包括:閘極線和資料線(未圖示),彼此相交以定義 出一像素區域;一薄膜電晶體(未圖示),其形成相鄰所述資料線和閘極線 的一相交部份;一鈍化層(未圖示),形成在所述薄膜電晶體上;一反射薄 片11 ’形成在反射部份的所述鈍化層上,以反射所述周圍光線(自然或人 6 200837440 造光);一絕緣層12,形成在反射薄片ii的一整個表面上;一透明材料 像素電極I3,舞絲所舰_ 12上並連接至_電晶__汲極電極。 所述像素電極I3設有細長圖案l:3a,而將所述單元像素區域分成^ 域。 、 其次,所述第二基板3〇包括:一 R/G/B彩色渡光片層%,用以代表 顏色;一共同電極34,形成在所述R/G/B彩色濾光片層%上;以及一舜芸 層36,形成在反射部份的所述共同電極34上。 ’ 後盖 在所述反射部份中,所述周圍光線通過在所述第二基板3〇處的液晶芦 50,以及然後在所述反射薄片U上反射,並且再—次通過所述液晶層%曰, 因而所述光通過所職晶層5G兩:欠。麟職透射部份,職光通二 液晶層一次。在這種情況下,由於所述反射部份的單元間隙( 於^ 透射部份的單元間隙(G2),透射部份和反射部份的電壓性鶴由制步 成在反射部份的共同電極34上覆蓋層36的厚度而彼此一致。 工婦 裝置術中的垂直對準(VA)模式反射-透射式液晶顯示(咖) 的覆蓋首層先圖if施沉制述龍層的触,録將留麵觀射部份上 輕^ 括f蓋層之基板的整個表面上沉積—對準層、且實施 p^' = 復盖層而在所述透射部份和所述反射部份之間的發生間 隙差,因而可能發生摩擦瑕疵。 生間 【發明内容】 =’本發明涉及—種反射_透射式液晶顯示 =習知技術㈣_與缺闕導致的—個献多俯其貝貝上 Ϊΐ’ΐϋ的為提供—種反射_透射式液晶顯示(LCD)裝置,其 i:二:構二:較低的;,壓’此反射部份:透射Ϊ 共同電極中形成邊^區場Γ 一開放瞧導致在反射部份之像素電極或 說明 本發明的額外_點、目的、以及特點之—部份將在以下描述中 7 200837440 且-部份將由熟習此技術人士在檢討以下制後而對其為嶋、或 藉由實施本發日轴得知。本發_目的和其他優點可轉由在所撰寫說 明、其巾4專利細、以及所酬中特職出之結構而實現與獲得。… 為了達成此根據本發明目的之此等目標與其他優點,如同在此實現且 而廣泛者,-種勝騎錢晶顯示(LCD)裝置包括:—單元像素 j本分割成反射部份和透射部份,包含彼此面對之第—基板和第二基板; -像素《,形成销—基板的像素區域巾;―反 ,的反射部份中;-共同電極,形成在所述第二基板上;至少 Ξ圖述像素電極和共同電極中的至少一個中,因而形成多領 $ ’ 碰個弟—開放贿,形成在騎像素電極和共同電極中的至少 一個的反射部份中,以導致一邊緣場。 所主ίΓίΓί—般性制細谓細綱為械與綱,其㈣為提供 尸坏王張本愈明進一步的解釋。 ^ 【實施方式】 椹圖式,其包括於此以提供本發明進—步瞭解,且併入於此以 實施例之一部份而說明實施例,以及與此說明一起用於解釋本發明 現在相_本發陳佳實施例,而在關巾說明其例。當可能時, 所有圖巾使軸同參考號碼以提及相同細似部份。 。二:ΐ考所附圖式以說明此根據本發明之反射-透射式液晶顯示 裝置。 斤 實施例一 顯示實侧之垂錄準献(v敬射_義式液晶 a衣罝的杈截面圖。第3A圖為平面圖,其說明在第2圖之反射 夂ί、液曰曰,、、、員示(Lcd)裝置之反射部份中所形成之共同電極。第3B圖 二3i、其說明第2圖中的反射-透射式液晶顯示(LCD)裝置之反射部 由t =成之像素電極。第3C圖為平面圖,其說明第3A圖和第3B圖之 彼此接合之共同電極與像素電極。 200837440 -如同於第2圖中所不,此根據本發明第一實施例之反射-透射式液晶顯 不(LCD)裝置,其包括:彼此面對之第一基板1〇〇和第二基板削;以及 -液晶層150,形成在所述第一基板1〇〇和第二基板11〇之間。然後,各個 像素電極區域分割成··-反射部份和一透射部份。而且,背光單元(未圖示》 其設置在所述第一基板100之下。 第=基板100對應於薄膜電晶體基板,其包括:複數個彼此相交之閉 極線和貧料線(未圖不),以定義出像素區域;以及複數個薄膜晶體(未圖 不)各形成相鄰於所述閘極線和資料線之交點。 f 在此時’各薄膜電晶體都包括:_閘極電極,自所述閘極線突出,·一 絕緣層,覆蓋住所述閘極電極;—半導體層,形成在 上;以及源極電極和汲極電極,形成在所述半導體層的二, 其中,所述源極電極自所述資料顯突出。 純化層(未圖示)形成於包括薄膜電晶體之第—基板膽之 ^口表面上。而且一反射薄片·形成在反射部份的鈍化層上,以反 $射周圍光線。然後’-絕緣層102形成在所述反射薄片ι〇ι之整個表面 上面所述的各像素區域形成在第一基板的絕緣層1〇2上 成ΙιΓ 或洞孔構成’而將所述單讀素區域分割 所述反射薄片101與薄膜電晶體的汲極電極 電極1〇4與所述反射薄片1〇1電性連接。 f連接’以及所述像素 R - Hi二基板110對應一彩色滤光片基板,其包括:—里色矩陣声(来 圖不)對應除了所述第一基板的像素區域的部份 ;、色矩車曰(未 才’色遽光片層II2,其代表對應所述像素區域 r、,二⑽ 叫,形成在所述_彩色遽光片層m上/種顏色,以及一共同電極 對於所述共同電極114,反射部份的所述 二開放圖案⑽、例如隙縫或洞孔,藉由 I ^包括·複數個第 電場,而降低驅動龍。 、有—感應邊緣場的-有效 9 200837440 射部份的共同電極114由複數個第二開放圖案115b組成。因此,即 ?相同的電,加至反射部份和透射部份,可以藉由不同的雙折射率 ne ) ’實現-單間隙反射_透射式液晶顯示(lcd)裝置。 形成在反射部份的所述共同電極114中所形成第二開放圖案 又大於.第開放目案115a之密度。而a,設置在反射部份的所 =同电極U4珠中之相鄰的兩個第二開放圖案n5b間的間隔㈦小於· ==個第-開放圖案心間的間隔(a)以形成領域。假若在相鄰第一開 牵間隔⑻大約為6〜1〇叫,則在相鄰兩個第二開放圖 案出b之間的間隔(b)設計為大約丨〜5啤。 口 =所述第二職_ U5b,此有效電場減 =:戶^述透射部份具有Δη(1 =々2的操作特性,並且所述 具有Δικί- A/4的操作特性。 干為根據本發明的第—實施例中的反射·透射式液晶顯 部份和透射部份的㈣位圖。第5圖為比較本 毛明的反射·義缝晶顯示(LCD)裝置的—In a reflective portion of a reflective-transmission liquid crystal display (LCD) device, or from the backlight unit, light is transmitted through the liquid crystal layer, and the light is reflected and passed through the liquid crystal layer. Silk through the layer of Wei Jing twice. For the transmissive portion of a reflective-transmissive liquid crystal display (LCD) device, the light passes through the liquid crystal layer once. Therefore, if the same voltage is applied to the reflected and transmitted portions, no image is displayed. In this aspect, the reflective-transmission liquid crystal display (LCD) device must provide a dual cell gap structure in which the single-gap of the transmissive portion is different from the cell of the reflective portion. That is, by forming a passivation layer having a different thickness in the transmissive portion and the reflective portion, the cell gap (CG2) of the transmissive portion is approximately twice the cell gap (CG1) of the reflective portion. In a vertical alignment (VA) mode reflection-transmission liquid crystal display (LCD) device, a pattern is formed by forming a pattern of slits in a -pixel or a common electrode, and a multi-domain is formed by a color-wave-reel array substrate A cover layer formed on a reflective portion to achieve a dual cell gap structure. A vertical alignment (VA) mode reflection type liquid crystal display (LCD) device in the prior art will be described below with reference to Fig. 1. Figure 1 is a cross-sectional view of a vertical alignment (VA) mode reflective-transmission liquid crystal display (LCD) device in a prior art. As shown in FIG. 1, a vertical alignment mode reflection-transmission liquid crystal display (LCD) device in the prior art includes: a unit cell which is divided into a reflective portion and a transmissive portion, wherein A cell gap of the reflective portion is different from a cell gap of the projected portion, and this structure is referred to as a dual cell gap structure. That is, the first substrate 10 and the second substrate 30 are disposed opposite to each other, and a liquid crystal layer 50 is formed between the first substrate 10 and the second substrate 3A. Then, a backlight unit (not shown) is disposed under the first substrate 10, wherein the backlight unit emits light. The first substrate 10 includes: a gate line and a data line (not shown) that intersect each other to define a pixel area; a thin film transistor (not shown) that forms adjacent the data line and the gate An intersecting portion of the line; a passivation layer (not shown) formed on the thin film transistor; a reflective sheet 11' formed on the passivation layer of the reflective portion to reflect the ambient light (natural Or human 6 200837440 light-generating); an insulating layer 12 formed on an entire surface of the reflective sheet ii; a transparent material pixel electrode I3, on the dancer's ship _ 12 and connected to the _ electro-crystal __ 汲 electrode. The pixel electrode I3 is provided with an elongated pattern 1: 3a, and the unit pixel area is divided into fields. Next, the second substrate 3 includes: an R/G/B color light-passing sheet layer % for representing a color; and a common electrode 34 formed on the R/G/B color filter layer. And a germanium layer 36 formed on the common electrode 34 of the reflective portion. a back cover in the reflective portion, the ambient light passes through the liquid crystal reed 50 at the second substrate 3, and then on the reflective sheet U, and passes through the liquid crystal layer again %曰, so the light passes through the working layer 5G two: owe. In the transmission part of Linshi, the second layer of the liquid crystal layer. In this case, due to the cell gap of the reflective portion (the cell gap (G2) of the transmissive portion, the voltage portion of the transmissive portion and the reflective portion is formed into a common electrode at the reflective portion 34 The thickness of the upper cover layer 36 is consistent with each other. The vertical alignment (VA) mode of the working device is reflected-transmissive liquid crystal display (coffee), the first layer of the first layer is shown in the figure, and the touch of the dragon layer is recorded. Depositing an alignment layer on the entire surface of the substrate including the f-cover layer, and performing a p^' = cladding layer between the transmissive portion and the reflective portion There is a gap difference, so frictional enthalpy may occur. [Inventive content] = 'The present invention relates to a kind of reflection _ transmissive liquid crystal display = conventional technology (4) _ and the lack of sputum - a dedicated more than the top of the shell 'ΐϋ is to provide a kind of reflection _ transmissive liquid crystal display (LCD) device, its i: two: structure two: lower;, pressure 'this reflection part: transmission Ϊ common electrode forming the edge ^ area field Γ Open 瞧 causes pixel electrodes in the reflective portion or illustrates additional points, purposes, and Features - Part of which will be described in the following description 7 200837440 and - will be known to those skilled in the art after reviewing the following system, or by implementing the Sun Yat. This issue and other advantages It can be realized and obtained by the structure of the written description, the patent of the towel 4, and the special structure of the reward.... In order to achieve this and other advantages according to the object of the present invention, as embodied here and In a broad sense, the device has a liquid crystal display (LCD) device comprising: - a unit pixel j is divided into a reflective portion and a transmissive portion, including a first substrate and a second substrate facing each other; - a pixel ", forming a pin a pixel region of the substrate; a reflective portion of the "reverse"; a common electrode formed on the second substrate; at least one of the pixel electrode and the common electrode, thereby forming a multi-collar $' Touching a younger brother - open bribe, formed in the reflective portion of at least one of the pixel electrode and the common electrode to cause a fringe field. The main Γ Γ Γ — — — 细 细 细 细 细 细 细 细 细 细 细 细 细 — — — — — — — — — 细 细 细Providing the corpse of the bad king Zhang Ben Further explanation is provided. [Embodiment] The present invention is included to provide a further understanding of the present invention, and is incorporated herein by way of example, and together with the description It is used to explain the present embodiment of the present invention, and the example of the present invention is described in the case of a towel. When possible, all the tissues make the same reference numerals as the reference numerals to refer to the same similar parts. BRIEF DESCRIPTION OF THE DRAWINGS The reflective-transmissive liquid crystal display device according to the present invention will be described. The first embodiment shows a cross-sectional view of the real side (v. A plan view illustrating a common electrode formed in a reflective portion of a reflection 夂, liquid helium, and/or a device (Lcd) of Fig. 2. Fig. 3BFig. 2i, which illustrates the second figure The reflection portion of the reflection-transmission liquid crystal display (LCD) device is composed of t = pixel electrode. Fig. 3C is a plan view showing the common electrode and the pixel electrode joined to each other in Figs. 3A and 3B. 200837440 - A reflective-transmission liquid crystal display (LCD) device according to a first embodiment of the present invention, as in FIG. 2, comprising: a first substrate 1 〇〇 and a second substrate facing each other And a liquid crystal layer 150 formed between the first substrate 1 and the second substrate 11A. Then, each pixel electrode region is divided into a reflective portion and a transmissive portion. Moreover, a backlight unit (not shown) is disposed under the first substrate 100. The first substrate 100 corresponds to a thin film transistor substrate, and includes: a plurality of closed-line lines and a lean line intersecting each other (not shown) No) to define a pixel region; and a plurality of thin film crystals (not shown) each forming an intersection adjacent to the gate line and the data line. f At this time, each of the thin film transistors includes: _ gate An electrode protruding from the gate line, an insulating layer covering the gate electrode; a semiconductor layer formed on the upper surface; and a source electrode and a drain electrode formed on the semiconductor layer, wherein The source electrode is prominent from the data. A purification layer (not shown) is formed on the surface of the first substrate including the thin film transistor, and a reflective sheet is formed on the passivation layer of the reflective portion. In order to shoot the surrounding light, the '-insulating layer 102 is formed on the entire surface of the reflective sheet ι 〇 ι 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成 形成Single-study The region is divided into the reflective sheet 101 and the gate electrode electrode 1〇4 of the thin film transistor is electrically connected to the reflective sheet 1〇1. The f connection 'and the pixel R-Hi two substrate 110 correspond to a color filter. a substrate comprising: a lining matrix sound (not shown) corresponding to a portion of the pixel region of the first substrate; and a chromatic moment rutting (not a color grading sheet II2, which represents the corresponding a pixel region r, a second (10), formed on the color thin layer m/color, and a common electrode for the common electrode 114, the second open pattern (10) of the reflective portion, such as a slit or The hole hole, by I ^ including a plurality of electric fields, reduces the driving dragon. Having - sensing the fringe field - effective 9 200837440 The common portion 114 of the radiating portion is composed of a plurality of second open patterns 115b. The same electric power is applied to the reflective portion and the transmissive portion, which can be realized by different birefringences ne) 'single-gap reflection_transmissive liquid crystal display (LCD) device. The common formed in the reflective portion a second open pattern formed in the electrode 114 It is greater than the density of the first open object 115a, and a, the interval between the two adjacent second open patterns n5b of the same electrode U4 bead disposed in the reflective portion is less than · == one-open The spacing between the pattern hearts (a) is to form the field. If the adjacent first opening interval (8) is about 6 to 1 yaw, the interval between the adjacent two second opening patterns b (b) is designed. For about 丨~5 beer. Port = the second job _ U5b, the effective electric field minus =: the household part of the transmission has Δη (1 = 々 2 operating characteristics, and the Δικί- A / 4 Operational characteristics: Dry is a (four) bitmap of the reflective and transmissive liquid crystal display portion and the transmissive portion in the first embodiment according to the present invention. Fig. 5 is a comparison of the reflection/information slit crystal display (LCD) of the present invention. Device -

之的,顯示(LCD)裝置的—驅動電壓⑽的U 顯亍(LCD) P wl和/ 4B圖巾卿,此根據本發日种的勝透射式液晶 發明之反㈣^透射部份與f知技術中的透射部份相同。在此根據本 邊緣場,因,蝴電位線的 __ + 卩使在騎雜和反騎份上施加相 冋的電& (5j〇,在所述透射部份中的液晶分子的傾斜變得較大。 驅動Ϊ=)5、’當將所述反射·透射式液晶顯示(LCD)裝置的 知^有所述第二開放圖案U5b的共同電極114,與習 何、、透射式液晶顯示(LCD)裝置的驅動電壓(B,)、直包 極鄉比較時,此根據本發明中的所述反射-透射式液 示_裝置知技術中的反射·透射式液晶顯 二開 山度亚且將所述開放圖案一同應用在第一和第二基 200837440 板,所述透射部份可以顯示為ντ的曲線。 實施例二 —第6圖為橫戴面圖,其說明本發明第二實施例中的一垂直對準(VA) 模式反射-透射式液晶顯示裝置。 1此根據本判第二實施例巾的垂直對準(VA)模式反射·透射式液晶顯 不衣^類似於此根據本發明第—實細巾的垂直對準(va)模式反射_透射 式液晶顯不裝置,所不同者為:在透射部份之共同電極114中與像素電極 1〇4中所形成隙縫或洞孔之第一開放圖案115a,如第6圖所示。這即是, 將像素電極104的第-開放圖案115a亦應用到所述共同電極114。在此如 同根據本發明+第一實施例中的垂直對準(VA)模式反射-透射式液晶顯示裝 置的相同的模式巾,本發明的第二實施例巾麵直對準(va)模式反仏 透射式液晶顯示裝置包括:形成在共同電極114的-反射部份的第二開放 圖案115b。 實施例三 #、第7圖為橫截面圖,其說明根據本發明第三實施例之垂直對準(va) 模式反射-透射式液晶顯示裝置。 此根據本伽第二實補之垂直鮮(VA)模式反射·透射式液晶顯示 衣置之結構類似於:此根據本發明第一實施例之垂直對準(va)模式反射· ^射式液晶顯示裝置之結構,所不同者為複數個突出物116形成在一共同 私極114上’用以將單元像素分成多領域,如同於第7圖中所示。在與本 ^,第-實施例中的垂直對準(VA)模式反射_透射式液晶顯示裝置相同 曰果式中,此根據本發明第三實施例之垂直對準(VA)模式反射_透射式液 3不裝置包括:形成在共同電極114的一反射部份中之第二開放圖案 實施例四 胃在根據本發明中的第一實施例之垂直對準(VA)模式反射-透射 頒不裝置中,所述第二開放圖案形成在反射部份的共同電極中。里: 相同的效果,所述第二開放圖案可以形成在反射部份的像素電極中。” 11 200837440 、曰在根據對於本發明的第三實施例中的垂直對準(VA)模式反射-透射式 液晶,示裝置中,所述第二開放圖案形成在反射部份的像素電極中。 +、第8圖為橫截面圖,其說明根據本發明第四實施例之一垂直對準(vA) 反射-透射式液晶顯示裝置。第9A圖為平面圖,其說明在第8圖中的 :垂,對準(VA)模式反射_透射式液晶顯示裝置中透射部份的一像素電 極。第9B圖為平面圖,其說明在第8圖中的一垂直對準(va)模式反射_ 透射式液晶顯示裝置中反射部份的一像素電極。The U-display (LCD) P wl and / 4B of the display voltage (10) of the display (LCD) device, according to the invention, the trans-transparent liquid crystal invention of the invention (four) ^ transmission part and f The transmission parts in the known technique are the same. According to the present fringe field, __ + 蝴 of the butterfly potential line causes a relative electric charge to be applied to the riding and anti-riding parts (5j〇, the tilt of the liquid crystal molecules in the transmitting portion Driving Ϊ=)5, 'When the reflective/transmissive liquid crystal display (LCD) device is known, the common electrode 114 of the second open pattern U5b, and the transmissive liquid crystal display When the driving voltage (B,) of the (LCD) device is compared with that of the straight package, the reflection-transmission liquid crystal display device according to the present invention has a reflection/transmission liquid crystal display. Applying the open pattern together on the first and second base 200837440 plates, the transmissive portion can be shown as a curve of ντ. Embodiment 2 - Figure 6 is a cross-sectional view illustrating a vertical alignment (VA) mode reflection-transmission liquid crystal display device in a second embodiment of the present invention. According to the present invention, the vertical alignment (VA) mode reflection/transmissive liquid crystal display of the second embodiment is similar to the vertical alignment (va) mode reflection-transmission type of the first fine towel according to the present invention. The liquid crystal display device is different from the first open pattern 115a of the slit or the hole formed in the common electrode 114 of the transmissive portion and the pixel electrode 1?4 as shown in FIG. That is, the first opening pattern 115a of the pixel electrode 104 is also applied to the common electrode 114. Here, like the same pattern towel of the vertical alignment (VA) mode reflection-transmission liquid crystal display device according to the present invention + the first embodiment, the second embodiment of the present invention has a face alignment (va) mode reverse The transmissive liquid crystal display device includes a second open pattern 115b formed at a reflective portion of the common electrode 114. Embodiment 3 #, FIG. 7 is a cross-sectional view illustrating a vertical alignment (va) mode reflection-transmission liquid crystal display device according to a third embodiment of the present invention. The structure of the vertical fresh (VA) mode reflective/transmissive liquid crystal display device according to the second embodiment of the present invention is similar to: the vertical alignment (va) mode reflection and liquid crystal according to the first embodiment of the present invention. The structure of the display device differs in that a plurality of protrusions 116 are formed on a common private electrode 114 to divide the unit pixels into multiple fields, as shown in FIG. In the same manner as the vertical alignment (VA) mode reflection-transmissive liquid crystal display device in the first embodiment, the vertical alignment (VA) mode reflection_transmission according to the third embodiment of the present invention The liquid 3 non-device includes: a second open pattern formed in a reflective portion of the common electrode 114. The fourth stomach is reflected in the vertical alignment (VA) mode according to the first embodiment of the present invention. In the device, the second open pattern is formed in a common electrode of the reflective portion. In the same effect, the second open pattern may be formed in the pixel electrode of the reflective portion. 11 200837440 According to a vertical alignment (VA) mode reflective-transmissive liquid crystal in a third embodiment of the present invention, in the display device, the second open pattern is formed in a pixel electrode of a reflective portion. +, Fig. 8 is a cross-sectional view illustrating a vertical alignment (vA) reflection-transmission liquid crystal display device according to a fourth embodiment of the present invention. Fig. 9A is a plan view, which is illustrated in Fig. 8: Aligned, aligned (VA) mode reflects a pixel electrode of a transmissive portion of a transmissive liquid crystal display device. FIG. 9B is a plan view illustrating a vertical alignment (va) mode reflection_transmission type in FIG. A pixel electrode of a reflective portion of the liquid crystal display device.

、此用於根據本發明中的第四實施例中的所述垂直對準(VA)模式反射_ 透射式液晶顯示裝置的解釋將使用在本發明巾的第—實施例中相同參考號 *、、、 /、、、二由圖式以扣相同或類似部份。而且,將第一實施例和第四實施例 中類似的邛伤之說明省略,且將第四實施例之說明集中於不同結構與性質。 如同於第8圖中所示,-像素電極刚形成在第一基板1〇〇的一絕緣 曰102上的各像素區域中,其中,所述像素電極1〇4與薄膜電晶體的一沒 =極電性連接。在這個情況中,_或洞孔的複數個第—開放圖案將一 單元像素分成多領域,而形成在所述像素電極1〇4中。然後,複數個第二 開放圖案mb形成在反射部份的一像素電極綱中,以導致一邊緣場,i 而一有效電場減少,且一驅動電壓降低。 然後,備製彩色遽光片陣列基板的一第二基板110,其包括:一里色矩 陣層(未圖示),其對應地形成除了第一基板的像素區域以外之部^ · 一 R/G/B彩色攄光片層112 ’其代表對絲所述像素區域的各種顏色;以及一 共同電極114,形成在R/G/B彩色濾光片層ι12上。 複數個第二開放圖案⑽形成在反射部份的像素電極咖巾。因此, 即使在所述反射部份和透射部份上施加相同的,可能藉林 射率(Δι^),實現-單間隙反射-透射式液晶顯示(lcd)裝置。又 在此時’此在反射部份之像素電極104巾所形成第二開放圖案ιΐ5 密度大於於第—敝圖案115a的密度。而且,在提供在反射部份的 ,刚中的相鄰的兩個第二開放圖案115b間的間隔㈦小於·相鄰的兩個 弟-開放圖案115a間之間隔⑷以形成領域。假若在相鄰的兩個第一開放 圖案115a間之間隔(a)大約為6〜1()μηι,則在相鄰的兩個第二開放圖案 12 200837440 115b間之間隔(b)可以設計為大約為1〜5μιη。 藉由所述第二開放圖案115b,有效電場減少邊緣場而並不形成多領 域。因此,所述透射部份具有的操作特性為Δη(ι=,而所述反射部份的 核作特性為Δη(1=义/4。 本發明的第四實施例可以應用至:根據本發明的第二實施例和第三實施 例中的垂直對準(VA)模式反射-透射式液晶顯示(LCD)褒置。 、 對於第6圖之垂直對準(VA)模式反射-透射式液晶顯示^LCD)裝置, 在此處,所述第一開放圖案115a將所述單元像素分成多領域,而形成在所 述像素電極104和共同電極114中,以及第7圖中的垂直對準(VA)模式 反射-透射式液晶顯示(LCD)裝置,在此處,所述第一開放圖案115a將所 述單元像素分成多領域,而形成在像素電極1〇4中,以及複數個突出物116 形成在共同電極114上,隙縫或洞孔的複數個第二開放圖案丨丨沁可以形成 在反射部份的像素電極104中,因此導致所述邊緣場。 實施例五 在一垂直對準(VA)模式反射-透射式液晶顯示(LCD)裝置中,包括 複數個隙縫或洞孔的第一開放圖案,形成在一共同電極中,以及複數個突 出物,形成在一像素電極上以形成多領域,複數個第二開放圖案,可以形 成在對應反射部份的像素電極或共同電極中,因而形成一邊緣場。這將在 以下描述。 、第1 〇圖為橫截面圖,其說明此根據本發明第五實施例之垂直對準(VA ) 模式反射·透射式液晶顯示(LCD)裝置。 θ 一此關於根據本發明第五實施例之垂直對準(VA)模式反射·透射式液晶 ”、、員示(LCD)裝置的解釋,將使用在本發明中的第一實施例之相同參考號 碼,其經由圖式而指相同的或類似部份。而且,將第一實施例和第五實施 =中類似的部份之說明省略,且將第五實施例之翻集巾於不同結構與性 質。 么如圖於第10圖中所示,一像素電極1〇4,形成在第一基板1〇〇的一絕 、、彖層1〇2上的各像素區域中,其中,像素電極1〇4與薄膜電晶體的一汲極 13 200837440 電極電性連接。在這個情況下,複數個突出物116形成在所述像素電極ι〇4 上’而將一單元像素分成多領域。 然後,備製彩色濾光片陣列基板的一第二基板11〇,其包括:一専色矩 陣層(未圖示),其對應地形成除了第一基板的像素區域以外之部g ; 一 R/G/B彩色濾光片層112,其代表對應所述像素區域的各種顏色;以^丄共 同電極114,形成在所述r/g/B濾色層112上。 然後,複數個隙縫或洞孔的第一開放圖案,形成在所述共同電極ιΐ4 中,因而將單元像素形成多領域。而且,將複數個隙縫或洞孔的第二開放 圖案形成在:反射部份的共同電極114中,以導致一邊緣場,因而降二一 ,有效電場且降低一驅動電壓。 複數個第二開放圖案115b,形成在反射部份的像素電極中。因此,即使 相同的電壓施加在所述反射部份和透射部份,可以利用不同的雙折射率 (Δι^£〇而貫現一單間隙反射_透射式液晶顯示(LCD)裝置。 在此時,在反射部份的共同電極114中所形成第二開放圖案U5b之密 度大於第一開放圖案n5a之密度。而且,在提供在反射部份的共同電極 中的相鄰的兩個第二開放圖案115b間之間隔⑻小於相鄰兩個第一開放 圖案115a間之間隔(a)以形成領域。假若在相鄰的兩個第一開放圖案。兄 之間的間隔(a)為大約為6〜ι〇μιη5則在相鄰的兩個第二開放圖案之 間的間隔(b)設計為大約1〜5pm。 、 藉由所述第二開放圖案U5,此有效電場邊緣場而並不形成多領域。因 此’透射部份具有的操作特性為“d:々2,而反射部份具有的操作特性為 △nd = 乂/4 〇 實施例六 在本發明的第一實施例到第五實施例中,複數個第二開放圖案可以形 成在反射部份的像素電極和共同電極中,因而導致邊緣場。這將進行 說明。 … +、第11圖為橫截面圖,其說明此根據本發明第六實施例之垂直對準(va) 模式反射_透射式液晶顯示(LCD)裝置。 如同以上提及,此根據本發明之所述垂直對準(VA)模式反射_透射式 14 200837440 液晶顯示(LCD)裝置可以包括:隙縫或洞孔的第一開放圖案,形成在所 述像素電極或共同電極中以實現多領域;可以包括隙縫或洞孔的複數個第 一開放圖案’形成在像素電極和共同電極中以實現多領域;或可以包括隙 縫或洞孔的複數個第一開放圖案,形成在所述像素電極和共同電極中的任 意一個中’以及複數個突出物形成在其他的像素電極和共同電極中。 在這個結構中,複數個第二開放圖案可以形成在反射部份的像素電極 和共同電極中,以導致邊緣場。 對於具有上面所述的結構的反射_透射式液晶顯示(LCD)裝置,第u 圖說明形成的所述像素電極中複數個第一開放圖案之結構,以形成多領域。 如第11圖所示,此根據本發明第六實施例之反射_透射式液晶顯示 (LCD)裝置包括:彼此面對之第一基板1〇〇和第二基板11〇 ;以及一液晶 層1^0,形成在所述第一基板1〇〇和第二基板n〇之間。然後,各像素區域 被分割成:一反射部份和一透射部份。而且,一背光單元(未圖示)設置 在所述第一基板100之下。 第=基板100對應於薄膜電晶體基板,其包括:複數個彼此相交之閘 極線和貧料線(未圖示)以界定像素區域;以及複數個薄膜電晶體(未圖 示),各相鄰形成於資料線和閘極線的相交點。 在此時,各此等薄膜電晶體包括:一閘極電極,自所述閘極線突出; -閘極,緣層,覆蓋所述閘極電極;—半導體層,形成在所述閘極電極上 之閘極絕緣層上;以及源極電極和沒極電極,形成在所述半導體層的兩邊, 其中,所述源極電極自所述資料線突出。 然後’一鈍化層(未圖示)形成在所述第一基板100的一整個表面上, 包括:薄膜電晶體。而且,一反射薄片101形成在反射部份的鈍化層上,The explanation for the vertical alignment (VA) mode reflection-transmissive liquid crystal display device according to the fourth embodiment of the present invention will be the same reference numeral * in the first embodiment of the invention towel. , , /, , and 2 are deduced by the same or similar parts. Moreover, the description of the similar bruises in the first embodiment and the fourth embodiment is omitted, and the description of the fourth embodiment is focused on different structures and properties. As shown in FIG. 8, the pixel electrode is formed in each pixel region on an insulating substrate 102 of the first substrate 1 , wherein the pixel electrode 1〇4 and the thin film transistor are not= Extremely electrical connection. In this case, a plurality of -first open patterns of _ or holes divide a unit pixel into a plurality of fields and are formed in the pixel electrodes 1 〇 4. Then, a plurality of second open patterns mb are formed in a pixel electrode of the reflective portion to cause a fringe field, and an effective electric field is reduced, and a driving voltage is lowered. Then, a second substrate 110 of the color slab array substrate is prepared, which includes: a lining matrix layer (not shown) correspondingly forming a portion other than the pixel region of the first substrate. The G/B color calendering layer 112' represents various colors of the pixel regions of the filaments; and a common electrode 114 is formed on the R/G/B color filter layer ι12. A plurality of second open patterns (10) are formed on the reflective portion of the pixel electrode coffee towel. Therefore, even if the same is applied to the reflective portion and the transmissive portion, a single-gap reflective-transmission liquid crystal display (LCD) device can be realized by the forest rate (Δι^). Further, at this time, the density of the second opening pattern ι 5 formed by the pixel electrode 104 of the reflecting portion is larger than the density of the first pattern 115a. Further, the interval (7) between the adjacent two second opening patterns 115b provided in the reflective portion is smaller than the interval (4) between the adjacent two adjacent-open patterns 115a to form a field. If the interval (a) between the adjacent two first open patterns 115a is about 6 to 1 () μηι, the interval (b) between the adjacent two second open patterns 12 200837440 115b can be designed as It is about 1~5μιη. With the second open pattern 115b, the effective electric field reduces the fringe field without forming a multi-domain. Therefore, the transmissive portion has an operational characteristic of Δη (ι=, and the nuclear portion of the reflective portion has a characteristic of Δη (1==/4. The fourth embodiment of the present invention can be applied to: according to the present invention The vertical alignment (VA) mode reflection-transmission liquid crystal display (LCD) device in the second embodiment and the third embodiment. For the vertical alignment (VA) mode reflection-transmission liquid crystal display of FIG. ^LCD) device, where the first open pattern 115a divides the unit pixel into multiple domains, and is formed in the pixel electrode 104 and the common electrode 114, and the vertical alignment in FIG. 7 (VA) a mode reflection-transmission liquid crystal display (LCD) device, wherein the first open pattern 115a divides the unit pixel into a plurality of domains, and is formed in the pixel electrode 1?4, and a plurality of protrusions 116 are formed On the common electrode 114, a plurality of second opening patterns 隙 of slits or holes may be formed in the pixel electrode 104 of the reflective portion, thus resulting in the fringe field. Embodiment 5 in a vertical alignment (VA) In a mode reflection-transmission liquid crystal display (LCD) device, a first open pattern including a plurality of slits or holes, formed in a common electrode, and a plurality of protrusions formed on a pixel electrode to form a plurality of regions, and a plurality of second open patterns, which may be formed in the corresponding reflective portion a portion of the pixel electrode or the common electrode, thus forming a fringe field. This will be described below. Fig. 1 is a cross-sectional view illustrating the vertical alignment (VA) mode reflection according to the fifth embodiment of the present invention. Transmissive liquid crystal display (LCD) device θ. Herein, the explanation of the vertical alignment (VA) mode reflective/transmissive liquid crystal according to the fifth embodiment of the present invention, and the device (LCD) device will be used herein. The same reference numerals in the first embodiment of the invention refer to the same or similar parts through the drawings. Moreover, the description of the similar parts in the first embodiment and the fifth embodiment is omitted, and the fifth will be The embossing towel of the embodiment has different structures and properties. As shown in FIG. 10, a pixel electrode 1 〇 4 is formed on a first substrate 1 彖, 彖 layer 1 〇 2 In each pixel area, among them The pixel electrode 1〇4 is electrically connected to a drain 13200837440 electrode of the thin film transistor. In this case, a plurality of protrusions 116 are formed on the pixel electrode ι4, and a unit pixel is divided into multiple fields. Then, a second substrate 11A of the color filter array substrate is prepared, which includes: a color matrix layer (not shown) correspondingly forming a portion g other than the pixel region of the first substrate; a /G/B color filter layer 112 representing respective colors corresponding to the pixel regions; a common electrode 114 formed on the r/g/B color filter layer 112. Then, a plurality of slits or A first open pattern of holes is formed in the common electrode ι4, thereby forming unit pixels into a plurality of fields. Moreover, a second open pattern of a plurality of slits or holes is formed in the common electrode 114 of the reflective portion to cause a fringe field, thereby reducing the effective electric field and lowering a driving voltage. A plurality of second open patterns 115b are formed in the pixel electrodes of the reflective portion. Therefore, even if the same voltage is applied to the reflective portion and the transmissive portion, a single double-refractive-transmissive liquid crystal display (LCD) device can be realized with a different birefringence (Δι^). The density of the second open pattern U5b formed in the common electrode 114 of the reflective portion is greater than the density of the first open pattern n5a. Moreover, the adjacent two second open patterns are provided in the common electrode of the reflective portion. The interval (8) between 115b is smaller than the interval (a) between the adjacent two first open patterns 115a to form a field. If there are two adjacent first open patterns, the interval (a) between the brothers is about 6~ The spacing (b) between the adjacent two second open patterns is designed to be about 1 to 5 pm. By the second open pattern U5, the effective electric field fringe field does not form a multi-domain. Therefore, the 'transmission portion has an operational characteristic of "d: 々2, and the reflection portion has an operational characteristic of Δnd = 乂 / 4 〇 Embodiment 6 in the first to fifth embodiments of the present invention a plurality of second open patterns can be formed in the reflection Part of the pixel electrode and the common electrode, thus causing a fringe field. This will be explained. FIG. 11 is a cross-sectional view illustrating the vertical alignment (va) mode reflection according to the sixth embodiment of the present invention. _Transmissive liquid crystal display (LCD) device. As mentioned above, the vertical alignment (VA) mode reflection-transmission type 14 200837440 liquid crystal display (LCD) device according to the present invention may include: a slit or a hole An open pattern formed in the pixel electrode or the common electrode to achieve multi-domain; a plurality of first open patterns 'including slits or holes may be formed in the pixel electrode and the common electrode to achieve multi-domain; or may include slits Or a plurality of first open patterns of holes, formed in any one of the pixel electrode and the common electrode, and a plurality of protrusions formed in the other pixel electrode and the common electrode. In this structure, a plurality of Two open patterns may be formed in the pixel electrode and the common electrode of the reflective portion to cause a fringe field. For the reflection_transmission type having the structure described above a liquid crystal display (LCD) device, which illustrates a structure of a plurality of first open patterns in the formed pixel electrode to form a plurality of domains. As shown in FIG. 11, the reflection according to the sixth embodiment of the present invention A transmissive liquid crystal display (LCD) device includes: a first substrate 1 and a second substrate 11 facing each other; and a liquid crystal layer 110 formed on the first substrate 1 and the second substrate n Then, each pixel region is divided into: a reflective portion and a transmissive portion. Further, a backlight unit (not shown) is disposed under the first substrate 100. The =substrate 100 corresponds to a thin film transistor substrate comprising: a plurality of gate lines and a lean line (not shown) intersecting each other to define a pixel region; and a plurality of thin film transistors (not shown) each adjacent to the data line and The intersection of the gate lines. At this time, each of the thin film transistors includes: a gate electrode protruding from the gate line; a gate, a margin layer covering the gate electrode; and a semiconductor layer formed on the gate electrode And a source electrode and a electrodeless electrode are formed on both sides of the semiconductor layer, wherein the source electrode protrudes from the data line. Then, a passivation layer (not shown) is formed on an entire surface of the first substrate 100, including: a thin film transistor. Moreover, a reflective sheet 101 is formed on the passivation layer of the reflective portion.

以反射周圍光線。然後,一絕緣層搬形成在所述反射薄片而的一整個 表面上。 I 而且,一像素電極104形成在第一基板100的絕緣層1〇2上的各像素 區f中,其中,所述像素電極104與薄膜電晶體的汲極電極電性連接。在 此情況中,隙縫或洞孔的複數個第一開放圖案115&形成在所述像素電極⑽ 中,因而將所述單元像素分割為多領域。在此情況中,所述反射薄片101 15 200837440 與薄膜電晶體的汲極電極電性連接,並且像素電極104與所述反射薄片 電性連接。 而且,隙縫或洞孔的複數個第二開放圖案·形成在反射部份的像素 電極104中以導致邊緣場,因而減少有效電場且降低驅動電壓。 、 第二基板110對應於彩色濾光片基板,其包括··一黑色矩陣層(未圖 示),其對應地形成除了第一基板的像素區域以外之部份;彩色濾 光片層112,其代表對應所述像素電極的各種顏色;以及一共同電極, 形成在所述R/G/B彩色濾光片層112上。 卜對於所述共同電極114,此對應反射部份之共同電極114包括:複數個 第二開放Μ案11%,例如隙縫或洞孔,因而藉由降低具有邊緣場的有效電 場而減少驅動電壓。 複數個第一開放圖案115b形成在:反射部份的像素電極1〇4、與共同 電極114中。因此,即使將相同的電壓施加至反射部份和透射部份以 藉由不同的雙折射率(△),實現一單間隙反射-透射式液晶顯示(lcd) 裝置。 在此時,形成在反射部份的像素電極1〇4和共同電極114中所形成第 二開放圖案115b的密度大於第一開放圖案115a的密度。而且,在反射部份 的共同電極114中所提供兩個相鄰的第二開放圖案115b間之間隔(b)小 於在兩個相鄰第一開放圖案115a間之間隔(a),以形成域。 藉由所述第二開放圖案115b,此有效電場減少邊緣場,而並不形成多領 域。因此’所述透射部份具有的操作特性為Δη〇1= ;t/2,而所述反射部份具 有的操作特性為And= A/4。 在本發明第六實施例中,第二開放圖案115b的密度和間隔可以相同或 小於·本發明第一實施例到第五實施例中第二開放圖案密度舆間隔。 雖然並未顯示,與本發明第二至第五實施例類似,複數個第二開放圖 木形成在反射部份的像素電極和共同電極中,因而在各種垂直對準(VA) 模式反射—透射式液晶顯示(LCD)裝置中導致邊緣場。 同樣地’本發明第二實施例到第六實施例的模擬具有與第4a、4B、以 及5圖相類似的數值。 16 200837440 第12圖為平面圖、其說明以各種形狀所形成第二開放圖案。 在本發明的第一實施例至第六實施例中,所述第二開放圖案115b形成 為傾斜線的形狀。然而,如第12圖所示,所述第二開放圖案115在形 變化。 根據第二開放圖案而形成為各種形狀,反射部份的像素電極或共同電 極可以形成為網狀(第以圖),水平線或垂直線的視窗框架(帛细 或棋盤(第12C圖)。To reflect the surrounding light. Then, an insulating layer is formed on an entire surface of the reflective sheet. Further, a pixel electrode 104 is formed in each of the pixel regions f on the insulating layer 1A of the first substrate 100, wherein the pixel electrode 104 is electrically connected to the drain electrode of the thin film transistor. In this case, a plurality of first open patterns 115 & of slits or holes are formed in the pixel electrode (10), thereby dividing the unit pixels into a plurality of fields. In this case, the reflective sheet 101 15 200837440 is electrically connected to the drain electrode of the thin film transistor, and the pixel electrode 104 is electrically connected to the reflective sheet. Moreover, a plurality of second open patterns of slits or holes are formed in the pixel electrode 104 of the reflective portion to cause a fringe field, thereby reducing the effective electric field and lowering the driving voltage. The second substrate 110 corresponds to a color filter substrate including a black matrix layer (not shown) correspondingly forming a portion other than the pixel region of the first substrate; the color filter layer 112, It represents various colors corresponding to the pixel electrodes; and a common electrode is formed on the R/G/B color filter layer 112. For the common electrode 114, the common electrode 114 of the corresponding reflective portion includes: a plurality of second open patterns 11%, such as slits or holes, thereby reducing the driving voltage by reducing the effective electric field having the fringe field. A plurality of first open patterns 115b are formed in the pixel electrode 1?4 of the reflective portion and the common electrode 114. Therefore, even if the same voltage is applied to the reflective portion and the transmissive portion to achieve a single-gap reflective-transmission liquid crystal display (LCD) device by a different birefringence (?). At this time, the density of the second opening pattern 115b formed in the pixel electrode 1?4 and the common electrode 114 formed in the reflective portion is larger than the density of the first opening pattern 115a. Moreover, the interval (b) between the two adjacent second open patterns 115b provided in the common electrode 114 of the reflective portion is smaller than the interval (a) between the two adjacent first open patterns 115a to form a domain . With the second open pattern 115b, this effective electric field reduces the fringe field without forming a multi-domain. Therefore, the transmissive portion has an operational characteristic of Δη〇1 = ; t/2, and the reflective portion has an operational characteristic of And = A/4. In the sixth embodiment of the present invention, the density and interval of the second open pattern 115b may be the same or less than the second open pattern density 舆 interval in the first to fifth embodiments of the present invention. Although not shown, similar to the second to fifth embodiments of the present invention, a plurality of second open patterns are formed in the pixel electrode and the common electrode of the reflective portion, and thus are reflected-transmitted in various vertical alignment (VA) modes. A fringe field is caused in a liquid crystal display (LCD) device. Similarly, the simulations of the second to sixth embodiments of the present invention have values similar to those of the 4a, 4B, and 5 drawings. 16 200837440 Figure 12 is a plan view illustrating a second open pattern formed in various shapes. In the first to sixth embodiments of the invention, the second open pattern 115b is formed in the shape of an oblique line. However, as shown in Fig. 12, the second open pattern 115 is in a shape change. The pixel electrodes or the common electrode of the reflecting portion may be formed into a mesh shape (preferably), a horizontal or vertical line window frame (a thin or a checkerboard (Fig. 12C)).

”…,,〜a —/八π 口豕系,巷徑双兴冋冤極中, 壓特性類似於透射部份的電壓特性。 —對於根據本發明的單一單元間隙結構的反射_透射式液晶顯示(lcd) 提造過程。因此,所 ’因此反射部份的電 顯示(LCD)裝置具 如同以上提及,此根據本發明的反射_透射式液晶顯示 首先,所述反射部份具有的操作特性為Δη(1 ^义/4 層,因而簡化過程。 =义/4而不形成所述覆蓋”,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Displaying (lcd) the manufacturing process. Therefore, the thus-reflected portion of the electric display (LCD) device has the above-mentioned reflection-transmissive liquid crystal display according to the present invention. First, the reflective portion has an operation. The characteristic is Δη (1 ^ meaning / 4 layers, thus simplifying the process. = meaning / 4 without forming the coverage

17 200837440 ^ 【圖式簡單說明】 第1圖為松截面圖’其說明習知技術之垂直對準(va)模式反射-透射液晶 顯示(LCD)裝置; 第2圖為&截面圖’其說明根據本發明第—實施例之垂直對準⑽)模式 # 反射透射液晶顯示(LCD)裝置的橫截面圖; 第3A圖為平面圖’其說明形成在第2圖中的反射·透射式液晶顯示(lcd) ^ 裝置的一反射部份的共同電極; 第3B圖為平面圖,其說明形成在第2圖中的反射-透射式液晶顯示(lcd) — 裝置的一反射部份的像素電極; 第3C圖為平面圖,其說明第3A圖和帛3B圖中的共同電極和像素電極彼 此接合; 弟4A圖和第4B圖為根據本發明第一實施例之反射_透射式液晶顯示(LCD) ^ 農置之模擬反射和透射部份之等電位圖; 第5圖為比較本發明實施例中的反射_透射式液晶顯示(LCD)裝置的一驅 動電壓、與習知技術中的反射_透射式液晶顯示(LCD)裝置的驅動 電壓之圖; 第6圖為橫截面圖’其說明根據本發明第二實施例之垂直對準(VA)模式 反射-透射液晶顯示(LCD)裝置; 第7圖為橫截面圖’其說明根據本發明第三實施例之垂直對準(VA)模式 反射-透射液晶顯示(LCD)裝置; 第8圖為橫截面圖,其說明根據本發明第四實施例之垂直對準(VA)模式 反射-透射液晶顯示(LCD)裝置; 第圖為平面圖,其說明第8圖中的反射-透射式液晶顯示(lcd)裝置 的一透射部份中之像素電極; 第9B圖為平面圖,其說明第8圖中的反射-透射式液晶顯示(LCD)裝置 的一反射部份中的一像素電極; 第10圖為橫截面圖,其說明根據本發明第五實施例之垂直對準(VA)模式 反射透射液晶顯示(LCD)裝置; 第11圖為橫截面圖,其說明根據本發明第六實施例之垂直對準(VA)模式 18 200837440 反射-透射液晶顯示(LCD)裝置;以及 第12圖⑻〜(e)為平面圖,其說明形成為各種形狀之第二開放圖案。 【主要元件符號說明】 10 第一基板 11 反射薄片 12 絕緣層 13 像素電極 13a 細長圖案 30 第二基板 32 R/G/B彩色濾光片層 34 共同電極 36 覆蓋層 50 液晶層 100 第一基板 101 反射薄片 150 液晶層 102 絕緣層 104 像素電極 110 第二基板 112 R/G/B彩色濾光片層 114 共同電極 / 115a 第一開放圖案 115b 二開放圖案 116 突出物 gl 反射部份的單元間隙 g2 透射部份的單元間隙 Aneff 雙折射率 b 兩個第二開放圖案115b之間的間隔 19 200837440 a 兩個第一開放圖案115a之間的間隔 B 驅動電壓 B’ 習知技術中驅動電壓 2017 200837440 ^ [Simple description of the drawings] Fig. 1 is a loose cross-sectional view showing a vertical alignment (va) mode reflection-transmission liquid crystal display (LCD) device of the prior art; FIG. 2 is a & cross-sectional view A cross-sectional view of a vertical alignment (10)) mode #reflective transmission liquid crystal display (LCD) device according to a first embodiment of the present invention is illustrated; FIG. 3A is a plan view illustrating the reflection/transmission liquid crystal display formed in FIG. (lcd) ^ a common electrode of a reflective portion of the device; FIG. 3B is a plan view illustrating a reflective-transmissive liquid crystal display (LCD) formed in FIG. 2 - a pixel electrode of a reflective portion of the device; 3C is a plan view illustrating that the common electrode and the pixel electrode in FIGS. 3A and 3B are bonded to each other; and FIG. 4A and FIG. 4B are reflection-transmission liquid crystal displays (LCD) according to the first embodiment of the present invention. An equipotential diagram of the simulated reflection and transmission portion of the farm; FIG. 5 is a comparison of a driving voltage of a reflection-transmission liquid crystal display (LCD) device in the embodiment of the present invention, and a reflection-transmission type in the prior art. Liquid crystal display (LCD) device drive FIG. 6 is a cross-sectional view illustrating a vertical alignment (VA) mode reflective-transmission liquid crystal display (LCD) device according to a second embodiment of the present invention; FIG. 7 is a cross-sectional view of FIG. A vertically aligned (VA) mode reflective-transmission liquid crystal display (LCD) device according to a third embodiment of the present invention; FIG. 8 is a cross-sectional view illustrating vertical alignment (VA) mode reflection according to a fourth embodiment of the present invention. a transmissive liquid crystal display (LCD) device; the first drawing is a plan view illustrating a pixel electrode in a transmissive portion of the reflective-transmissive liquid crystal display (LCD) device of FIG. 8; and FIG. 9B is a plan view illustrating 8 is a pixel electrode in a reflective portion of a reflective-transmission liquid crystal display (LCD) device; FIG. 10 is a cross-sectional view illustrating a vertical alignment (VA) mode according to a fifth embodiment of the present invention. a reflective transmissive liquid crystal display (LCD) device; FIG. 11 is a cross-sectional view illustrating a vertical alignment (VA) mode 18 200837440 reflective-transmission liquid crystal display (LCD) device in accordance with a sixth embodiment of the present invention; and FIG. (8) ~ (e) is a plan view, which says The second open pattern is formed into various shapes. [Major component symbol description] 10 First substrate 11 Reflective sheet 12 Insulating layer 13 Pixel electrode 13a Elongated pattern 30 Second substrate 32 R/G/B color filter layer 34 Common electrode 36 Cover layer 50 Liquid crystal layer 100 First substrate 101 reflective sheet 150 liquid crystal layer 102 insulating layer 104 pixel electrode 110 second substrate 112 R/G/B color filter layer 114 common electrode / 115a first open pattern 115b two open pattern 116 protrusion gl reflective portion of the cell gap G2 Transmissive portion cell gap Aneff Birefringence b Interval between two second open patterns 115b 200837440 a Interval between two first open patterns 115a B Driving voltage B' Conventional driving voltage 20

Claims (1)

200837440 十、申請專利範圍: 1. 一種反射-透射式液晶顯示(LCD)裝置,其包括被分割為反射部份和透 射部份之單元像素區域,包括: 彼此面對之第一基板和第二基板,; 一像素電極,形成在第一基板的像素區域中; 反射薄片,形成在第一基板的反射部份中; 一共同電極,形成在所述第二基板上; 至少一個第一開放圖案,形成在所述像素電極和共同電極的至少一個 中’以形成多領域;以及 複數個第二開放圖案,形成在所述像素電極和共同電極的至少一個的反 射部份中,以導致一邊緣場。 2·如申凊專利範圍第1項所述之反射_透射式液晶顯示(LCD)裝置,其中 该第二開放圖案之密度大於該第一開放圖案之密度。 3·如申請專利範圍第1項所述之反射_透射式液晶顯示(LCD)裝置,其中 該等第一開放圖案間之間隔為大約6〜ι〇μηι,且該等第二開放圖案間之 間隔為大約1〜5μηι。 4·如申請專利範圍第1項所述之反射-透射式液晶顯示(LCD)裝置,其中 该第一開放圖案與該第二開放圖案形成為隙縫或洞孔之形狀。 5·如申請專利範圍第1項所述之反射-透射式液晶顯示(LCD)裝置,其中 形成於像素電極與共同電極的至少之一中之複數個突出。 6·如申請專利範圍第1項所述之反射_透射式液晶顯示(LCD)裝置,其中 該第一基板為薄膜電晶體陣列基板,以及該第二基板為彩色濾光片陣列 基板。 21 200837440 7·如申請專利範圍第1項之反射-透射式液晶顯示(LCD)裝置,其中 該具有複數個第二開放圖案該反射部份之該像素電極與該共同電極形 成為網之形狀。 8.如申請專利範圍第1項所述之反射-透射式液晶顯示(LCD)裝置,其中 該具有複數個第二開放圖案該反射部份之該像素電極與該共同電極形 成為視窗框架之形狀。 9·如申請專利範圍第1項所述之反射-透射式液晶顯示(LCD)裝置,其中 該具有複數個第二開放圖案該反射部份之該像素電極與該共同電極形 成為棋盤之形狀。 22200837440 X. Patent Application Range: 1. A reflection-transmission liquid crystal display (LCD) device comprising a unit pixel region divided into a reflective portion and a transmissive portion, comprising: a first substrate and a second surface facing each other a substrate, a pixel electrode formed in a pixel region of the first substrate; a reflective sheet formed in the reflective portion of the first substrate; a common electrode formed on the second substrate; at least one first open pattern Formed in at least one of the pixel electrode and the common electrode to form a plurality of regions; and a plurality of second open patterns formed in a reflective portion of at least one of the pixel electrode and the common electrode to cause an edge field. 2. The reflective-transmissive liquid crystal display (LCD) device of claim 1, wherein the second open pattern has a density greater than a density of the first open pattern. 3. The reflective-transmissive liquid crystal display (LCD) device of claim 1, wherein the interval between the first open patterns is about 6 ι 〇 μηι, and between the second open patterns The interval is about 1 to 5 μm. 4. The reflective-transmission liquid crystal display (LCD) device of claim 1, wherein the first open pattern and the second open pattern are formed in the shape of a slit or a hole. 5. The reflection-transmission liquid crystal display (LCD) device of claim 1, wherein the plurality of protrusions are formed in at least one of the pixel electrode and the common electrode. 6. The reflective-transmissive liquid crystal display (LCD) device of claim 1, wherein the first substrate is a thin film transistor array substrate, and the second substrate is a color filter array substrate. The reflection-transmission liquid crystal display (LCD) device of claim 1, wherein the pixel electrode having the plurality of second open patterns and the common electrode shape into a mesh shape. 8. The reflective-transmission liquid crystal display (LCD) device of claim 1, wherein the pixel electrode having the plurality of second open patterns and the common electrode and the common electrode are formed in the shape of a window frame. . 9. The reflective-transmission liquid crystal display (LCD) device of claim 1, wherein the pixel electrode having the plurality of second open patterns and the common electrode shape into a checkerboard shape. twenty two
TW096145402A 2007-03-13 2007-11-29 Transflective type liquid crystal display device TWI381210B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070024267A KR101327833B1 (en) 2006-06-30 2007-03-13 Trans-flective type Liquid Crystal Display

Publications (2)

Publication Number Publication Date
TW200837440A true TW200837440A (en) 2008-09-16
TWI381210B TWI381210B (en) 2013-01-01

Family

ID=39855235

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096145402A TWI381210B (en) 2007-03-13 2007-11-29 Transflective type liquid crystal display device

Country Status (4)

Country Link
JP (1) JP4782094B2 (en)
KR (1) KR101327833B1 (en)
CN (1) CN101266347B (en)
TW (1) TWI381210B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100865843B1 (en) * 2007-06-08 2008-10-29 전북대학교산학협력단 A single gap transflective fringe-field switching display using wire grid
KR101560201B1 (en) 2008-08-27 2015-10-15 삼성디스플레이 주식회사 Liquid crystal display panel and method of manufacturing the same
JP2010145786A (en) * 2008-12-19 2010-07-01 Toppan Printing Co Ltd Green photosensitive colored composition, and color filter using the same
KR20100085518A (en) * 2009-01-21 2010-07-29 삼성전자주식회사 Display substrate, display device having the same, and method of manufacturing the display substrate
CN102645795B (en) * 2011-02-22 2015-07-22 群康科技(深圳)有限公司 Liquid crystal display device
CN102981325A (en) * 2012-12-11 2013-03-20 京东方科技集团股份有限公司 Semi-transparent and semi-reflective liquid-crystal display panel and liquid-crystal display device
CN103226270B (en) 2013-05-03 2016-01-20 合肥京东方光电科技有限公司 A kind of semitransparent semi-inverse liquid crystal display panel, display device and array base palte
CN107589584A (en) * 2017-09-21 2018-01-16 深圳市华星光电半导体显示技术有限公司 Colored filter substrate, liquid crystal panel and liquid crystal display
CN113053250B (en) * 2017-12-28 2022-10-04 乐金显示有限公司 Foldable display

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW594310B (en) * 2003-05-12 2004-06-21 Hannstar Display Corp Transflective LCD with single cell gap and the fabrication method thereof
JP3879727B2 (en) * 2003-10-02 2007-02-14 セイコーエプソン株式会社 Liquid crystal display device and electronic device
KR101115774B1 (en) * 2003-12-30 2012-03-06 엘지디스플레이 주식회사 Device and fabrication method for liquid crystal display of multi domain
US7526614B2 (en) 2005-11-30 2009-04-28 Red Hat, Inc. Method for tuning a cache

Also Published As

Publication number Publication date
CN101266347A (en) 2008-09-17
JP2008225443A (en) 2008-09-25
JP4782094B2 (en) 2011-09-28
KR20080003197A (en) 2008-01-07
KR101327833B1 (en) 2013-11-19
CN101266347B (en) 2011-03-30
TWI381210B (en) 2013-01-01

Similar Documents

Publication Publication Date Title
TW200837440A (en) Transflective type liquid crystal display device
TW552457B (en) Liquid crystal display device and method of manufacturing the same
TWI421576B (en) Liquid crystal display device with switchable viewing angle
US7760292B2 (en) Liquid crystal display device to control viewing angle
TWI289698B (en) LCD device and electronic machine
CN1573429B (en) Liquid crystal display device and electronic equipment
TWI344562B (en)
CN109656052B (en) Liquid crystal display panel, manufacturing method thereof and display device
TW200415404A (en) LCD device and electronic machine
JP2008009359A (en) Liquid crystal display device and driving method thereof
TW200413767A (en) Liquid crystal display device and electronic apparatus
JP2007240752A (en) Transflective liquid crystal display device
TW200424621A (en) LCD apparatus and electronic machine
CN100535725C (en) Liquid crystal display device and electronic apparatus
WO2010137377A1 (en) Liquid crystal display device
JP2006243317A (en) Liquid crystal apparatus and electronic appliance
JP4390595B2 (en) Liquid crystal display
US20080002116A1 (en) Transflective type liquid crystal display device
TWI226950B (en) Transflective liquid crystal display device capable of balancing color difference between reflective and transmissive regions
TW574571B (en) Liquid crystal display device having liquid crystal layer formed by uniformly aligned liquid crystal molecules
US7646459B2 (en) Liquid crystal display device
JP4676261B2 (en) LIQUID CRYSTAL DISPLAY DEVICE INCLUDING COUNTER ELECTRODE HAVING HOLE AND ITS MANUFACTURING METHOD
KR100522027B1 (en) Transflective type Liquid Crystal Display Device
JP2006184876A (en) Liquid crystal display device
JP2005274668A (en) Liquid crystal display device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees