[go: up one dir, main page]

TW200806100A - Double side conductor laminates and its manufacture - Google Patents

Double side conductor laminates and its manufacture Download PDF

Info

Publication number
TW200806100A
TW200806100A TW96106469A TW96106469A TW200806100A TW 200806100 A TW200806100 A TW 200806100A TW 96106469 A TW96106469 A TW 96106469A TW 96106469 A TW96106469 A TW 96106469A TW 200806100 A TW200806100 A TW 200806100A
Authority
TW
Taiwan
Prior art keywords
layer
resin
conductor
polyimide
adhesive
Prior art date
Application number
TW96106469A
Other languages
Chinese (zh)
Other versions
TWI340610B (en
Inventor
Ji-Seong Kim
Kyoung-Jong Kim
Sang-Gyun Kim
Seong-Cheul Jeong
Jeong-Yeol Moon
Jong Min Park
Original Assignee
Kolon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060018005A external-priority patent/KR100793177B1/en
Priority claimed from KR1020060109981A external-priority patent/KR20080041855A/en
Application filed by Kolon Inc filed Critical Kolon Inc
Publication of TW200806100A publication Critical patent/TW200806100A/en
Application granted granted Critical
Publication of TWI340610B publication Critical patent/TWI340610B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/286Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysulphones; polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/202Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0129Thermoplastic polymer, e.g. auto-adhesive layer; Shaping of thermoplastic polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

Disclosed are a flexible double-sided conductor laminate in which a conductor is provided on both surfaces of a polyimide layer without being connected to a thermoplastic polyimide layer, and a method of manufacturing the same.

Description

200806100 九、發明說明: 【發明所屬之技術領域】 本發明係有關於-種可撓性雙面導體層板及其製造方 法’其中,聚亞酸胺層的雙表面上具有導體,且該導體不 與熱可塑性聚亞醯胺層連接。 【先前技術】200806100 IX. OBJECTS OF THE INVENTION: TECHNICAL FIELD The present invention relates to a flexible double-sided conductor laminate and a method of manufacturing the same, wherein a conductor on a double surface of a polyamic acid layer has a conductor Not attached to the thermoplastic polyimide layer. [Prior Art]

近來’相關產業不斷開發行動電話、PDA等行動 以及攝錄賴等最新的電子裝置,目此小魏、薄及t =合性的電子電路之需求量也日益大增。為了因應如此^ 勢’市場上也開發出各難自可撓性電路板之雙面/單面電 路板或多層型電路板之電子零件。 “先前之可撓性電路板,係為使用環氧接著劑將銅箱黏 者於耐熱性薄膜表面之可撓性基板,然而卻會由於接著劑 的使用,而造成抗熱性低、由揮發性成分所造成之積體電 15路5染、與難以形成微細電路及難以薄形化等問題。 為了解決三層型可撓性電路板之問題,目前已開發並 用未使用接著劑之雙層型可撓性電路板,且係使用沉積 衣程將銅沉積於聚姐胺薄膜上、使賴合damson)製 耘將銅箱層壓合於熱塑性聚亞醯胺薄膜上、或是使用 製程(casting)將聚亞酿胺前驅物洗鎿於銅箱層上,再予以亞 酿胺化等方法來製造。 先則之技術皆需高額的成本,尤其是需要高價位設備 的>儿積製程。而壓合製程因需要額外製作昂貴的埶可塑性 聚亞酸胺薄膜’故其製作成本比洗鑄法還高。因此,縱使 5 200806100 澆鑄法具有製程複雜的缺點,但因其製作成本相對較低, 所以目前主要仍是使用洗鑄法來製造雙層型可撓性電路 板。 具體而言,雙面包覆銅箔的可撓性電路板,可利用美 5國專利第5,112,694號所描述的方法製造,該方法包含:洗 鑄單層熱可塑性聚亞醯胺於第一鋼層之單面,使其乾燥, 之後進行亞臨胺化反應,再將第二銅層的單面與聚亞酿胺 層在高溫/高壓下壓合;或是使用如W02004-085146號專利 所描述的方法來製造,該方法包含:依序地澆鑄第一熱可 ίο塑性聚亞酸胺層(3)、低熱膨脹性聚亞醯胺層(2,)、及第二熱 可塑性聚亞醯胺層(3,)於第一銅層⑴的單面上,使其乾燥, 之後進行亞醯胺化反應,並將第二熱可塑性聚亞醯胺層(3,) 的表面與第二銅層(1,)在高溫/高壓下壓合,以實現如第四圖 之結構。但因上述方法必定會讓熱可塑性聚亞醯胺層(3,3,) 15與導體表面連接,所以在熱膨脹係數低(約18 ppmA:)之 導體的表面,與具有相對較高之熱膨脹係數的熱可塑性聚 亞醯胺層間,就會產生界面應力,因此必然會降低尺寸穩 定性。除此之外,熱可塑性樹脂呈現相對較高的吸濕性, 最終會導致電子零件在傳達信號上之不良影響,以及與導 2〇體之間的黏著力逐漸下降的問題。倘若有一種兼具熱可塑 性、低熱膨脹性、以及低吸濕性的聚亞醯胺樹脂,則可輕 易地解決上述問題,但事實上卻難以克服。 此外’上述方法中,係分別使用澆鑄製程及壓合製程 將第一銅層與第二銅層連接於聚亞醯胺樹脂層,由於所使 6 200806100 用的方法不同,因此會獲得不同的物性。 通常,當各個金屬溫度超過其内在之再結晶溫度時, Μ米尺寸的小結晶體會再結晶,而處理溫度與時間是決定 最終物性之關鍵因素。然而,澆鑄製程需在高於再結晶溫 5度的溫度下進行數十分鐘的處理,而壓合製程只需數分鐘 或更少的處理時間,故無法使雙面之銅層具有相同的物性。 因此,使用可撓性雙面導體層板是有問題的,這是因 為使用者需謹慎地區分剝離強度高及剝離強度低的表面, 且用以製造電路寬度為100 μιη或更低的微細電路板的一系 ίο列製程條件,亦即,在乾膜光阻(DFR)壓合、曝光、顯影、 蝕刻、以及剝離製程之間交替的一種或多種條件;抑或是 在乾膜光阻、UV光源、顯影液、蝕刻液、剝離液之間的一 種或多種材料,需予以不同應用的問題。此外,在相同條 件下形成微細電路時,產生如電路脫層之缺點的可能性也 15 ^增加,且由於在實現小尺寸電路寬度時的變化,而造成 高積體電路之形成受到限制的問題。 【發明内容】 ^為此,本發明之其一實施例,係提供一種可撓性雙面 20導體層板,其在聚亞醯胺層之雙面具有導體,且該導二不 與高吸濕性及高熱膨脹性之熱可塑性聚亞醯胺連接,因此 可防止導體與熱可塑性聚亞醯胺之間產生界面應力、電子 ,件傳達信號時之不良影響、以及與導體間的黏著力$降 等問題,進而達到改良之尺寸穩定性。 7 200806100 同時’本發明之另一實施例,係提供一種雙面導體層 板的製造方法。 本發明之另一實施例,係提供一種可撓性雙面導體層 板’其在聚亞醯胺層的雙面具有導體,因此在樹脂的一表 5面與導體之間,和樹脂的另一表面與導體之間之剝離強度 的差異,係調整至預定的標準,藉此有效地簡化製程與提 升生產性及整合程度。 本發明之另一實施例,係提供一種壓合製程,可使導 體具有相同的物性。 ' 15 20 依據本發明之其一實施例,本發明所提供之一種可垆 性雙面導體層板,係包含第一導體;連接於第一導體之^ 一聚亞醯胺樹脂層;至少一層黏著性樹脂包含層;連接於 第二導體之第二聚亞醯胺樹脂層;以及第二導^,其中,、 第一導體與第二導體,可為彼此相同或彼此不同;^一取 亞醢,樹脂與第二聚亞醯胺樹脂,可為彼此相同或彼此^ 同;第一聚亞醯胺樹脂層的熱膨脹係數與第一導體之熱胗 脹係數,可為彼此相同或彼此不同;第二聚亞 = 的熱膨脹係數與第二導體之觸脹餘,可為彼此 彼此不同。 依據本發明之另-實施例,本發明所提供之可挽性錐 面導體層板’係包含第-導體;連接於第― :一= 亞醯胺樹m少—雜著性難包含層 : 導體之第二聚亞醯胺樹脂層;以及第二導體,於:: 導體與第—導體’可為彼此相同或彼此不同;第—聚亞酿 8 200806100 々村月曰人弟—來亞酸胺樹脂,可為彼此相同或彼此不同; 第承亞醯胺樹脂層的熱膨脹係數與第一導體之熱膨脹係 f,可為彼此相同或彼此不同;第二聚亞醯胺樹脂層的熱 私脹係數與第—導體之熱膨脹係數,可為彼此相同或彼此 5 ^同、;第一導體與第一聚亞醯胺樹脂層間之剝離強度,為 弟一¥脰與第二聚亞醯胺樹脂層間之剝離強度的〇 倍至 1.6 倍。 * 口 依本發明貫施例所述之可撓性雙面導體層板,第一導 虹可包含第一聚亞醯胺樹脂層,與以澆鑄法連接於第一聚 10亞醯胺樹脂層的黏著性樹脂包含層;第二導體可包含第二 聚亞gi胺樹脂層,與以洗鑄法連接於第二聚亞酿胺樹脂層 $黏著性樹脂包含層;且第—導體之黏著性樹脂包含層與 第一導體之黏著性樹脂包含層,可透過壓合製程使其面對 面連接。 15 ^依本發明實施例所述之可撓性雙面導體層板,其中, 第-導體與第二導體,可在㈣的熱處理條件下連接。 依本發明實施例所述之可撓性雙面導體層板,其中, 聚亞醯胺樹脂為具有亞醯胺環結構之樹脂,並且選自聚醚 亞醯胺(polyetherimide)、聚醯胺亞胺㈣加福—卿及聚 20 酉旨亞醯·胺(polyesterimide)。 —依本發明實施例所述之可撓性雙面導體層板,其中, 第-導體及第-聚亞酸胺樹脂層,或第二導體及第二聚亞 酸胺樹脂層之_祕數差,可為1Gppm/(>c或更小。 依本發明實施例所述之可挽性雙面導體層板,其中, 9 200806100 第一聚亞醯胺樹脂層或第二取 使用含有在芳香環之間具〜最亞醯胺樹脂層,可包含一種 _S02-、-C〇_〇_、_CJJ2、: 0 -C0…-NHCO-、-S-、 單體,以及含有在芳香環< CH3)2-鏈的二酐及二胺的軟性 5 -s-、-scv、-c〇-〇 …CH 間不具有…C0 …丽CO-、 硬性單體,在其莫耳比範2 _C(CH3)2_鏈的二酐及二胺的 合而得的聚亞醯胺樹脂。如、〇比>10到8比2的條件下聚 二聚亞醒胺樹脂層可包含〜上弟一ΛΚ亞酿胺樹脂層或第 物。 3種或多種聚亞醯胺樹脂的混合 0 依本發明實施例所述 第-?炎亞酸胺樹脂層及第二^性雙面導體層板’其中, 的組成成分與厚度。1亞醯胺樹脂層,可具有相同 第明實施例所述之可撓性雙面導體層板,其中, 第一聚亞胺樹脂層哎篦_ 、 15Recently, the related industries have continuously developed mobile phones, PDAs, and the like, as well as the latest electronic devices such as video recording. The demand for electronic circuits such as Wei Wei, thin and t = compliant is also increasing. In order to cope with such a situation, electronic parts of double-sided/single-sided circuit boards or multi-layer circuit boards which are difficult to self-flexible circuit boards have also been developed in the market. "The previous flexible circuit board is a flexible substrate that adheres the copper case to the surface of the heat-resistant film using an epoxy adhesive, but it has low heat resistance and is volatile due to the use of the adhesive. The problem is that it is difficult to form a fine circuit and it is difficult to reduce the thickness of the integrated circuit caused by the components. In order to solve the problem of the three-layer flexible circuit board, a double-layer type without using an adhesive has been developed and used. Flexible circuit board, which uses a deposition process to deposit copper on a polytheneamine film, laminates a copper box onto a thermoplastic polyimide film, or uses a process (casting) The poly-mineral amine precursor is washed on the copper tank layer and then produced by aramidization, etc. The first technique requires high cost, especially for the high-priced equipment. However, the press-bonding process requires an additional expensive plasticized polyamic acid amine film, so the manufacturing cost is higher than that of the casting method. Therefore, even though the 5 200806100 casting method has the disadvantages of complicated process, the production cost is relatively low. So In the past, a double-layer flexible circuit board is mainly used for the production of a two-layer flexible circuit board. Specifically, a flexible circuit board coated with a double-sided copper foil can be manufactured by the method described in U.S. Patent No. 5,112,694. The method comprises: washing and casting a single layer of thermoplastic polyiminamide on one side of the first steel layer, drying it, and then performing an iminelation reaction, and then using the single side of the second copper layer with the poly-bristamine The layer is pressed at a high temperature/high pressure; or it is produced by a method as described in WO2004-085146, which comprises: sequentially casting a first layer of heat-sensitive polyamic acid layer (3), low thermal expansion a polyimide layer (2,) and a second thermoplastic polyimide layer (3) are dried on one side of the first copper layer (1), followed by a mercaptoamination reaction, and The surface of the second thermoplastic polyimide layer (3,) is pressed against the second copper layer (1,) at a high temperature/high pressure to achieve the structure as shown in the fourth figure. However, the above method must allow the thermoplasticity. The polyimide layer (3, 3,) 15 is attached to the surface of the conductor, so it has a low coefficient of thermal expansion (about 18 ppmA:). The interface between the surface of the body and the thermoplastic polyimide layer having a relatively high coefficient of thermal expansion causes interfacial stress, which inevitably reduces dimensional stability. In addition, the thermoplastic resin exhibits relatively high moisture absorption. Sexuality will eventually lead to the adverse effects of electronic components on the signal and the gradual decrease in adhesion between the two components. If there is a combination of thermoplasticity, low thermal expansion, and low hygroscopicity. The methylene chloride resin can easily solve the above problems, but in fact it is difficult to overcome. In addition, in the above method, the first copper layer and the second copper layer are connected to the polyaluminum by using a casting process and a pressing process, respectively. The amine resin layer will have different physical properties due to the different methods used in 6 200806100. Generally, when the temperature of each metal exceeds its intrinsic recrystallization temperature, small crystals of glutinous rice size will recrystallize, while the treatment temperature is Time is the key factor in determining the ultimate physicality. However, the casting process needs to be processed at a temperature of 5 degrees higher than the recrystallization temperature for several tens of minutes, and the pressing process requires only a few minutes or less of processing time, so that the double-sided copper layer cannot have the same physical properties. . Therefore, the use of a flexible double-sided conductor laminate is problematic because the user needs to carefully distinguish the surface having high peel strength and low peel strength, and to manufacture a fine circuit having a circuit width of 100 μm or less. A series of process conditions, that is, one or more conditions that alternate between dry film photoresist (DFR) press, exposure, development, etching, and stripping processes; or in dry film photoresist, UV One or more materials between the light source, the developer, the etching solution, and the stripping solution require problems for different applications. Further, when a fine circuit is formed under the same conditions, the possibility of causing a defect such as circuit delamination is also increased, and the formation of a high integrated circuit is limited due to a change in realizing a small-sized circuit width. . SUMMARY OF THE INVENTION To this end, an embodiment of the present invention provides a flexible double-sided 20-conductor laminate having a conductor on both sides of a polyimide layer, and the guide is not high-suction Moisture and high thermal expansion of thermoplastic polytheneamine linkages, thus preventing interfacial stress and electrons between the conductor and the thermoplastic polyamidoamine, adverse effects of the signal transmission, and adhesion to the conductor $ Reduce the problem and achieve improved dimensional stability. 7 200806100 Meanwhile, another embodiment of the present invention provides a method of manufacturing a double-sided conductor laminate. Another embodiment of the present invention provides a flexible double-sided conductor laminate having a conductor on both sides of a polyimide layer, thus between a surface of a resin and a conductor, and a resin The difference in peel strength between a surface and a conductor is adjusted to a predetermined standard, thereby effectively simplifying the process and improving productivity and integration. Another embodiment of the present invention provides a press process that allows the conductors to have the same physical properties. According to an embodiment of the present invention, a detachable double-sided conductor laminate provided by the present invention comprises a first conductor; a polyimide layer connected to the first conductor; at least one layer An adhesive resin-containing layer; a second polyamidamine resin layer connected to the second conductor; and a second conductor, wherein the first conductor and the second conductor may be identical to each other or different from each other;醢, the resin and the second polyamidamine resin may be identical to each other or the same; the coefficient of thermal expansion of the first polyimide layer and the thermal expansion coefficient of the first conductor may be the same or different from each other; The coefficient of thermal expansion of the second poly-Asia = and the contact expansion of the second conductor may be different from each other. According to another embodiment of the present invention, the extractable tapered conductor layer plate provided by the present invention comprises a first conductor; and is connected to the first: -1 = amidoxime tree m - a heterogeneous hard-to-comprise layer: a second polyamidole resin layer of the conductor; and a second conductor, wherein: the conductor and the first conductor may be identical to each other or different from each other; the first poly-branched 8 200806100 々村月曰弟弟-laic acid The amine resins may be identical to each other or different from each other; the thermal expansion coefficient of the first polyamide resin layer and the thermal expansion f of the first conductor may be the same or different from each other; the thermal expansion of the second polyimide resin layer The coefficients and the thermal expansion coefficients of the first conductor may be the same as each other or the same as each other; the peeling strength between the first conductor and the first polyamido resin layer is between the interlayer of the second polyimide and the second polyimide The peel strength is doubled to 1.6 times. According to the flexible double-sided conductor laminate according to the embodiment of the present invention, the first conductive rainbow may comprise a first polyimide resin layer and is connected to the first poly 10 melamine resin layer by casting. The adhesive resin comprises a layer; the second conductor may comprise a second poly-gi gi amine resin layer, and is attached to the second poly-styliamine resin layer by an elution method; the adhesive resin-containing layer; and the adhesion of the first conductor The resin-containing layer and the adhesive resin-containing layer of the first conductor are connected to each other through a press-bonding process. The flexible double-sided conductor laminate according to the embodiment of the invention, wherein the first conductor and the second conductor are connectable under the heat treatment condition of (4). The flexible double-sided conductor laminate according to the embodiment of the present invention, wherein the polyamidamide resin is a resin having a melamine ring structure, and is selected from the group consisting of polyetherimide and polyamidamine. Amine (4) Jiafu-Qing and Poly 20 poly 醯 醯 胺 amine (polyesterimide). - a flexible double-sided conductor laminate according to an embodiment of the present invention, wherein the first conductor and the poly-polyimino acid resin layer, or the second conductor and the second polyamic acid amine resin layer Poor, may be 1 Gppm / (> c or less. According to the embodiment of the invention, the detachable double-sided conductor layer board, wherein, 9 200806100 first polyamine resin layer or second take-up is contained in Between the aromatic rings, there is a layer of ~-most amide amine resin, which may contain a kind of _S02-, -C〇_〇_, _CJJ2,: 0-C0...-NHCO-, -S-, a monomer, and a ring in the aromatic ring. <CH3) 2-chain dianhydride and diamine soft 5 -s-, -scv, -c〇-〇...CH does not have ... C0 ... Li CO-, hard monomer, in its Mobi ratio 2 _C (CH3) 2 _ chain of dianhydride and diamine combined polyimide resin. For example, the ratio of the ratio of 10 to 8 to 2, the polydiamine-waking amine resin layer may comprise a layer of a sulfonamide resin or a first substance. Mixing of three or more kinds of polyamidamine resins 0 According to the embodiment of the present invention, the composition and thickness of the first phthalic acid amine resin layer and the second double-sided conductor layer plate. The 1 melamine resin layer may have the flexible double-sided conductor laminate of the same embodiment, wherein the first polyimide resin layer 哎篦 _ , 15

為1%或更低。 次弟—聚亞醯胺樹脂層,其吸濕性可 々纟明貫施例所述之可撓性雙面導體層板,其中, 1^性樹ΐ旨包含層可包含由—層或多層黏著性樹脂所構成 自,轉轉性細旨係選自在亞_化反應後,具有破 溫度為12G°C至35G°C之熱可塑性聚亞賴樹脂、 =氧樹脂及酚樹脂。此外,熱可塑性聚亞醯胺樹脂,可包 合使用在芳香環之間具有-0-、·(:0-、-NHCO-、各、-SOy、 C〇_〇_、_ch2-、-c(ch3)2-鏈之二酐及二胺的軟性單體進行 聚合所得的熱可塑性聚亞醯胺。另外,熱可塑性聚亞醯胺 樹脂可為包含破璃轉移溫度為120QC至350。€之熱可塑性 20 200806100 聚亞蕴胺樹脂的混合物。 同時,熱可塑性聚亞醯胺可包含一種使用在芳香環 間具有·〇_、_C〇_、·ΝΗα)·、S_、_s〇2_、_c〇 〇、之 -C(CH3)2·鏈之二酐及二胺的軟性單體,以及在芳香環= 5 不具有-〇-、-CO-、-NHCO-、1、-S02-、一CO-0-、CH 間 -C(CH3)2-鏈之二酐及二胺的硬性單體,在其莫耳比範圍2為 10比Θ到2比8的條件下聚合而得的聚亞醯胺樹脂。^ 依本發明實施例所述之可撓性雙面導體層板,其中, 第一聚亞醯胺樹脂層與第二聚亞醯胺樹脂層之厚度,可滿 ίο 足下列方程式1。. 卜 方程式1 [〇.8 X (Ε2 X Τ2)]<[Ε1 X Τ1]<[ι·2 X (Ε2 X Τ2)] 其中,El係指第一聚亞醯胺樹脂層之熱膨脹係數 (ppm/°C); 15 E2係指帛二聚亞瞻樹脂層之熱賴絲㈣㈤〜); T1係指第一聚亞醯胺樹脂層之厚度以瓜); T2係指第二聚亞醯胺樹脂層之厚度仏叫。 依本發明實施例所述之可撓性雙面導體層板,其中, 的黏著性樹脂包含層、第—聚魏胺樹脂層及第 -水亞^胺樹脂層之厚度,可滿足下列 。 方程式2 ^ (ΤΙ + Τ2)]<Τ3<[3·〇 x(丁! + 丁2)],且 〇 5<T3 m ^係指第—聚麵胺樹脂層之厚度(㈣; 糸指第二聚亞醯胺樹脂層之厚度(μηι); 20 200806100 丁3係指轉性旨包含層之厚度(㈣。 第-實施例所述之可撓性雙面導體層板,其中, 二:二二及導 =鋼,、金、銀、鎳、鋅、鐵、 化μ ⑽i屬之合金、或前述金屬之氧化物。 導體二J3之另—實施例’本發明提供—種可撓性雙面 面j 造方法’包括有:在第—聚亞_薄膜之- 將第著性樹脂包含層,以及在高溫/高壓的氣氛下 將弟-♦魏胺薄賴合於姆著性義包含層上。 依本發明實施例所述之可挽性雙面導體層板之製造方 /一其中,更可進行將導體沉積於第一聚亞醯胺薄膜與第 二聚亞醯胺薄膜的另一面上。 15 20 ,依本發明之一較佳實施例,本發明提供一種可撓性雙 面,體層板之製造方法,包括有··在第—導體之—面上塗 佈第-聚亞目i胺·旨或其前驅物,之後錢,再將黏著性 樹脂塗佈於其上,而後錢,以及在高溫氣氛下進行亞驢 胺化反應,以製備包含有第—導體、第—聚亞贿樹脂層 與黏著性#懷包含層的第-層板;另外,在第二導體之一 面上塗佈第二聚亞醯胺樹脂或其前驅物,之後乾燥,再將 黏著性樹脂塗佈於其上,而後乾燥,以及在高溫氣氛下進 行亞醯胺化反應,以各別地製備包含有第二導體、第二聚 亞醯胺樹脂層與黏著性樹脂包含層的第二層板;以及在高 溫及高壓下壓合第一層板與第二層板,使第一層板的黏著 性樹脂包含層與第二層板的黏著性樹脂包含層相互接合。 依本發明之前述較佳實施例所提供之一種可撓性雙面 12 200806100 導體層板之製造方法中,可進一牛 r=著性樹脂包含層上 物,之後乾爍,以製備第三樹脂屛, 合第-層板與第二層板,使^溫及高壓下壓 含層可彼此面對接合之步=弟#脂層與轉性樹脂包 雔二ϊίΓ另一較佳實施例,本發明提供-種可撓性 又面¥體層板之製造方法,包括有· 塗佈第-聚亞_樹脂或其前驅物:之後:二體= 佈於其上’而後乾燥,並在高溫氣氛下 製備包含第-導體、第-聚亞醯胺 树月曰層與弟三树脂層之第—層板;另外,在第二導體之一 15 20 =塗佈第二聚題胺聽或騎驅物,錢乾燥,再將 4者性樹脂塗佈於其上’而後乾燥,並在高溫氣氛下進行 亞臨胺化反應,以各別地製備包含有第二導體、第二聚亞 酿胺樹脂層與黏著性樹脂包含層之第二層板;以及在高溫 及高壓下壓合第-層板與第二層板,使第—層板之第三樹 月曰層與弟一層板之黏者性樹脂包含層相互接合。 依本發明實施例之可撓性雙面導體層板的製造方法, 其中,該高溫係等於或高於黏著性樹脂包含層的玻璃轉移 溫度’該高壓的壓力範圍係為i到200 kgf/cm2或為工到200 kgf/cm 〇 先前技術中,由於熱可塑性聚亞醯胺必須與導體連 接,因而無法充分利用熱固性聚亞醯胺之優點,且熱可塑 性聚亞醯胺的缺點如吸濕性高、耐熱性低及熱膨脹性高皆 13 200806100 十分明顯。然而,本發明所提供之可撓性雙面導體層板, 2僅可避免上述問題的產生,並且能夠提升電子零件之可 靠性、耐熱性及耐吸濕性。 v 此外,位於層板雙面之導體與樹脂間的剝離強度為彼 5此相等的例子中,當應用可撓性雙面導體層板時,即可在 同二製程中,解決因層板雙面之導體與樹脂間之剝離強度 的差異所產生的問題,亦即,用以製作微細電路板的一^ 串製程條件如··乾膜光阻壓合、曝光 '顯影、蝕刻、以及 剝離製程間交替的一種或多種條件;抑或是在乾膜光阻、 ίο UV光源、顯影液、飿刻液、剝離液之間的一種或多種材料, 需予以不同應用之問題,此外,在相同條件下形成微細電 路時,產生如電路脫層之缺點的可能性也增加,且由於在 貝現小尺寸電路寬度時的變化,而造成高積體電路之形成 受到限制的問題。 15 【圖式簡單說明】 弟圖係為本發明弟一貫施例之剖面圖,顯示可繞性 雙面導體層板。 、 凡 第二圖係為本發明第二實施例之剖面圖,顯 2〇雙面導體層板。 ’、^ 第二圖係為本發明第三實施例之剖面圖,顯示可撓性 雙面導體層板。 ' ^ 第四圖係為習用之可撓性雙面導體層板之刮面圖。 第五圖係為使用實施例1之可撓性雙面導體層板所製 200806100 得之電路板的放大照片。 第六圖係為使用比較例3之可撓性雙面導體層板所製 得之電路板的放大照片。 ' 5【主要元件符f虎說明】 ' 1第一銅層 1,第二銅層 2’低熱膨脹性聚亞蕴胺層 • 3第一熱可塑性聚亞醯胺層 3’第二熱可塑性聚亞醯胺層 10 Η第一導體 11,第二導體 12第一聚亞醯胺樹脂層 12,第二聚亞醯胺樹脂層 13, 13,熱可塑性聚亞醯胺樹脂層(黏著性樹脂包含層) 20第三樹脂層 曰 15【實施方式】 φ 本發明之詳細說明内容如下: . 本發明之可撓性雙面導體層板的構造如第一圖至第三 圖所示。第一圖的結構中,係壓合第一導體(11)、第一聚亞 醯胺樹脂層(12)、熱可塑性聚亞醯胺樹脂層(13, 13,)、第二 20聚亞醯胺樹脂層(12,)及第二導體(11,);第二圖的結構中, 係壓合弟一導體(11)、第一聚亞醯胺樹脂層(12)、第三樹脂 層(20)、熱可塑性聚亞醯胺樹脂層(13,)、第二聚亞醯胺樹脂 層(12’)及第二導體(1Γ);以及第三圖的結構中,係壓合第 一導體(11)、第一聚亞醯胺樹脂層(12)、熱可塑性聚亞醯胺 15 200806100 樹脂層(13)、第三樹脂層(20)、熱可塑性聚亞醯胺樹脂層 (13’)、第二聚亞醯胺樹脂層(12,)及第二導體(11,)。 第一圖至第三圖所示之結構,係用以顯示本發明之可 撓性雙面導體層板,但本發明並不受限於此。 5 第一圖至第三圖中,除了第一導體、第二導體、第〜 聚亞醯胺樹脂層及第二聚亞醯胺樹脂層外,係單獨將熱可 塑性聚亞酿胺樹脂層,或合併熱可塑性聚亞酿胺樹脂層與 第三樹脂層,定義為「包含至少一層熱可塑性聚亞醯胺樹 脂層的熱可塑性聚亞醯胺樹脂包含層」。 10 具體而言,在本發明中,熱可塑性聚亞醯胺樹脂層可 以一層黏著性樹脂取代,也就是環氧樹脂或酚樹脂,二定 義為「至少一層黏著性樹脂包含層」。 本發明之可撓性雙面導體層板,其中,聚亞醯胺樹脂 為具有亞醯胺環結構的一般性樹脂,包括有:聚醚亞醯胺、 15聚醯胺亞胺及聚酯亞醯胺等。 在本發明中,習用或新穎的聚亞醯胺樹脂中,只要可 達成本發明所述之技術架構者皆可使用。例如:在美國專 利第 6,184,333 號、第 5,773,509 號、第 4,847,349 號、及第 3,847,867號,與日本未實審公開公報昭和63·84,ΐ88及大 2〇韓民國未實審公開公報第10-2004_0084029號等所揭露之 聚亞醯胺樹脂。 路 =第-導體(11)與該第二導體(11,)、及各自相鄰於其上 之該第一聚亞醯胺樹脂層(12)與該第二聚亞醯胺樹脂層 (12 )’其熱膨脹係數為相同或彼此不同。具體而言,最好 16 200806100 熱膨脹係數之差異為10 ppm/QC或更低。舉例來說,若以熱 私脹係數為18 ppm/ C之銅、冶層為導體,則與該銅荡層相鄰 之聚亞胺樹脂層的熱知服係數範圍最好為$至28 PPm/°C。若導體與與之相鄰的聚亞醯胺樹脂層間的熱膨脹 5係數差異大於10 ppm/t,層板會嚴重彎曲,且難以避免在 導體與樹脂層間所產生的界面張力,因而造成尺寸穩定性 降低的問題。 上述之聚亞醯胺樹脂可為熱固性樹脂,在硬化反應 後’並無法測付其玻靖轉移溫度。上述之熱固性樹脂,可 10由包含在其分子構造上無柔性鏈(flexible chain)存在之二酐 及二胺的單體(以下稱為「硬性單體」),經由聚合反應所 製得。 “ 具體而言,所謂硬性單體係可藉由在單體結構中的芳 香環間不存在有-〇_、-CO·、-NHCO、-S-、-S02-、-C0-0-、 15 -CH2·、或-C(CH3)2·等鏈,亦即,不存在有柔性鏈而定義之。 舉例來說,二酐包括有:3,3,,4,4,_聯苯四羧酸二酐 (3,3’4,4’-biphenyltetracarboxylic acid dianhydride,BPDA)、 苯均四酸二酐(pyromellitic acid dianhydride,PMDA)等;而 二胺包括有對苯二胺(p-phenylenediamine,PPDA)、間苯二 20胺(m-phenylenediamine,MPDA)等。此外,聚亞醯胺樹脂可 包括一種能夠達成熱膨脹係數低之技術目的、其分子構造 上存在有柔性鏈的單體(以下稱為「軟性單體」)。 最好’軟性單體與硬性單體之莫耳比範圍為〇比1〇到 8比2,更佳為〇·5比9.5到5比5。 17 200806100 §卓人性單體與硬性單體之莫耳比超過8比2時,含有 過量軟性單體的聚亞醯胺樹脂,其玻璃轉移溫度會降低, 而其熱膨脹係數則會增加。 < 另外,該第一聚亞醯胺樹脂層與該第二聚亞醯胺樹脂 5層,可為一種或多種的聚亞醯胺樹脂混合物。 在聚亞醯胺樹脂混合物的例子中,若聚亞醯胺樹脂混 合物之熱膨脹係數滿足上述之較佳條件,則其各自組成成 分的熱膨脹係數或玻璃轉移溫度並無任何限制。舉例來 說,可使用由熱膨脹係數為8 ppm/〇c之BpDA_ppDA聚亞 1〇醯胺樹脂,與熱膨脹係數為32 ppm/QC之BpDA_4,4,-二胺 ^ 二苯基醚(4,4’-diamin〇diphenylether,DDE)聚亞醯胺樹 月曰’以7比3的莫耳比混合之熱膨脹係數為18p脾〜的混 並且,該第 15 20 承兑醞胺樹脂層與該第二聚亞醯胺樹脂 層可具有或不具有相同的成分。 除此之外,包含於該弟一聚亞酸胺樹脂層與該第二聚 亞醯胺樹脂層之聚亞醯胺樹脂,其·!·生最好為1%:更 低且其耐吸濕性優於多數一般的熱可塑性聚亞酿胺樹脂。 盘兮Ϊ本f明中’在層疊有導體之該第—聚亞軸樹脂層 Ί弟二#_樹脂層之間,f存在有至少 ==^雜層者’不存在有熱可塑性“酿胺樹 T/l、—子在有具黏著性之黏著性樹脂層,作為接著劑用。 I作為替代熱可雛聚魏胺獅層之黏雜樹脂芦,可 為具黏著性之環倾料賴脂。 曰 18 200806100 在黏著性樹脂層包含熱可塑性聚亞醯胺樹脂層的例子 中,為了達成前述功能,在亞醯胺化反應後,該熱可塑性 聚亞醯胺樹脂的玻璃轉移溫度最好為35〇Qc或更低。在較 佳實施例中,當玻璃轉移溫度的範圍為120〇c至35〇〇c時, 5可避免產品的耐熱性降低,並且也可避免在產品的製造過 程或後處理過程中,由於機械摩擦產生的熱所導致的變 形。因此,可避免生產效率降低,或者是不必要製造成本 的提高。 該熱可塑性聚亞醯胺樹脂,可經由二酐與二胺聚合反 10應而得;至於軟性單體,係在其芳香環間包含_〇_、、 -NHCO-、各、-S02-、-CO-0-、-CH2-、或-C(CH3)2-鏈者。 舉例來說,二酐包括有:4,4,-氧雙鄰苯二甲酸酐 (4,4’-oxydiphthalic acid dianhydride,ODPA)、3,3,,4,4,-二苯 酉同四酸一昕(3,3,4,4’-benzophenonetetracarboxylic acid 15 dianhydride,BTDA)、雙酚 A 二酐(bisphenol A dianhydride, BPADA) 、3,3’,4,4’·二苯基砜四羧酸二酐 (3,3’,4,4,-diphenylsulfbnetetracarboxylic acid dianhydride, DPSDA)、乙二醇雙(無水偏苯三曱酸醋)(ethyleneglycol bis(anhydrous-trimellitate,TMEG)等;以及二胺包括有 4,4’· 2〇 二胺基二苯醚(4,4’-diaminodiphenyl ether,DDE)、4,4’-二胺 基苯曱酸苯胺(4,4’-(^111^1(^6112&11也(^,0入6八)、1,3-雙(3-胺基苯氧基)苯(l,3-bis(3-aminophenoxy) benzene,APB)、 4,4、( 1,3-伸苯基二異亞丙基)二苯胺 (4,4’-(l,3-phenylenediisopropylidene)dianiline,PDPDA)、2,2- 200806100 雙[-4_(4-胺基苯氧基)苯基]丙烷 (2,2-bis[_4_(4-aminophenoxy)phenyl] propane,BAPP)、雙[4-(3-胺基苯氧基)苯基]硬 (bis[4_(3-aminophenoxy)phenyl]sulfone,BAPSM)、3,3,-二胺 5 二苯硬(3,3’-(^11^11〇(^1^11>^111£〇1^,008)等〇 另外,該熱可塑性聚亞醯胺樹脂,為可達成熱可塑性 聚亞酸胺樹脂之技術目的者,可包含其分子構造上為硬性 單體者,且其軟性單體與硬性單體之莫耳比範圍為1〇比〇 到2比8。具體而言,在本發明之較佳實施例中,莫耳比範 10圍為10比0到5比5時,較有助於達成本發明之玻璃轉移 溫度與目的。 另外,該熱可塑性聚亞醯胺樹脂,可為一種或多種的 聚亞醯胺樹脂混合物。在熱可塑性聚亞醯胺樹脂層為熱可 塑性聚亞醯胺樹脂混合物的例子中,係包含一種或多種樹 15知,其玻璃轉移溫度在經過亞醯胺化反應後,可滿足上述 的較佳條件,對於所追加之聚亞醯胺樹脂的玻璃轉移溫 度,則未有任何限制。舉例來說,一種包含BpDA_pDA聚 ,醯胺的混合物,在經過亞醯胺化反應後,無法測得其玻 璃轉移溫。度,以及經過亞隨胺化反應後,具有玻璃轉移溫 2〇度為232°C之BPADA/BTDA-DDE聚亞醯胺樹脂,將前述 兩種樹脂以5比5的莫耳比混合後,即可作為熱可塑性聚 亞酿胺樹脂。 一本發明之可撓雙面導體層板,具有如第一圖至第三圖 所不之構造,其中,該第一聚亞醯胺樹脂層之厚度(T1)與該 200806100 第二聚亞醯胺樹脂層之厚度(T2),可為相同。若厚度不同 時,則需將其調整至滿足下列方程式1,以防止產品的彎曲。 方程式1 [〇·δ X (Ε2 X Τ2)]<[Ε1 X Τ1]<[1·2 X (Ε2 X Τ2)] 5 其中,E1為該第一聚亞醯胺樹脂層之埶膨脹係數 (ppm/°C); ”、 E2為該第二聚亞醯胺樹脂層之熱膨脹係數(ppm/〇c); T1為該第一聚亞醯胺樹脂層之厚度(_);以及 T2為該第二聚亞醯胺樹脂層之厚度(μιη)。 10 另外,至少一層黏著性樹脂包含層之厚度(Τ3),係滿足 下列方程式2,且可為〇.5 μπι 〇 方程式2 [0.01 X (ΤΙ +Τ2)]<Τ3<[3·0 x(Tl +丁2)],且 〇.5<Τ3 其中,Τ1為該第一聚亞醯胺樹脂層之厚度(μιη); 15 Τ2為該第二聚亞醯胺樹脂層之厚度(μιη);以及 丁3為該黏著性樹脂包含層之厚度(_)。 在此’ Τ3可轉為第-圖中之熱可塑性聚亞酿胺樹脂 層(13,13’)的厚度;而在第二圖中,Τ3可解釋為該第三樹 脂層(20)與該熱可塑性聚亞醯胺樹脂層(13)的 娘 及在第三圖中,Τ3可解釋為該熱可塑性聚亞軸^脂層(13, 13,)與該第三樹脂層(20)之厚度總和。 至少一層黏著性樹脂包含層之厚度Τ3,若在上述範圍 内,則在高溫/高壓下進行壓合製程時,具有充分的黏著力, 可有效地改善品質及尺寸穩定性。 21 200806100 另外,本發明之可撓性雙面導體層板,第二圖或第三 圖中所示之至少一層黏著性樹脂包含層,係為多層結構, 包含單層或雙層的熱可塑性聚亞醯胺樹脂層,以及該第三 樹脂層。具體而言,第二圖所示的雙層結構,係為單層的 5熱可塑性聚亞醯胺樹脂層(13),及該第三層樹脂層(20)。第 三圖所示的三層結構,係為在熱可塑性聚亞醯胺樹脂層(13, 13’)間插入該第三樹脂層(2〇)。如第三圖所示,在r至少一 層黏著性樹脂包含層」的例子中,其具有對稱之結構,該 對稱結構可由以下之順序所形成:熱可塑性聚亞醯胺樹脂 ίο層一第三樹脂層一熱可塑性聚亞醯胺樹脂層,並且前述之 兩層熱可塑性聚亞醯胺樹脂層之厚度可相同。若該黏著性 樹脂包含層屬三層構造,但為非對稱性結構(係指彼此之 厚度不相同),先計算出該等熱可塑性聚亞醯胺樹脂層之平 均熱膨脹係數後,再依該熱膨脹係數予以調節各層之厚 15度’以預防彎曲現象發生。另外,如第二圖所示,在「至 少一層黏著性樹脂包含層」為二層結構的例子中,以第三 樹脂層為基準,來平均第一聚亞醯胺樹脂層(12)與熱可塑性 聚亞醯胺樹脂層(13,)之熱膨脹係數後,再依計算所得之數 值予以調節各層之厚度,以預防彎曲現象發生。 20 在此,該第三樹脂可與該第一聚亞醯胺樹脂層和該第 二聚亞醯胺樹脂層相同或不相同,且可為或不為熱可塑性 樹脂。該第三樹脂的例子包括有··聚砜(p〇lysulf〇ne,psF)、 環氧树月日(epoxy resin)、酴樹脂(phenol resin)等。在本發明 中,右各別與導體連接之樹脂層皆為聚亞醯胺樹脂層,則 22 200806100 可達到本發明之目的,因而該第三樹脂並無限制。 本發明之可撓性雙面導體層板,其中,該聚亞醯胺樹 脂層之總厚度可為35 μιη或更小。 另外,為了提升產品品質,該聚亞醯胺樹脂層可包含 5已知的添加劑,諸如:硬化劑、矽烷耦合劑(silane coupling agent)、環氧(ep0xy)化合物、挽性賦予劑(❿灿池 agent)、抗氧化劑、抗老化劑等。另外,亦可添加非導體無 機材料’以控制樹脂層之熱膨脹係數、強度、延展性、以 及黏著力,其中,該無機材料可為:二氧化矽(silica)、蒙 ίο 脫土(montmorillonite)、氧化銘(alumina)、黏土(ciay)、奈米 石反纖維(carbon nanofibers)。 本發明中,所謂導體並不受限於銅(c〇pper)或鋁 (aluminum)’亦可包含眾所皆知屬於導體之金屬,包括有: 金(gold)、銀(silver)、鎳(nickel)、鋅(zinc)、鐵(iron)、銘 15 (cobalt)、錯(lead)、钽(tantalum)、鈦(titanium)、鍅(zirconium) 及前述金屬之合金,或前述金屬之氧化物,諸如氧化銦錫 (Indium tin oxide,ITO)。 根據與本發明之可撓性雙面導體層板之製造方法相關 的實施例,可利用傳統的壓合製程與沉積製程。因壓合製 2〇程需要將導體與熱可塑性聚亞醯胺樹脂層連接,故本發明 中不單獨使用壓合製程。透過沉積製程先製備由上述聚亞 酉胺樹脂層所組成之聚亞酿胺薄膜。亦即,在一般的聚亞 醯胺薄膜之單面上壓合前述之熱可塑性聚亞醯胺樹脂層, 之後將一般的聚亞醯胺薄膜壓合於其上,以製備聚亞醯胺 23 200806100 薄膜,之後在聚舰㈣_雙岐積 該洗鑄製程可包含之步驟為:▲ 其前驅物塗佈於第一導體之一 、 艰亞醯胺樹脂或 5 15 20 性樹脂塗佈於其上,之後乾燥,;^及,,,燥:再將黏著 亞酸胺化反應,以製備包含第 ,心下’進打 層與黏著性樹脂包含層之第=亞 或其前驅物塗佈於第二導體之一本、 來亞I胺树月曰 黏著性樹脂塗佈於其上,之後後乾燥’再將 進行亞酸胺化反應’以各別地製備包含第二二聚 亞《樹脂層與黏著性樹脂包含層之第反 溫/高壓的條件下,將該第一声柘鱼兮楚—^及在同 曰扳舁該弟一層板壓合,使該 二層板之黏讀樹脂包含層_第二層板之黏著性樹脂 13層相互接合。如上述方法所製得之可撓性雙面導體層 板,可具有如第一圖所示之結構。 如,丄該第一層板或該第二層板的其中一個,可進一 步,含第三樹脂層,係藉由將第謂脂祕前驅物塗佈於 黏著性樹脂包含層上,之後乾燥。在這例子中,該第一層 板與該第二層板的壓合,是在高溫/高壓的條件下進行,致 使該第二樹脂層與該黏著性樹脂包含層相互接合,以製得 可撓性雙面導體層板。以上述方法製得之可撓性雙面導體 層板,可具有如第三圖所示之結構。 本發明中利用澆鑄法製得可撓性雙面導體層板之另一 個例子,可包括之步驟為··將第一聚亞醯胺樹脂或其前驅 物塗佈在第一導體之一面上,之後乾燥,將第三樹脂或其 24 200806100 前驅物塗佈於其上,之後乾燥,以及在高溫氣氛下, 亞醯胺化反應,以製備包含該第—導體、該第一聚亞 樹脂與該第三樹脂層之第-層板;將第二聚亞酿胺樹月= 其河驅物塗佈在第二導體之-面上,之後乾燥,進一 5黏著性樹脂或其前驅物塗佈於其上,之後乾燥,以及在言 溫氣氛下,進行亞醯胺化反應,以各別地製備包含該第= 導體、該第二聚亞醯胺樹脂與該黏著性樹脂包含層^第: 層板;以及在高溫/高壓的條件下,將該第一層板與該第二 層板壓合’使該第-層板之第三樹脂層與該第二層板之黏 w著性樹脂包含層相互接合。以上述方法製得之可撓性雙面 導體層板,可具有如第二圖所示之結構。 又 本發明所述之可撓性雙面導體層板之製作方法,其 +中,透過高溫/高壓之壓合的黏著,係可為使用壓床之面黏 著或使用捲壓過程(roll to roll)的線黏著。該製程溫度係等 15於或高於該黏著性樹脂之玻璃轉移溫度(Tg),具體而言,其 溫度範圍為180°C至400°C,更佳為280〇c至36〇。〇。另外、, 為了使用熱來均勻地實現該黏著性樹脂之黏著,其壓力範 圍為1 kgf/cm2至200kgf/cm2,尤其,可提供之壓力範圍為 3〇kgf/cm2至80kgf/cm2。在使用捲壓過程來進行壓合的例 20子中,線黏著可透過壓力範圍為〇·1至20〇 kgf/cm2與速率 範圍為0.1至30 m/min予以實現。近來,為了提升生產量, 開發出各式各樣利用捲壓過程之壓合法,係可參照日本未 實審專利早期公開第2005-199615號。若無法符合上述之高 溫及高壓的條件,即無法製得具有充分之黏著力與外觀均 25 200806100 勻之層板。 依據本發明較佳實施例之可撓性雙面導體層板,其 中,該第一導體與該第一聚亞醯胺樹脂層間之剝離強度, 為該第二導體與該第二聚亞醯胺樹脂層間之剝離強度的 5 0·65至h6倍。若在該層板雙面上之導體與樹脂間之剝離強 度超過上述範圍時,對於雙面之最佳後製程的條件可能會 產生變化,並且,可形成的最小電路寬度也會產生报 變化。 雖然為了滿足剝離張力差異之範圍的方法並無限制, 但是壓合方法的控制仍然有最佳的範例。 具體而言,前述之製程中,該第一導體係以澆鑄法連 接於該第一聚亞醯胺樹脂層與該黏著性樹脂包含層,該第 二導體係錢鑄法連接於該第二聚㈣麟脂層與該黏著 15 性樹脂包含層,且該第一導體之黏著性樹脂包含層與該第 -導體之黏著性樹脂包含層,係藉*壓合製程使其可相互 連接。 如此來,當該等層相連接,該二導體可透過相同之 熱處理過程予以連接,且其可具有相同的物性。是故,在 該層板雙面上之導體與樹脂間之剝離強度,係展現 20 之水準。 y 以ηΐ發撓性雙面導體層板,係經由以下之範例予 以闡述,但是本發明不受限於此: 「分析方法」 熱膨脹係數·熱機械分析儀(型號〇働祖,D, 26 200806100 加熱速率為每秒l〇°C,平均熱膨脹係數之量測範圍為1〇〇 至 200oC。 玻璃轉移溫度:微差熱掃描分析儀(型號Exstar6〇〇〇 DSC6100,精工),加熱速率為每分鐘iq〇c。 5 吸濕率:將1〇 X 10 cm2之雙面導體層板浸潰於13% 的硝酸溶液中,以徹底地蝕刻該導體,量測蝕刻後樹脂層 之重里’再將該Μ月曰層元全浸潰於純水(pure water)中,放 置24小時後,自水中移出,並乾燥之,而後量測其重量, 藉由計算增加的重量來定義其吸濕性。 10 薄膜彎曲·放置於平坦表面之10 X 10 cm2樣品的邊緣 阿度0 剝離強度1:使用萬能試驗機(型號Instron 3300系列) 1測導體與樹脂層之間180度的剝離強度。在此,將第一 導體與第一聚亞醯胺樹脂層之間的剝離強度命名為剝離強 15度1β1;而第二導體與第二聚亞醯胺樹脂層之間的剝離強度 則命名為剝離強度1-2。 剝離強度2 :使用萬能試驗機(型號Instr〇n 3300系列) 1測黏著性樹脂包含層與黏著表面之間18〇度的剝離強度。 蝕刻後的尺寸變化··量測1〇 x 10cm2雙面導體層板塗 20佈方向的尺寸,以及與其塗佈方向呈9〇度之方向的尺寸; 待10 X 10 cm2之雙面導體層板浸潰於13%的硝酸溶液 中,致使導體完全地蝕刻後,依照與蝕刻前同樣之該等測 量點,量測蝕刻後剩餘樹脂層之塗佈方向的尺寸,及與其 塗佈方向呈90度之方向的尺寸,量测出蝕刻前、後之尺寸 27 200806100 變化,亚加以平均。(使用儀器:EG3020M,菲伊特精密測 量儀有限公司)。 寸謂山別 吸濕後之表面電阻:將5 x 5em2之雙面導體層板浸潰 於13%的確酸溶液中,致使導體完全地侧,再將儀刻後 5剩餘之樹脂層在100°C下乾屬30分鐘,量測該雙面導體層 板^面的表面電阻,之後使該層板處於濕度1〇〇%、溫度 121 C大氣壓力2 atm的氣氛下2小時(使用儀器: PC-422R8D ’日本平山),而後乾燥之,量測該層板雙面的 表面包阻,並由此評估因吸濕性所造成之電子信號的穩定 10度。電阻愈高,電子零件之穩定性與可靠性也會隨之增加。 (測量表面電阻的儀器:高電流源測量單位,型號M〇dd 238,吉時利儀器公司)。 「聚亞醯胺樹脂之合成」 15 合成例1 為了製得熱膨脹性低的聚亞醯胺樹脂,係將28.1 g的 對苯二胺置入溫度為4〇°C且存在有氮氣的2 L反應器中, 之後加入800 g的二曱基乙醯胺(DMAc)溶劑,將混合物攪 拌30分鐘使其完全溶解,當76·5 g的3,3,,4,4,_聯苯四羧酸 2〇二酐(BPDA)分成1〇等分加入後,始進行5小時的聚合反應 後,以製得聚醯胺酸。 將由聚合反應而得之聚醯胺酸塗佈於玻璃基板上,乾 燥之’並在300。€:的真空烘箱中亞醯胺化,之後測量其熱 %服係數。其結果如表1所示。 28 200806100 合成例2至9 聚酸胺酸係利用與合成例1相同之方式製備,除了依 照表1所示之當量比改變二酐及二胺的成分與使用量外, 將聚酿胺酸進行亞醯胺化反應後,測量其熱膨脹係數與玻 璃轉移溫度。其結果如表1所示,、其中,合成例1與3之 玻璃轉移溫度難以定義,而合成例2之玻璃轉移溫度,則 是以低的準確性予以估計。 【表1】 —-—一 5成例 組成(當量出) 軟性:硬性 單體莫耳比 吸濕性 (%) 熱膨脹係數 (ppm/°C) Tg 二胺 二酐 1 PPDA(50) BPDA(50) 0 : 10 0.7 8 v w 2 PPDA(35)? DDE(15) BPDA(50) 1.5 : 8.5 0·7 13 360* 3 PPDA(40) DDE(10) BPDA(IO) BTDA(40) 5:5 0.8 18 - 4 PPDA(20) DDS(30) BTDA(30) PMDA(20) 6:4 1.0 32 288 5 PPDA(IO) DDE(40) BTDA(50) 9:1 2.2 35 255 6 DDE(50) BTDA(50) 10 : 〇 2.1 36 291 7 BAPS(50) BTDA(50) 10 : 〇 2.7 40 215 8 BAPP(50) BTDA(40) BPDA(IO) 9:1 2.6 61 192 9 — BAPSM(50) BTDA(25) DPSDA(25) 10 ·· 0 2.9 57 172 「可撓性雙面導體層板之製造」 實施例1 將以重量比5 ·· 5混合合成例1與4之前驅物,且熱膨 29 200806100 eoati^^T! C之聚亞醒胺樹脂前驅物,以塗佈棒(bar 在熱膨脹係數為17 8 ppm/〇c,且厚度為Μ哗 的粗糙表面上,之後制熱風乾燥機,在15代 分鐘。如此’乾騎簡的平均厚度為12.4 _。 將5成例6之熱可雜聚髓胺獅前驅物 塗佈在乾叙聚麵贿财㈣的表社,之後 風乾城’在!就下乾燥3〇分鐘。如此,乾燥樹脂層的 平=厚度為16,7μιη。製得之單面導體層板在3⑽。c的氮氣 烘相中,進行2小時的亞醯胺化與硬化,以製得單面導體 層板(a)。 —由於殘存溶劑與水分的減少,使得樹脂層的厚度更 薄,利用電子顯微鏡觀察其切面,該聚亞醯胺樹脂層之厚 度為10·2 μιη,以及該熱可塑性聚亞醯胺樹脂層之厚度為2.6 μιη 〇 將兩個單面導體層板⑻利用高溫/高壓過膠機 (laminator),在 350〇C 與 50 kgf/cm2 下 10 分鐘予以黏著, 使該二導體層板之熱可塑性聚亞醯胺樹脂層相互接合,以 製得可撓性雙面導體層板(請參照第一圖所示 實施例2 利用與實施例1相同的方法製造單面導體層板作),除 了使用合成例2的聚亞酿胺樹脂外。將兩個單面導體層板⑼ 壓合,以製得可撓性雙面導體層板。 實施例3 利用與實施例1相同的方法製造單面導體層板(c),除 30 200806100 (c) 了使用合成例3的聚亞醯胺樹脂外。將兩個單面導體層考 壓合,以製得可撓性雙面導體層板。 9反 比較例1 利用與貫施例1相同的方法製造可撓性雙面導體居 板’除了塗佈合成例2之聚醯胺酸來取代合成例6之熱 塑性聚亞fe胺如驅物外。但是,經過壓合後,其黏 顯較低。 ° 力明It is 1% or lower. The second-polyimine resin layer, the hygroscopicity of which can be described in the flexible double-sided conductor laminate according to the embodiment, wherein the layer may comprise a layer or a plurality of layers. The adhesive resin is composed of a thermoplastic resin polyacetal resin, an oxygen resin, and a phenol resin having a temperature of 12 G ° C to 35 G C after the sub-chemical reaction. Further, the thermoplastic polyamidamide resin may be used in combination with -0-, (:0-, -NHCO-, each, -SOy, C〇_〇_, _ch2-, -c between the aromatic rings. (ch3) Thermoplastic polyimide obtained by polymerization of 2-chain dianhydride and diamine soft monomer. Further, the thermoplastic polyimide resin may have a glass transition temperature of 120 QC to 350. Thermoplasticity 20 200806100 Mixture of polyimine resin. Meanwhile, thermoplastic polytheneamine may contain a kind of 〇_, _C〇_, ΝΗα)·, S_, _s〇2_, _c〇 between the aromatic rings.软, -C(CH3)2·chain dianhydride and diamine soft monomer, and in the aromatic ring = 5 does not have -〇-, -CO-, -NHCO-, 1, -S02-, a CO Poly-anthracene obtained by polymerizing a -0-, CH-C(CH3)2-chain dianhydride and a diamine hard monomer under the conditions of a molar ratio range of 2 to 10 to 2 to 8. Amine resin. The flexible double-sided conductor laminate according to the embodiment of the invention, wherein the thickness of the first polyimide layer and the second polyimide resin layer is sufficient to satisfy Equation 1 below. . Equation 1 [〇.8 X (Ε2 X Τ2)] <[Ε1 X Τ1] <[ι·2 X (Ε2 X Τ2)] wherein, El means the coefficient of thermal expansion of the first polyamidene resin layer (ppm/°C); 15 E2 means the enthalpy of the bismuth dimerization resin layer Silk (4) (5) ~); T1 means the thickness of the first polyamidene resin layer to melon; T2 means the thickness of the second polyamidamine resin layer. According to the flexible double-sided conductor laminate according to the embodiment of the invention, the thickness of the adhesive resin-containing layer, the first-polyamine-based resin layer and the first-water-imide resin layer can satisfy the following. Equation 2 ^ (ΤΙ + Τ 2)] <Τ3 <[3·〇 x(丁! + 丁2)], and 〇 5 <T3 m ^ means the thickness of the first-polyamine resin layer ((iv); 糸 refers to the thickness of the second polyamidene resin layer (μηι); 20 200806100 butyl 3 refers to the thickness of the layer containing the transition ((4) The flexible double-sided conductor laminate according to the first embodiment, wherein: two: two and two, steel, gold, silver, nickel, zinc, iron, alloy of the genus (10) i, or the foregoing metal Oxide. Another Example of Conductor II J3 - The present invention provides a method for producing a flexible double-sided surface, including: in the first-poly-film--the first resin-containing layer, and at a high temperature / The high-pressure atmosphere will be used to form a layer of a double-sided conductor layer according to the embodiment of the present invention. The conductor is deposited on the other side of the first polyimide film and the second polyimide film. 15 20. According to a preferred embodiment of the present invention, the present invention provides a flexible double-sided, bulk layer manufacturing The method comprises the steps of: coating the first-polyimine i-amine or its precursor on the surface of the first conductor, and then sticking the money Applying a resin thereon, and then performing a mercaptochemical reaction under a high temperature atmosphere to prepare a first layer comprising a first conductor, a first polysorbent resin layer and an adhesive layer; Further, a second polyamidamine resin or a precursor thereof is coated on one surface of the second conductor, followed by drying, and then an adhesive resin is applied thereon, followed by drying, and imidization in a high temperature atmosphere. Reacting to separately prepare a second layer comprising a second conductor, a second polyimide resin layer and an adhesive resin-containing layer; and pressing the first layer and the second layer at a high temperature and a high pressure The adhesive resin-containing layer of the first layer is bonded to the adhesive resin-containing layer of the second layer. A flexible double-sided 12 200806100 conductor laminate provided by the above preferred embodiment of the present invention In the manufacturing method, a layer of the resin may be added to the layer, and then the layer is dried, to prepare a third resin layer, and the first layer and the second layer are plated so that the pressure layer and the high pressure layer can be pressed against each other. Facing the joint step = brother #脂层和转性树脂包雔In another preferred embodiment, the present invention provides a method for producing a flexible and slab-like laminate comprising: coating a poly-poly resin or a precursor thereof: after: two bodies = cloth thereon And then drying, and preparing a first layer comprising a first conductor, a poly-myramine tree layer and a third resin layer in a high temperature atmosphere; in addition, one of the second conductors 15 20 = coating The dimeric amine listens or rides on the fabric, the money is dried, and then the four-component resin is coated thereon, and then dried, and subjected to a sub-aminated reaction under a high temperature atmosphere to separately prepare the second conductor. a second polyacrylic resin layer and an adhesive resin comprising a second layer of the layer; and pressing the first layer and the second layer at a high temperature and a high pressure to make the third layer of the first layer The layers of the adhesive resin layer of the layer and the other layer are joined to each other. A method of manufacturing a flexible double-sided conductor laminate according to an embodiment of the present invention, wherein the high temperature is equal to or higher than a glass transition temperature of the adhesive resin-containing layer, and the pressure range of the high pressure is i to 200 kgf/cm 2 Or for work up to 200 kgf/cm 〇 In the prior art, since the thermoplastic polytheneamine must be connected to the conductor, the advantages of the thermosetting polyamidamide cannot be fully utilized, and the disadvantages of the thermoplastic polytheneamine such as hygroscopicity High, low heat resistance and high thermal expansion are all obvious. 200806100 is very obvious. However, the flexible double-sided conductor laminate 2 provided by the present invention can avoid the above problems and improve the reliability, heat resistance and moisture absorption of electronic components. v In addition, in the case where the peeling strength between the conductor on both sides of the laminate and the resin is equal to each other, when the flexible double-sided conductor laminate is applied, the laminate can be solved in the same two processes. The problem caused by the difference in peel strength between the conductor and the resin, that is, the process conditions for fabricating a fine circuit board, such as dry film photoresist bonding, exposure 'development, etching, and stripping processes One or more conditions that alternate between them; or one or more materials between dry film photoresist, ίο UV source, developer, etchant, stripper, etc., for different applications, and under the same conditions When a fine circuit is formed, the possibility of causing a defect such as circuit delamination is also increased, and the formation of a high integrated circuit is limited due to a change in the width of a small-sized circuit. 15 [Simple description of the drawings] The figure is a cross-sectional view of the consistent embodiment of the present invention, showing a releasable double-sided conductor laminate. 2 is a cross-sectional view showing a second embodiment of the present invention, showing a double-sided conductor laminate. The second drawing is a cross-sectional view showing a flexible double-sided conductor laminate according to a third embodiment of the present invention. ' ^ The fourth figure is a scraped view of a flexible double-sided conductor laminate. The fifth drawing is an enlarged photograph of a circuit board made of the flexible composite double-sided conductor laminate of Example 1 made of 200806100. The sixth drawing is an enlarged photograph of a circuit board obtained by using the flexible double-sided conductor laminate of Comparative Example 3. ' 5 [main component symbol f tiger description] '1 first copper layer 1, second copper layer 2' low thermal expansion polyimine layer • 3 first thermoplastic polyimide layer 3' second thermoplastic poly The melamine layer 10 Η the first conductor 11, the second conductor 12, the first polyimide resin layer 12, the second polyimide resin layer 13, 13, the thermoplastic polyimide resin layer (adhesive resin) (20) The third resin layer 曰 15 [Embodiment] φ The detailed description of the present invention is as follows: The structure of the flexible double-sided conductor laminate of the present invention is as shown in the first to third figures. In the structure of the first figure, the first conductor (11), the first polyimide resin layer (12), the thermoplastic polyimide resin layer (13, 13,), and the second 20 polythene are laminated. The amine resin layer (12,) and the second conductor (11,); in the structure of the second figure, the first conductor (11), the first polyimide resin layer (12), and the third resin layer ( 20) a thermoplastic polyiminamide resin layer (13,), a second polyamidamine resin layer (12') and a second conductor (1); and in the structure of the third figure, the first conductor is laminated (11), first polyamidamine resin layer (12), thermoplastic polyimide 15 200806100 resin layer (13), third resin layer (20), thermoplastic polyimide resin layer (13') a second polyamidamine resin layer (12,) and a second conductor (11,). The structures shown in the first to third drawings are for showing the flexible double-sided conductor laminate of the present invention, but the present invention is not limited thereto. 5 In the first to third figures, in addition to the first conductor, the second conductor, the first polyamidosin resin layer and the second polyamidamide resin layer, the thermoplastic polyacrylamide resin layer is separately provided, Or a combination of a thermoplastic polyacrylamide resin layer and a third resin layer is defined as "a thermoplastic polyimide-containing resin-containing layer comprising at least one layer of a thermoplastic polyimide resin layer". Specifically, in the present invention, the thermoplastic polyimide resin layer may be replaced by a layer of an adhesive resin, that is, an epoxy resin or a phenol resin, and the definition is "at least one layer of an adhesive resin-containing layer". The flexible double-sided conductor laminate of the present invention, wherein the polyamidene resin is a general resin having a sulfonium ring structure, comprising: a polyether sulfonamide, a 15 polyamidimide, and a polyester amide. Amidoxime and the like. In the present invention, conventional or novel polyamidamide resins can be used as long as the technical framework of the present invention can be achieved. For example, in U.S. Patent Nos. 6,184,333, 5,773,509, 4,847,349, and 3,847,867, and Japan’s unexamined public notices Showa 63.84, ΐ88 and 2nd Korea, Republic of Korea, No. 5 Polyalkylamine resin disclosed in -2004_0084029. Road = first conductor (11) and the second conductor (11,), and the first polyimide resin layer (12) and the second polyimide resin layer (12) adjacent thereto ) 'The coefficients of thermal expansion are the same or different from each other. Specifically, it is preferable that 16 200806100 has a difference in thermal expansion coefficient of 10 ppm/QC or less. For example, if the copper and smelting layer having a thermal expansion coefficient of 18 ppm/C is a conductor, the thermal acceptance coefficient of the polyimide layer adjacent to the copper platy layer preferably ranges from $ to 28 PPm. /°C. If the difference in thermal expansion coefficient between the conductor and the adjacent polyimide resin layer is greater than 10 ppm/t, the laminate may be severely bent, and it is difficult to avoid the interfacial tension between the conductor and the resin layer, thereby causing dimensional stability. Reduced problems. The above polyamidamide resin may be a thermosetting resin, and its glass transition temperature cannot be measured after the hardening reaction. The above-mentioned thermosetting resin 10 can be obtained by a polymerization reaction from a monomer (hereinafter referred to as "hard monomer") containing a dianhydride and a diamine which are present in a molecular chain without a flexible chain. "Specifically, the so-called rigid single system can be obtained by the presence of -〇_, -CO·, -NHCO, -S-, -S02-, -C0-0- between the aromatic rings in the monomer structure, a chain of 15-CH2·, or -C(CH3)2·, that is, a chain having no flexible chain. For example, the dianhydride includes: 3, 3, 4, 4, _ biphenyl tetra Carboxylic acid dianhydride (3,3'4,4'-biphenyltetracarboxylic acid dianhydride, BPDA), pyromellitic acid dianhydride (PMDA), etc.; and diamines including p-phenylenediamine (p-phenylenediamine, PPDA), m-phenylenediamine (MPDA), etc. In addition, the polyamidene resin may include a monomer capable of achieving a low thermal expansion coefficient and having a flexible chain in its molecular structure (hereinafter referred to as It is a "soft monomer"). Preferably, the molar ratio of the soft monomer to the rigid monomer is from 1 to 8 to 2, more preferably from 5 to 9.5 to 5 to 5. 17 200806100 § When the molar ratio of the monomer to the hard monomer exceeds 8 to 2, the polytheneamine resin containing an excessive amount of soft monomer will lower the glass transition temperature and increase the coefficient of thermal expansion. < Further, the first polyamidamine resin layer and the second polyamidamide resin may be one or more polyamidene resin mixtures. In the example of the polyamidene resin mixture, if the thermal expansion coefficient of the polyimide resin mixture satisfies the above preferred conditions, the thermal expansion coefficient or the glass transition temperature of the respective constituent components is not limited at all. For example, BpDA_ppDA polyamidoamine resin with a coefficient of thermal expansion of 8 ppm/〇c can be used, and BpDA_4,4,-diamine^diphenyl ether with a coefficient of thermal expansion of 32 ppm/QC (4,4) '-diamin〇diphenylether, DDE) Polyamidamine tree 曰 曰 以 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 The melamine resin layer may or may not have the same composition. In addition, the polyamidamide resin contained in the first polyimino acid resin layer and the second polyamidamine resin layer is preferably 1% lower and more hygroscopic. Sex is superior to most common thermoplastic polyalkylene amine resins. In the case of the 兮Ϊ f 明 ' 在 在 在 层叠 层叠 层叠 层叠 层叠 层叠 层叠 层叠 层叠 层叠 层叠 层叠 层叠 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在 在The tree T/l and the sub-layer are used as an adhesive in the adhesive adhesive layer. I can be used as an alternative heat to form a sticky resin reed of the Wei-Lion layer, which can be used as an adhesive ring.曰18 200806100 In the case where the adhesive resin layer contains a thermoplastic polyimide resin layer, in order to achieve the aforementioned function, the thermoplastic plastic polyimide resin has the best glass transition temperature after the hydralization reaction. It is 35 〇 Qc or lower. In the preferred embodiment, when the glass transition temperature ranges from 120 〇 c to 35 〇〇 c, 5 can prevent the heat resistance of the product from being lowered, and the manufacturing process of the product can also be avoided. Or deformation during the post-treatment process due to heat generated by mechanical friction. Therefore, it is possible to avoid a decrease in production efficiency or an unnecessary increase in manufacturing cost. The thermoplastic polyamido amide resin can be passed through a dianhydride and a diamine. The polymerization is reversed to 10; as for the soft monomer, It contains _〇_, -NHCO-, each, -S02-, -CO-0-, -CH2-, or -C(CH3)2-chain between its aromatic rings. For example, dianhydride includes There are: 4,4,-oxydiphthalic acid dianhydride (ODPA), 3,3,,4,4,-diphenylpyrene and tetrabasic acid (3,3, 4,4'-benzophenonetetracarboxylic acid 15 dianhydride, BTDA), bisphenol A dianhydride (BPADA), 3,3',4,4'·diphenyl sulfone tetracarboxylic dianhydride (3,3' , 4,4,-diphenylsulfbnetetracarboxylic acid dianhydride, DPSDA), ethyleneglycol bis (anhydrous-trimellitate (TMEG), etc.; and diamine including 4,4'· 2〇 Diamine diphenyl ether (DDE), 4,4'-diaminobenzoic acid aniline (4,4'-(^111^1(^6112&11 also (^, 0 into 6 VIII), 1,3-bis(3-aminophenoxy)benzene (1,3-bis(3-aminophenoxy) benzene, APB), 4,4, (1,3-phenylene) Isopropyl)diphenylamine (4,4'-(l,3-phenylenediisopropylidene)dianiline,PDPDA), 2,2- 200806100 bis[-4_(4-amine Phenoxy)phenyl]propane (2,2-bis[_4_(4-aminophenoxy)phenyl] propane, BAPP), bis[4-(3-aminophenoxy)phenyl] hard (bis[4_( 3-aminophenoxy)phenyl]sulfone, BAPSM), 3,3,-diamine 5 diphenyl hard (3,3'-(^11^11〇(^1^11>^111£〇1^,008), etc. In addition, the thermoplastic polytheneamine resin is a technical object capable of achieving a thermoplastic polyamic acid amine resin, and may include a hard monomer having a molecular structure, and a soft monomer and a hard monomer. The ear ratio range is 1 to 2 to 8. In particular, in the preferred embodiment of the invention, a molar ratio of 10 to 0 to 5 to 5 is preferred to achieve the glass transition temperature and purpose of the present invention. Further, the thermoplastic polyamidamide resin may be a mixture of one or more polyamidamide resins. In the case where the thermoplastic polyimide resin layer is a thermoplastic polytheneamine resin mixture, it comprises one or more kinds of trees, and the glass transition temperature thereof satisfies the above after the imidization reaction. Preferably, there is no limitation on the glass transition temperature of the added polyamido resin. For example, a mixture comprising BpDA_pDA poly(decylamine) cannot be measured for its glass transition temperature after amidoximation reaction. Degree, and after the subsynthesis reaction, BPADA/BTDA-DDE polyamidamine resin having a glass transition temperature of 2 〇 232 ° C, the above two resins are mixed at a molar ratio of 5 to 5, It can be used as a thermoplastic polyacrylamide resin. A flexible double-sided conductor laminate of the present invention having a configuration as shown in the first to third embodiments, wherein the thickness of the first polyimide layer (T1) and the second polymer of the second layer The thickness (T2) of the amine resin layer may be the same. If the thickness is different, it needs to be adjusted to satisfy the following Equation 1 to prevent bending of the product. Equation 1 [〇·δ X (Ε2 X Τ2)] <[Ε1 X Τ1] <[1·2 X (Ε2 X Τ2)] 5 wherein E1 is the coefficient of expansion of the first polyamidamine resin layer (ppm/°C); “, E2 is the second polyamidene resin The coefficient of thermal expansion of the layer (ppm/〇c); T1 is the thickness (_) of the first polyimide layer; and T2 is the thickness (μιη) of the second polyimide layer. A layer of adhesive resin consists of the thickness of the layer (Τ3), which satisfies the following Equation 2, and can be 〇.5 μπι 〇 Equation 2 [0.01 X (ΤΙ +Τ2)] <Τ3 <[3·0 x(Tl + D2)], and 〇.5 <Τ3 wherein Τ1 is the thickness (μιη) of the first polyamidamine resin layer; 15 Τ2 is the thickness (μιη) of the second polyamidamine resin layer; and butyl 3 is the adhesive resin-containing layer Thickness (_). Here, 'Τ3 can be converted to the thickness of the thermoplastic poly-mineral resin layer (13, 13') in the first figure; and in the second figure, Τ3 can be interpreted as the third resin layer (20) and the The thermoplastic polyimide layer (13) and in the third figure, Τ3 can be interpreted as the thickness of the thermoplastic polysulfide layer (13, 13,) and the third resin layer (20). sum. At least one layer of the adhesive resin contains the layer Τ3, and if it is within the above range, it has sufficient adhesion when the pressure-bonding process is performed under high temperature/high pressure, and the quality and dimensional stability can be effectively improved. 21 200806100 In addition, the flexible double-sided conductor laminate of the present invention, the at least one adhesive resin-containing layer shown in the second or third embodiment is a multilayer structure comprising a single layer or a double layer of thermoplastic polymer. a melamine resin layer, and the third resin layer. Specifically, the two-layer structure shown in the second figure is a single layer of a 5 thermoplastic polyimide resin layer (13), and the third resin layer (20). The three-layer structure shown in Fig. 3 is such that the third resin layer (2〇) is interposed between the thermoplastic polyimide resin layers (13, 13'). As shown in the third figure, in the example of r at least one layer of the adhesive resin containing layer, it has a symmetrical structure which can be formed by the following order: thermoplastic polyimide resin ίο layer-third resin The layer is a thermoplastic polyimide resin layer, and the thickness of the two layers of the thermoplastic polyimide resin layer described above may be the same. If the adhesive resin comprises a three-layer structure, but an asymmetric structure (meaning that the thicknesses of the layers are different from each other), first calculate the average thermal expansion coefficient of the thermoplastic polyimide layer, and then The coefficient of thermal expansion is adjusted to 15 degrees thick by each layer to prevent bending. Further, as shown in the second figure, in the example in which the "at least one adhesive resin-containing layer" has a two-layer structure, the first polyimide resin layer (12) and the heat are averaged based on the third resin layer. After the thermal expansion coefficient of the plasticized polyimide resin layer (13,), the thickness of each layer is adjusted according to the calculated value to prevent the occurrence of bending. Here, the third resin may be the same as or different from the first polyamidamine resin layer and the second polyamidamine resin layer, and may or may not be a thermoplastic resin. Examples of the third resin include polysulfone (psF), epoxy resin, phenol resin, and the like. In the present invention, the resin layers connected to the conductors on the right side are each a polyimide resin layer, and 22 200806100 can attain the object of the present invention, and thus the third resin is not limited. The flexible double-sided conductor laminate of the present invention, wherein the polyimide layer has a total thickness of 35 μm or less. In addition, in order to improve product quality, the polyimide resin layer may contain 5 known additives such as a hardener, a silane coupling agent, an epoxy (ep0xy) compound, and a property-imparting agent. Pool agent), antioxidants, anti-aging agents, etc. In addition, a non-conducting inorganic material may be added to control the thermal expansion coefficient, strength, ductility, and adhesion of the resin layer, wherein the inorganic material may be: silica, montmorillonite, Alumina, clay (ciay), carbon nanofibers. In the present invention, the conductor is not limited to copper (c〇pper) or aluminum', and may also include metals which are well known as conductors, including: gold, silver, nickel ( Nickel), zinc, iron, cobalt, lead, tantalum, titanium, zirconium, and alloys of the foregoing, or oxides of the foregoing metals , such as Indium tin oxide (ITO). According to the embodiment relating to the method of manufacturing the flexible double-sided conductor laminate of the present invention, a conventional press-forming process and a deposition process can be utilized. Since the conductor needs to be connected to the thermoplastic poly] polyamide resin layer due to the press-bonding process, the press-bonding process is not separately used in the present invention. A polyacrylamide film composed of the above polyimide resin layer is first prepared by a deposition process. That is, the above-mentioned thermoplastic polyiminamide resin layer is laminated on one side of a general polyimide film, and then a general polyamidamine film is pressed thereon to prepare a polyimide. 200806100 film, then in the ship (four) _ double hoarding The washing process can include the following steps: ▲ its precursor is coated on one of the first conductor, ami amide resin or 5 15 20 resin coated on it Upper, then dry, ;^,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, One of the second conductors is coated with a bismuth amide resin, and then dried and then subjected to an acid amination reaction to separately prepare a second dimerized resin layer. And the first sound squid — — 及 及 及 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏 黏The layer_adhesive resin layer 13 of the second layer is joined to each other. The flexible double-sided conductor laminate obtained by the above method may have a structure as shown in the first drawing. For example, one of the first layer or the second layer may further comprise a third resin layer by applying a so-called fat precursor to the adhesive resin-containing layer, followed by drying. In this example, the pressing of the first layer and the second layer is performed under high temperature/high pressure conditions, so that the second resin layer and the adhesive resin containing layer are bonded to each other to obtain a Flexible double-sided conductor laminate. The flexible double-sided conductor laminate obtained by the above method may have a structure as shown in the third drawing. Another example of the flexible double-sided conductor laminate produced by the casting method in the present invention may include the steps of: coating the first polyimide resin or its precursor on one side of the first conductor, and then Drying, applying a third resin or its 24 200806100 precursor thereon, followed by drying, and under a high temperature atmosphere, amidoximation reaction to prepare the first conductor, the first poly resin and the first a first-layer plate of a three-resin layer; coating a second poly-branched amine tree = its river flooding on the surface of the second conductor, followed by drying, and applying a 5-adhesive resin or its precursor to it And then drying, and under a temperature atmosphere, performing a mercaptochemical reaction to separately prepare the third conductor comprising the second conductor, the second polyimide resin, and the adhesive resin layer: And pressing the first layer sheet and the second layer sheet under high temperature/high pressure conditions to make the third resin layer of the first layer sheet and the second layer sheet adhere to the resin-containing resin layer Engage each other. The flexible double-sided conductor laminate obtained by the above method may have a structure as shown in the second drawing. Further, in the method for manufacturing the flexible double-sided conductor layer according to the present invention, in the +, the adhesion by the high temperature/high pressure bonding can be performed by using the surface of the press or by using a crimping process (roll to roll) ) The line is glued. The process temperature is 15 or higher than the glass transition temperature (Tg) of the adhesive resin, specifically, the temperature is in the range of 180 ° C to 400 ° C, more preferably 280 ° C to 36 Torr. Hey. Further, in order to uniformly achieve the adhesion of the adhesive resin by using heat, the pressure ranges from 1 kgf/cm2 to 200 kgf/cm2, and in particular, a pressure range of from 3 〇kgf/cm2 to 80 kgf/cm2 is available. In Example 20 in which the crimping process was used for press-fitting, the line adhesion permeable pressure range was 〇·1 to 20 〇 kgf/cm 2 and the rate range was 0.1 to 30 m/min. Recently, in order to increase the production volume, various types of pressurization using the crimping process have been developed, and the Japanese Unexamined Patent Publication No. 2005-199615 can be referred to. If the above conditions of high temperature and high pressure are not met, it is impossible to obtain a layer with sufficient adhesion and appearance. According to a preferred embodiment of the present invention, the flexible double-sided conductor laminate, wherein the peel strength between the first conductor and the first polyimide resin layer is the second conductor and the second polyimide The peel strength between the resin layers is from 0.565 to h6 times. If the peel strength between the conductor and the resin on both sides of the laminate exceeds the above range, the conditions for the optimum post-process of the double-sided may vary, and the minimum circuit width that can be formed may also be reported. Although there is no limitation in the method for satisfying the range of the peeling tension difference, the control of the pressing method still has the best example. Specifically, in the foregoing process, the first conductive system is coupled to the first polyamidosin resin layer and the adhesive resin containing layer by a casting method, and the second conductive system is coupled to the second polymerization (4) The linoleic layer and the adhesive resin-containing layer, and the adhesive resin-containing layer of the first conductor and the adhesive resin-containing layer of the first conductor are connected to each other by a press-bonding process. Thus, when the layers are connected, the two conductors can be joined by the same heat treatment process, and they can have the same physical properties. Therefore, the peel strength between the conductor and the resin on both sides of the laminate is 20 degrees. y The flexible double-sided conductor laminate is exemplified by the following examples, but the invention is not limited thereto: "analytical method" Thermal expansion coefficient · Thermomechanical analyzer (Model 〇働祖, D, 26 200806100 The heating rate is l〇°C per second, and the average thermal expansion coefficient is measured from 1〇〇 to 200oC. Glass transfer temperature: differential thermal scanning analyzer (Model Exstar6〇〇〇DSC6100, Seiko), heating rate is per minute Iq〇c. 5 Moisture absorption rate: Immerse the double-sided conductor layer of 1〇X 10 cm2 in a 13% nitric acid solution to thoroughly etch the conductor and measure the weight of the resin layer after etching. The layer of Μ月曰 is fully impregnated in pure water. After standing for 24 hours, it is removed from the water and dried, and then the weight is measured, and the hygroscopicity is defined by calculating the added weight. Film bending · 10 X 10 cm2 on the flat surface. Edge of the sample. A peeling strength 1: Using a universal testing machine (Model Instron 3300 series) 1 Measure the peel strength between the conductor and the resin layer 180 degrees. Here, First conductor and first poly The peel strength between the amine resin layers was named as peel strength of 15 degrees 1β1; and the peel strength between the second conductor and the second polyimide resin layer was named peel strength 1-2. Peel strength 2: use universal test Machine (Model Instr〇n 3300 Series) 1 Measure the peel strength between the adhesive layer and the adhesive surface at 18 degrees. Dimensional change after etching · Measurement 1〇x 10cm2 double-sided conductor layer coating 20 cloth direction Dimensions and dimensions in the direction of 9 degrees to the direction of coating; the double-sided conductor laminate to be 10 X 10 cm2 is immersed in a 13% nitric acid solution, so that the conductor is completely etched, as before etching At the measurement points, the size of the coating direction of the remaining resin layer after etching and the dimension in the direction of the coating direction of 90 degrees were measured, and the change of the size 27 200806100 before and after the etching was measured and averaged. (Using the instrument: EG3020M, Fiat Precision Measuring Instrument Co., Ltd.). The surface resistance of the mountain is not wetted: the 5 x 5em2 double-sided conductor laminate is immersed in a 13% acid solution, resulting in complete conductor On the ground side, the instrument will be engraved The remaining 5 resin layer was dried at 100 ° C for 30 minutes, and the surface resistance of the double-sided conductor layer was measured, and then the laminate was placed at a humidity of 1%, a temperature of 121 C, and an atmospheric pressure of 2 atm. In the atmosphere for 2 hours (using the instrument: PC-422R8D 'Japan Hirayama), and then drying, the surface resistance of both sides of the laminate was measured, and the stability of the electronic signal due to hygroscopicity was evaluated by 10 degrees. The higher the resistance, the greater the stability and reliability of electronic components. (Instruments for measuring surface resistance: high current source measurement unit, model M〇dd 238, Keithley Instruments). "Synthesis of Polyimine Resin" 15 Synthesis Example 1 In order to obtain a polytheneamine resin having low thermal expansion, 28.1 g of p-phenylenediamine was placed at a temperature of 4 ° C and 2 L of nitrogen was present. In the reactor, 800 g of dimercaptoacetamide (DMAc) solvent was added, and the mixture was stirred for 30 minutes to completely dissolve it, when 76·5 g of 3,3,4,4,4-biphenyltetracarboxylate The acid 2 phthalic anhydride (BPDA) was added in 1 aliquots and then subjected to a polymerization reaction for 5 hours to obtain a polyamic acid. The polyamic acid obtained by the polymerization was applied onto a glass substrate, and dried at 300 Å. The azide was dried in a vacuum oven at €:, after which the heat % factor was measured. The results are shown in Table 1. 28 200806100 Synthesis Examples 2 to 9 Polyamic acid was prepared in the same manner as in Synthesis Example 1, except that the composition and amount of the dianhydride and the diamine were changed in accordance with the equivalent ratio shown in Table 1, and the poly-aracine was carried out. After the amidoximation reaction, the coefficient of thermal expansion and the glass transition temperature were measured. The results are shown in Table 1, in which the glass transition temperatures of Synthesis Examples 1 and 3 were difficult to define, and the glass transition temperature of Synthesis Example 2 was estimated with low accuracy. [Table 1] —-—A composition of 5 parts (equivalent) Softness: Hard monomer Mohs ratio hygroscopicity (%) Thermal expansion coefficient (ppm/°C) Tg Diamine dianhydride 1 PPDA (50) BPDA ( 50) 0 : 10 0.7 8 vw 2 PPDA(35)? DDE(15) BPDA(50) 1.5 : 8.5 0·7 13 360* 3 PPDA(40) DDE(10) BPDA(IO) BTDA(40) 5: 5 0.8 18 - 4 PPDA(20) DDS(30) BTDA(30) PMDA(20) 6:4 1.0 32 288 5 PPDA(IO) DDE(40) BTDA(50) 9:1 2.2 35 255 6 DDE(50 ) BTDA(50) 10 : 〇2.1 36 291 7 BAPS(50) BTDA(50) 10 : 〇2.7 40 215 8 BAPP(50) BTDA(40) BPDA(IO) 9:1 2.6 61 192 9 — BAPSM(50 ) BTDA (25) DPSDA (25) 10 ·· 0 2.9 57 172 "Manufacture of flexible double-sided conductor laminate" Example 1 The precursors of Examples 1 and 4 were mixed at a weight ratio of 5 ··5, and Hot expansion 29 200806100 eoati^^T! C poly-awakening amine resin precursor to a coating rod (bar on a rough surface with a thermal expansion coefficient of 17 8 ppm / 〇c and a thickness of Μ哗, followed by heating air drying Machine, in the 15th generation minutes. The average thickness of the 'dry rider' is 12.4 _. Applying 5% of the 6th heat-polymerizable polyamine-sphincamine precursor to the dry-collecting surface The table of Fortune (4), after the drying of the city 'is! It is dried for 3 minutes. Thus, the flat layer of the dried resin layer = thickness 16,7μηη. The single-sided conductor laminate obtained in the nitrogen drying phase of 3 (10). , the imidization and hardening were carried out for 2 hours to obtain a single-sided conductor laminate (a). - The thickness of the resin layer was made thinner due to the reduction of residual solvent and moisture, and the cross section was observed by an electron microscope. The thickness of the melamine resin layer is 10·2 μm, and the thickness of the thermoplastic polyimide resin layer is 2.6 μm. The two single-sided conductor laminates (8) are treated with a high temperature/high pressure laminator. Adhesive at 350 〇C and 50 kgf/cm2 for 10 minutes, and the thermoplastic polyimide layer of the two-conductor laminate is bonded to each other to obtain a flexible double-sided conductor laminate (please refer to the first figure) EMBODIMENT 2 A single-sided conductor laminate was produced in the same manner as in Example 1, except that the poly-branched amine resin of Synthesis Example 2 was used. Two single-sided conductor laminates (9) are pressed together to produce a flexible double-sided conductor laminate. Example 3 A single-sided conductor laminate (c) was produced by the same method as in Example 1, except that the polyimide resin of Synthesis Example 3 was used. Two single-sided conductor layers were pressed together to produce a flexible double-sided conductor laminate. (9) Comparative Example 1 A flexible double-sided conductor substrate was produced by the same method as in Example 1, except that the polyamic acid of Synthesis Example 2 was applied instead of the thermoplastic poly-feline compound of Synthesis Example 6. . However, after pressing, the adhesion is low. ° Li Ming

實施例4 將合成例4之聚亞醯胺塗佈於熱膨脹係數為幻$Example 4 The polyiminamide of Synthesis Example 4 was coated on a thermal expansion coefficient of $

Ppm/°C,且厚度為35 μιη之銘箱層表面,並使用熱風炉 機,在15〇。0:下乾燥30分鐘。此時,乾燥樹脂層之平均厂: 度為12.2 μιη。 予 將合成例8之熱可塑性聚亞醯胺樹脂前驅物,利用汾 佈棒塗佈於乾燥之聚亞醯胺樹脂前驅物的表面上,之ς 15用熱風乾燥機,在15〇°C下乾燥30分鐘。此時,乾燥樹浐 ^平均厚度為16·2 μιη。製得之單面導體層板在^ 氮氣烘箱中,進行2小時的亞醯胺化與硬化,以製得單面 =體層板(d)。此時,由於殘存溶劑與水分之減少,^樹 月曰層的厚度更薄。利用電子顯微鏡觀察其切面,低埶勝 20性樹脂層之厚度為1(U㈣,以及熱可塑性樹脂層之&度為 2.3 μιη。 又… 。將兩個單面導體層板(d)利用高溫/高壓過膠機,在 35〇°C與50 kgf/cm2T 10分鐘予以黏著,使該二導體層板 之熱可塑性樹脂表面相互接合,以製得可撓性雙面導^層 31 200806100 板。 實施例5 利用與實施例2相同的方法來製 除了聚亞醯胺棺t脂層的厚度 肴早面―體層板(b)> 將此單面導體層板(b)與實施例1之單面導 肢層板⑻,在350〇c與50kgf/c 荽 該二導體層板# G4予以黏者,使 性雙面導體層i 表面相互接合,以製得可換 實施例6 盘4=二高壓過膠機’將實施例1之單面導體層板⑷ 與⑷列2之早面導體層板⑻,在37〇〇c與4〇 kgfW下 10分鐘予以黏著,使該二導體層板之熱可塑性樹脂表面相 互接合,以製得可撓性雙面導體層板。 實施例7 15 20 利用與貝苑例1相同的方法來製備可撓性雙面導體層 板,除了使用合成例9之熱可塑性聚亞隨胺樹脂前驅物作 為熱可塑性聚亞醯胺樹脂前驅物外。 實施例8至10 藉由壓合貫施例1之單面導體層板(a)與實施例2之單 面導體層板0>),使該二導體層板之熱可塑性聚亞醯胺樹脂 層相互接合’以製得可撓性雙面導體層板,除了該單面導 體層板(a)之聚亞醯胺層(第一聚亞醯胺層)的厚度,與該 單面導體層板0>)之聚亞醯胺層(第二聚亞醯胺層)之厚度, 依下表二所示而改變外。 32 200806100 實施例11 將合成例3之聚亞醯胺樹脂前驅物,利用塗佈棒塗佈 在熱膨服係數為17.8PPm/°C,且厚度為18μιη之第一銅荡 層的粗糙表面上,之後使用熱風乾燥機,在15〇〇c下乾燥 30分鐘。此外,將合成例7之熱可塑性聚亞_樹脂= 物,利用塗佈棒塗佈於乾燥之聚魏胺樹脂前驅物的表面 上’之後使用熱風乾燥機,在150°C下乾燥3〇分鐘。另外, 再將合成例2之聚亞醯胺樹脂前驅物,利用塗佈棒塗佈於 乾燥之聚亞__前驅㈣表面上焊 機:在航下乾燥30分鐘。製得之單面導體層板在 的虱氣烘箱中,進行2小時的亞醯胺化與硬化,以 面導體層板(f)。 早 、另外將3成例3之聚亞酿胺樹脂前驅物,利用塗佈 15 棒塗2在熱膨脹係數為Π·8 ppm/QC,且厚度為Μ 之第 二銅羯層的粗糙表面上,之後使用熱風乾燥機,在15代 下乾燥30分鐘。 此外’將合成例5之熱可塑性聚亞酿胺樹脂前驅物, 利用k佈棒塗佈於乾燥之聚亞醯胺樹脂前驅物的表面上, 之後使用熱風乾燥機,在150°C下乾燥30分鐘。製得 -=體層板在300〇C的氮氣供箱中,進行2小時的亞_ 化與硬化,以製得單面導體層板(g)。 使用高溫/高壓過膠機,將單面導體層板(f)與單面導體 層板(=)’在380°C與50 kgf/cm2下20分鐘予以黏著,使得 該二導體層板之熱可塑性樹脂表面相互接合,以製得可撓 33 200806100 性雙面導體層板 。自該第一銅箔層 等樹脂層的厚度依 以及10·2 μπι。(請 使用電子顯微鏡觀察該產品之切面 之樹月旨層至該第二銅搭層之樹脂層,該 序為 9.8 μιη、3.5 μηι、Q μηι、μηι > 5參照第三圖所示)、 實施例12 將合成例3之聚亞酸胺樹 在熱膨脹係數為π.8ρρη^,_棒塗佈 μ ^ l μ 予度為βμιη之弟一銅箔 層的粗,之後制錢 30分鐘。此外,腺人士、m 何仕DU L下乾燥 錄泠佑⑽ 聚亞醯胺樹脂前驅物,用塗 佈^佈於餘之聚魏胺樹脂前 ,乾燥機’在峨下乾燥30分鐘。製得之單= frif的氮氣烘箱中,進行2小時的魏胺化與硬 化,以J得單面導體層板(h)。 15 20 /ί用,/高壓過膠機,將單轉 树月曰層,與糟由變化厚度所製得之實施例9之單面導靜 板(_熱可塑性樹脂層’在3800c與50 kgf/cm2下20分^ 予以黏著’使其相互接合,以製得可撓性雙面導體層板。 利用電子顯微鏡觀察該產品之切面。自該第-銅箱層 之樹月a層至4第—銅韻之樹脂層,該等樹脂層的厚度依 序為 16.2 jum、7 8 uni、4 s iim 二圖所示抑4.5帅、以及25.4μιη。(請參見第 實施例13 將口成例2之|亞酸胺樹脂前驅物,利用塗佈棒塗佈 34 200806100 在熱膨脹係數為17.8PpmrC,且厚度為18叫之第—鋼^ 層的粗糙表面上,之後使用熱風乾燥機,在150°C下乾2 i〇分鐘。如此’乾燥樹脂層之平均厚度為12.5哗。製^ 早面導體層板在3GG°C隨氣烘箱巾,進行2小時的亞啊 胺化與硬化,以製得單面導體層板⑴。如此,由於殘存^ 劑與水分之減少,使得樹脂層的厚度更薄,_電子顯微 鏡觀察其切面。所得樹脂層的厚度為1〇1 μιη。 、几 10 15 20 將含有1〇〇重量份之環氧樹脂(YD(m,國道化學株 式=社)、5重罝份之4,4’-二胺基二苯颯(DDS)、以及細 重量份,T_(MEK)的環氧_餘著性樹脂混合物,塗 佈於該單面導體層材板(i)之聚涵胺樹脂層,之後使用^ 賊燥機,在12G°C下乾燥1G分鐘,以製得單面導體層板 ω。如此,乾祕氧熱轉性樹紅厚麟5〇帅, titt些微黏著性的半硬化狀態,且其玻璃轉移溫度 .f至、15G°C。使用高溫/高壓過膠機,將單面導 二反(1)與早面導體層板® ’在25〇°C與10 kgf/cm2下20 ^^黏著’使得其樹脂層相互接合,以製得可撓性雙 面體層板。 實施例14 =用與實_13相_方法來製造可撓性雙面導體層 二’:、:=用含有100重量份之環氧樹脂、20重量份之酚 ^(DDS^ 51 } ' 5 * ^ 以及200重量份之丁酮(MEK)的黏著性樹脂混 合物,取代該環氧樹脂混合物外。 35 200806100 比較例2 =例2是以實施例1所製得之單面導體層板(a)。 比較例3 含第一導體、熱可塑性聚爾樹脂層、 構成(請參照第四圖所示)的羽爾叮植」及弟一¥體 將人m d 的白用可換性雙面導體層板, 涂:才偏可塑性聚亞酿胺樹脂前驅物,利用塗佈棒 二2 ^脹係數為17.8ppm/〇c,且厚度為18哗之銅落 層的、粗,表面上,之後使用熱風乾燥機,在i5〇〇c下乾燥 )3哀0分!里。乾燥樹脂層之平均厚度為4 3师。將合成例2之 ==1T區物’利用塗佈棒塗佈於乾燥之聚亞酿胺 乾燥3〇分鐘。如此,乾之在1就下 使I風乾城,在150〇c τ_ 3() 平均厚度為27·7 μιη。制尸夕二、^ θ 也奋树月日層之 烘箱中,進杆/Γ 士 早導體層板在3oo°c的氮氣 中進丁小纷的亞醯胺化與硬化,以製得單面導俨 層板⑷。鱗,由於_溶辦水分 20 體層連接之熱可塑性聚亞_旨層二= 庠A 3 2 _、1〇 ( 何力曰屢厚度依 將單面導體肩价Γ、以及3.0 μηι。利用高溫/高屢過膠機, 17.8 ppm/X^H塑性細旨表面,_膨脹係數為 八;度為18 μηι之銅箔層的粗糙表面,在 36 200806100 350QC與50 kgf/cm2下10分鐘予以黏著’使其相互接合, 以製得可撓性雙面導體層板。 參考例1 實施例1之單面導體層板⑻的製造’其中’亞趨胺化 5與硬化的條件更改為250。€:以及3小時’以製得單面導體 層板(1);之後利用高溫/高壓過膠機,將該單面導體層板⑴ 與單面導體層板(a)之樹脂層,在與實施例1相同的條件下 黏著,以製得可撓性雙面導體層板。 測量以實施例與比較例所製得的雙面導體層板之層 10厚、剝離強度、薄膜彎曲、及蝕刻後的尺寸穩定性。其結 果如下表2所不。 【表2】 第一 pi層 第二ΡΙ層Ppm/°C and a thickness of 35 μm on the surface of the box layer, using a hot air oven at 15 〇. 0: Dry for 30 minutes. At this time, the average factory density of the dried resin layer was 12.2 μm. The thermoplastic polybenzamine resin precursor of Synthesis Example 8 was applied to the surface of the dried polyamido resin precursor by means of a crepe bar, and the crucible 15 was dried at 15 ° C with a hot air dryer. Dry for 30 minutes. At this time, the dry tree 浐 has an average thickness of 16·2 μιη. The obtained single-sided conductor laminate was subjected to amidization and hardening for 2 hours in a nitrogen oven to obtain a single-sided = bulk layer (d). At this time, the thickness of the layer of the moon is thinner due to the decrease in residual solvent and moisture. The cut surface was observed by an electron microscope, and the thickness of the low-twist 20 resin layer was 1 (U (four), and the degree of the thermoplastic resin layer was 2.3 μm. Also... The two single-sided conductor laminates (d) were subjected to high temperature. / High-pressure glue machine, adhered at 50 ° C and 50 kgf / cm 2 T for 10 minutes, the surface of the thermoplastic resin of the two-conductor laminate was joined to each other to obtain a flexible double-sided conductive layer 31 200806100 board. Example 5 In the same manner as in Example 2, the thickness of the polyamidoquinone lipid layer was prepared. The early-face layer (b) was used. This single-sided conductor laminate (b) and Example 1 were used. The single-sided limb guide layer (8) is adhered at 350 〇c and 50 kgf/c 荽 the two-conductor laminate # G4, and the surfaces of the double-sided conductor layer i are joined to each other to obtain an interchangeable embodiment 6 2. The high-pressure glue machine's the single-sided conductor laminate (4) of Example 1 and the early conductor laminate (8) of column 2 of 2, were adhered at 37 ° C and 4 〇 kg fW for 10 minutes to make the two-conductor laminate The surfaces of the thermoplastic resin are bonded to each other to produce a flexible double-sided conductor laminate. Example 7 15 20 Using the same method as the case 1 A flexible double-sided conductor laminate was prepared by using the thermoplastic polyisanamide resin precursor of Synthesis Example 9 as a thermoplastic polyimide resin precursor. Examples 8 to 10 were carried out by compression. The single-sided conductor laminate (a) of Example 1 and the single-sided conductor laminate 0 gt of the second embodiment are such that the thermoplastic polyimide layer of the two conductor laminates are joined to each other to obtain a flexible double a surface conductor laminate, except for the thickness of the polyimide layer (first polyimide layer) of the single-sided conductor laminate (a), and the polyimide layer of the single-sided conductor laminate (0) The thickness of the second polyamidamine layer is changed as shown in Table 2 below. 32 200806100 Example 11 The polyimide precursor of Synthesis Example 3 was coated on a rough surface of a first copper layer having a thermal expansion coefficient of 17.8 ppm/° C. and a thickness of 18 μm by a coating bar. Then, using a hot air dryer, it was dried at 15 ° C for 30 minutes. Further, the thermoplastic poly] resin of Synthesis Example 7 was applied onto the surface of the dried polyweiramine resin precursor by a coating bar, and then dried at 150 ° C for 3 minutes using a hot air dryer. . Further, the polyimide precursor of Synthesis Example 2 was coated on a dry poly-Asian precursor (4) surface by a coating bar: it was dried for 30 minutes under air. The obtained single-sided conductor laminate was subjected to a berylation and hardening for 2 hours in a xenon oven to face conductor laminate (f). Early and additionally, 3% of the polyacrylamide resin precursor of Example 3 was coated with 15 rods on a rough surface of a second copper layer having a thermal expansion coefficient of Π·8 ppm/QC and a thickness of Μ. Thereafter, it was dried for 30 minutes in 15 passages using a hot air dryer. Further, 'the thermoplastic polyacrylamide resin precursor of Synthesis Example 5 was coated on the surface of the dried polyamido resin precursor with a k-bar, and then dried at 150 ° C using a hot air dryer. minute. The -= body layer plate was subjected to sub-ization and hardening in a nitrogen gas supply tank of 300 ° C for 2 hours to obtain a single-sided conductor laminate (g). Using a high temperature/high pressure glue machine, the single-sided conductor laminate (f) and the single-sided conductor laminate (=)' are adhered at 380 ° C and 50 kgf / cm 2 for 20 minutes, so that the heat of the two conductor laminate The plastic resin surfaces are joined to each other to produce a flexible 33 200806100 double-sided conductor laminate. The thickness of the resin layer such as the first copper foil layer is 10 2 μm. (Please use an electron microscope to observe the resin layer of the cut surface of the product to the resin layer of the second copper layer, the order is 9.8 μηη, 3.5 μηι, Q μηι, μηι > 5 refer to the third figure) Example 12 The polyamidite tree of Synthesis Example 3 was coated with a thermal expansion coefficient of π.8ρρη^, and the _ rod was coated with μ ^ l μ to a thickness of β μιη, which was made into a copper foil layer, and then made for 30 minutes. In addition, the gland people, m He Shi DU L under the drying of the 泠 泠 (10) poly-liminamide resin precursor, coated with cloth before the remaining polyamine resin, the dryer 'dry under the armpit for 30 minutes. In the obtained single = frif nitrogen oven, the amination and hardening were carried out for 2 hours to obtain a single-sided conductor laminate (h). 15 20 / ί, / high pressure gluing machine, single turn tree 曰 layer, and the single-sided guide plate of Example 9 (_ thermoplastic resin layer ' made at 3800c and 50 kgf /cm2 under 20 minutes ^ Adhere 'make it's mutually joined to make a flexible double-sided conductor laminate. Observe the cut surface of the product using an electron microscope. From the first copper layer to the fourth layer to the fourth - The resin layer of the copper rhyme, the thickness of the resin layers is 16.2 jum, 7 8 uni, 4 s iim, the second figure is 4.5, and 25.4 μm. (See Example 13 for example 2) | An acid amine resin precursor, coated with a coating bar 34 200806100 on a rough surface with a thermal expansion coefficient of 17.8 PpmrC and a thickness of 18, called a steel layer, followed by a hot air dryer at 150 ° C Dry for 2 μ〇 minutes. The average thickness of the 'dry resin layer is 12.5 哗. The early surface conductor layer is made at 3GG ° C with air oven towel for 2 hours of amination and hardening to make a single Face conductor laminate (1). Thus, the thickness of the resin layer is thinner due to the reduction of residual agent and moisture, _ electron microscopy Observe the cut surface. The thickness of the obtained resin layer is 1〇1 μηη. Several 10 15 20 will contain 1 part by weight of epoxy resin (YD (m, National Chemical Co., Ltd.), 5 parts of 5 parts, 4'-diaminodiphenyl hydrazine (DDS), and fine parts by weight, T_(MEK) epoxy-remanent resin mixture, poly-manganese resin coated on the single-sided conductor layer plate (i) The layer is then dried using a thief dryer at 1G °C for 1G minutes to produce a single-sided conductor laminate ω. Thus, the dry oxygen-heating tree is thick and thick, and the titt is slightly sticky. Hardened state, and its glass transfer temperature.f to, 15G ° C. Using a high temperature / high pressure glue machine, single-sided two-sided (1) and early-face conductor laminates ' at 25 ° ° C and 10 kgf / 20 cm under the cm2 adhesive layer so that the resin layers are bonded to each other to produce a flexible double-sided bulk layer. Example 14 = Fabrication of a flexible double-sided conductor layer 2' with: := replacing the epoxy resin mixture with an adhesive resin mixture containing 100 parts by weight of epoxy resin, 20 parts by weight of phenol (DDS^ 51 } ' 5 * ^ and 200 parts by weight of methyl ethyl ketone (MEK) 35 200806100 Comparative Example 2 = Example 2 is a single-sided conductor laminate (a) obtained in Example 1. Comparative Example 3 contains a first conductor, a thermoplastic polymer resin layer, and a configuration (please refer to the fourth figure) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) 17.8ppm / 〇c, and the thickness of the copper is 18 落 thick, on the surface, then use a hot air dryer, dry under i5 〇〇 c) 3 mourn 0 points! in. The average thickness of the dried resin layer was 4 3 division. The == 1 T region of Synthesis Example 2 was applied to the dried polyacrylamide by a coating bar and dried for 3 minutes. So, dry it at 1 and let I wind dry the city at 150〇c τ_ 3() with an average thickness of 27·7 μιη. In the oven of the celestial celestial layer, the θ is also in the oven of the tree, and the early conductor layer is immersed in a nitrogen gas of 3oo°c in a small amount of sulfonamide to form a single side. Guide layer (4). Scale, due to _ dissolve water 20 body layer connected to the thermoplastic poly Asia _ layer 2 = 庠 A 3 2 _, 1 〇 (He Li 曰 repeatedly thickness according to the single-sided conductor shoulder price 以及, and 3.0 μηι. Use high temperature / High-duty glue machine, 17.8 ppm/X^H plastic surface, _ expansion coefficient is eight; the roughness of the copper foil layer of 18 μηι is adhered at 36 200806100 350QC and 50 kgf/cm2 for 10 minutes' They were joined to each other to obtain a flexible double-sided conductor laminate. Reference Example 1 Production of the single-sided conductor laminate (8) of Example 1 'The conditions of 'sub-amination 5 and hardening were changed to 250. And 3 hours 'to produce a single-sided conductor laminate (1); then using a high temperature / high pressure glue machine, the single-sided conductor laminate (1) and the single-sided conductor laminate (a) resin layer, and examples 1 Adhesive under the same conditions to obtain a flexible double-sided conductor laminate. The thickness of the layer 10 of the double-sided conductor laminate obtained in the examples and the comparative examples was measured, peel strength, film bending, and etching. Dimensional stability. The results are shown in Table 2 below. [Table 2] The second layer of the first pi layer

剝離強度 剝離強度 2Peel strength peel strength 2

區分 熱可塑性η層 或 黏著性樹脂層 熱膨脹係數 (ppm/°C) 熱膨脹係數 (ppm/°C) (kgfi^cm) 薄膜 彎曲 (mm) 蝕刻後之 尺寸變化 (%)Distinguish between thermoplastic η layer or adhesive resin layer Thermal expansion coefficient (ppm/°C) Thermal expansion coefficient (ppm/°C) (kgfi^cm) Film Bending (mm) Dimensional change after etching (%)

37 200806100 實施例13 10.1 13 5.0 平均132 10.1 13 1.2 1.2 0.9 0 0.044 實施例14 10.1 13 5.2 平均145 10.1 13 1.2 1.2 1.1 0 0.039 比較例1 10.3 20 聚亞醯胺層 10.3 20 1.2 L2 <0.1 燕/ 去製得 篆品 比較例2 9.2 13 2.7 291 單面導體層板 1.2 - - 42 0.118 比較例3 參照上述說明 0.8 1.5 1.0 0 0.052 參考例1 10.2 20 5.2 291 10.2 20 0.6 1.2 1.0 21 0.186 測量以實施例與比較例所製得的雙面導體層板,其吸 濕後之表面電阻變化。結果如下表3所示。37 200806100 Example 13 10.1 13 5.0 Average 132 10.1 13 1.2 1.2 0.9 0 0.044 Example 14 10.1 13 5.2 Average 145 10.1 13 1.2 1.2 1.1 0 0.039 Comparative Example 1 10.3 20 Polyiminide layer 10.3 20 1.2 L2 <0.1 Swallow / Preparation of the product Comparative Example 2 9.2 13 2.7 291 Single-sided conductor laminate 1.2 - - 42 0.118 Comparative Example 3 Refer to the above description 0.8 1.5 1.0 0 0.052 Reference Example 1 10.2 20 5.2 291 10.2 20 0.6 1.2 1.0 21 0.186 Measurement by The double-sided conductor laminates obtained in the examples and the comparative examples showed a change in surface resistance after moisture absorption. The results are shown in Table 3 below.

【表3: 區分 吸濕前平均表面電阻 ㈧ (1012歐姆) 吸濕後平均表面電阻 (B) (1012歐姆) A/B 實施例1 0.97 0.43 2.26 實施例2 2.05 1.32 1.55 實施例3 1.86 0.92 2.02 貫施例4 1.92 1.11 1.73 實施例5 1.24 0.85 1.46 實施例6 1.42 0.92 1.54 實施例7 0.95 0.32 2.97 實施例8 1.32 0.72 1.83 實施例9 1.57 0.95 1.49 實施例10 1.22 0.88 1.39 實施例11 1.93 0.99 1.95 實施例12 3.37 1.86 1.81 實施例13 0.95 0.45 2.11 實施例14 1.02 0.48 2.13 比較例1 無法製得樣品 比較例2 0.91 0.23 3.96 比較例3 0.82 0.08 10.25 參考例1 1.01 0.26 3.88 5 *隨著吸濕前平均表面電阻(A)/吸濕後平均表面電阻 (B)愈低,抗吸濕性之電子穩定性愈佳。 38 200806100 如表3之結果顯示,由實施例丨至14與參考例i所擊 得之可撓性雙轉縣板,其抗簡性的電子穩定性較習 用之具有熱可雜聽與賴連接之結翻味例3更為 傷里。 5 更紐而言’在實關1至14中,該第—導體㈣第[Table 3: Distinguishing the average surface resistance before moisture absorption (8) (1012 ohms) Average surface resistance after moisture absorption (B) (1012 ohms) A/B Example 1 0.97 0.43 2.26 Example 2 2.05 1.32 1.55 Example 3 1.86 0.92 2.02 Example 4 1.92 1.11 1.73 Example 5 1.24 0.85 1.46 Example 6 1.42 0.92 1.54 Example 7 0.95 0.32 2.97 Example 8 1.32 0.72 1.83 Example 9 1.57 0.95 1.49 Example 10 1.22 0.88 1.39 Example 11 1.93 0.99 1.95 Implementation Example 12 3.37 1.86 1.81 Example 13 0.95 0.45 2.11 Example 14 1.02 0.48 2.13 Comparative Example 1 Sample could not be obtained Comparative Example 2 0.91 0.23 3.96 Comparative Example 3 0.82 0.08 10.25 Reference Example 1 1.01 0.26 3.88 5 *Average before moisture absorption The lower the surface resistance (A) / the average surface resistance (B) after moisture absorption, the better the electron stability against moisture absorption. 38 200806100 As shown in the results of Table 3, the flexible double-turn plate board obtained by the examples 丨 to 14 and the reference example i has the electronic stability of the simpleness of the simpler than the conventional one. The result of the revival case 3 is even more hurt. 5 More New Zealand's in the actual customs 1 to 14, the first conductor (four)

一聚亞醯胺樹脂間之剝離強度,係等於或小於該第^導體 與該第二聚魏胺樹脂間之剝離強度,且其範圍為〇.65至 1.6倍者,其吸濕性的電子穩定性更為優異。 少另外,實施例1與比較例3之可撓性雙面導體層板, 係各自處理(乾膜光阻技術服務中心, 公仆致使其剝離強度高之-表面或一部== 2,且使其各別之另一表面,在相同的條件下,形成電路 I度為60 μιη之電路。 15 20 上述製知的電路板之放大相片顯示於第五圖及第六 圖三如第五圖及第六圖所示,由比較例3製得的電路板與 由^施例1製得的電路板相比,比較例3製得之電路板/的 銅電路線會脫層。電路線脫層的現象,被認為是蝕刻液滲 入剝離強度較低之銅箔層的表面與聚亞醯胺層之間。此種 現象會嚴重地破壞電路,且會大大地降低電子零件的性 能’如降低電子信號速度。 39 200806100 【圖式簡單說明】 第一圖係為本發明第一實施例之剖面圖,顯示可撓性 雙面導體層板。 第二圖係為本發明第二實施例之剖面圖,顯示可撓性 5雙面導體層板。 ·' 第三圖係為本發明第三實施例之剖面圖,顯示可撓性 雙面導體層板。 第四圖係為習用之可撓性雙面導體層板之剖面圖。 第五圖係為使用實施例1之可撓性雙面導體層板所製 10得之電路板的放大照片。 第六圖係為使用比較例3之可撓性雙面導體層板所製 得之電路板的放大照片。 【主要元件符號說明】 15 1第一銅層 Γ第二銅層 2’低熱膨脹性聚亞醯胺層 3第一熱可塑性聚亞醯胺層 3’第二熱可塑性聚亞醯胺層 11第一導體 11,第二導體 2〇 I2第一聚亞醯胺樹脂層 12’第二聚亞醯胺樹脂層 13, 13’熱可塑性聚亞醯胺樹脂層(黏著性樹脂包含層) 20弟^樹脂層The peeling strength between the polyamidamide resins is equal to or less than the peeling strength between the first conductor and the second polyamine resin, and the range is 〇.65 to 1.6 times, and the hygroscopic electrons thereof The stability is even better. In addition, the flexible double-sided conductor laminates of Example 1 and Comparative Example 3 are treated separately (dry film photoresist technology service center, which has a high peel strength - surface or a part == 2, and On the other surface, under the same conditions, a circuit with a circuit degree of 60 μm is formed. 15 20 The enlarged photo of the above-mentioned circuit board is shown in the fifth and sixth figures as shown in the fifth figure. As shown in the sixth figure, the circuit board produced in Comparative Example 3 was delaminated from the circuit board prepared in Comparative Example 3 as compared with the circuit board manufactured in Example 1. The circuit line was delaminated. The phenomenon is considered to be that the etching solution penetrates between the surface of the copper foil layer with a low peel strength and the polyimide layer. This phenomenon can seriously damage the circuit and greatly reduce the performance of electronic parts. 39 200806100 [Simplified description of the drawings] The first figure is a cross-sectional view showing a first embodiment of the present invention, showing a flexible double-sided conductor laminate. The second diagram is a cross-sectional view of a second embodiment of the present invention. , showing flexible 5 double-sided conductor laminate. · 'The third picture is A cross-sectional view of a third embodiment of the invention showing a flexible double-sided conductor laminate. The fourth diagram is a cross-sectional view of a conventional flexible double-sided conductor laminate. The fifth diagram is flexible using the embodiment 1. A magnified photograph of a circuit board made of a double-sided conductor laminate. The sixth diagram is an enlarged photograph of a circuit board obtained by using the flexible double-sided conductor laminate of Comparative Example 3. [Main component symbol description 】 15 1 first copper layer Γ second copper layer 2 ′ low thermal expansion polyimide layer 3 first thermoplastic poly melamine layer 3 ′ second thermoplastic polyimide layer 11 first conductor 11 , Two-conductor 2〇I2 first polythinamide resin layer 12' second polyamidamine resin layer 13, 13' thermoplastic polyimide resin layer (adhesive resin-containing layer) 20 brothers resin layer

Claims (2)

200806100 十、申請專利範圍: 1. 一種可撓性雙面導體層板,包含: 第一導體; 弟一 ^^亞胺樹脂層,係連接於該第一導體; 至少一層黏著性樹脂包含層; 5 第一聚亞醯胺樹脂層,係連接於第二導體;以及 該第二導體; 其中,β亥第一導體與該第二導體為彼此相同或不同, 該第一聚亞醯胺樹脂與該第二聚亞醯胺樹脂為彼此相同或 不同,該弟一t亞臨胺樹脂之熱膨騰係數與該第一導體之 10熱膨脹係數,為彼此相同或不同,以及該第二聚亞醯胺樹 脂之熱膨脹係數與該第二導體之熱膨脹係數,為彼此相同 或不同。 2· —種可撓性雙面導體層板,包含: 第一導體; I5 第一聚亞醯胺樹脂層,係連接於該第一導體; 至少一層黏著性樹脂包含層; 第二聚亞醯胺樹脂層,係連接於第二導體;以及 該第二導體; 其中,該第一導體與該第二導體為彼此相同或不同, 2〇該第一聚亞醯胺樹脂與該第二聚亞醯胺樹脂為彼此相同或 不同,該第一聚亞醯胺樹脂之熱膨脹係數與該第一導體之 熱膨脹係數,為彼此相同或不同,該第二聚亞醯胺樹脂之 熱膨脹係數與該第二導體之熱膨脹係數,為彼此相同或不 同,該第一導體與該第一聚亞醯胺樹脂間之剝離強度,為 200806100 該第二導體與該第二聚亞醯胺樹脂間之剝離強度的0 65至 1.6倍。 3·如申請專利範圍第1項或第2項所述之導體層板, ^中,該第一導體包括該第一聚亞醯胺樹脂層,與利用澆 5鑄製程連接於該第一聚亞醯胺樹脂層之該黏著性樹脂包含 層,该第二導體包括該第二聚亞醯胺樹脂層,與利用澆鑄 製程連接於該第二聚亞醯胺樹脂層之該黏著性樹脂包含 層’並且該第一導體之黏著性樹脂包含層與該第二導體之 黏著性樹脂包含層,係利用壓合製程予以連接,使其相互 接合。 4·如申請專利範圍第1項或第2項所述之導體層板, 其中’該第一導體與該第二導體在相同的熱處理條件下連 接。 5·如申請專利範圍第1項或第2項所述之導體層板, 15其中,該聚亞醯胺樹脂為具有亞醯胺環結構之樹脂,且選 自聚醚亞醯胺、聚醯胺亞胺及聚酯亞醯胺之間。 6·如申請專利範圍第1項或第2項所述之導體層板, 其中,该弟一導體及該第一聚亞醯胺樹脂層或該第二導體 及該第二聚亞醯胺樹脂層,所具有的熱膨脹係數之差異為 20 10 ppm/°C 或更低。 7·如申請專利範圍第6項所述之導體層板,其中,該 第一聚亞醯胺樹脂層或該第二聚亞醯胺樹脂層包含一種聚 亞醯胺樹脂,該聚亞醯胺樹脂係由包含在其芳香環間具有 -〇-、-co-、-NHCO-、-s-、-so2-、-co-ο-、-ch2-、或·〇(εΗ3)2- 42 200806100 鏈之二酐及二胺的軟性單體,以及在其芳香環間不具有 -0-、-CO-、-NHCO-、-S-、-S〇2-、-CO-O-、-CH2-、或-C(CH3)2-鏈之二酐及二胺的硬性單體,在莫耳比範圍為0比10到8 比2的條件下聚合而成。 5 8·如申請專利範圍第7項所述之導體層板,其中,該 ^ 第一聚亞醯胺樹脂層或該第二聚亞醯胺樹脂層包含一種或 多種聚亞醯胺樹脂混合物。 • 9·如申請專利範圍第1項或第2項所述之導體層板, 其中,該第一聚亞醯胺樹脂層及該第二聚亞醯胺樹脂層具 10有相同的組成成分與厚度。 10·如申請專利範圍第1項或第2項所述之導體層板, 其中,該第一聚亞醯胺樹脂層或該第二聚亞醯胺樹脂層的 吸濕性為1%或更低。 11·如申請專利範圍第1項或第2項所述之導體層板, 15其中,該黏著性樹脂包含層包含一種或多種黏著性樹脂, φ 係選自亞醯胺化反應後之玻璃轉移溫度為120QC至350°C ^ 之熱可塑性聚亞醯胺樹脂、環氧樹脂及酚樹脂之間。 12·如申請專利範圍第11項所述之導體層板,其中, 該熱可塑性聚亞醯胺樹脂,包含由在芳香環間具有…200806100 X. Patent application scope: 1. A flexible double-sided conductor laminate comprising: a first conductor; a first layer of an imide resin layer connected to the first conductor; at least one layer of an adhesive resin comprising a layer; a first polyaminin resin layer connected to the second conductor; and the second conductor; wherein the first conductor and the second conductor are the same or different from each other, the first polyamido resin and The second polyamidamide resins are the same or different from each other, and the thermal expansion coefficient of the di-anthracene amine resin and the thermal expansion coefficient of the first conductor are the same or different from each other, and the second polyarylene The coefficient of thermal expansion of the amine resin and the coefficient of thermal expansion of the second conductor are the same or different from each other. 2) a flexible double-sided conductor laminate comprising: a first conductor; I5 a first polyamidene resin layer attached to the first conductor; at least one layer of an adhesive resin comprising a layer; An amine resin layer connected to the second conductor; and the second conductor; wherein the first conductor and the second conductor are the same or different from each other, 2〇 the first polyamido resin and the second poly The guanamine resins are the same or different from each other, the thermal expansion coefficient of the first polyamidene resin and the thermal expansion coefficient of the first conductor are the same or different from each other, and the thermal expansion coefficient of the second polyamidene resin and the second The coefficient of thermal expansion of the conductors is the same or different from each other, and the peeling strength between the first conductor and the first polyimide resin is 200,806,100. The peel strength between the second conductor and the second polyimide resin is 0. 65 to 1.6 times. 3. The conductor laminate according to claim 1 or 2, wherein the first conductor comprises the first polyimide resin layer and is connected to the first polymer by a casting process The adhesive resin of the melamine resin layer comprises a layer, the second conductor comprising the second polyimide resin layer, and the adhesive resin-containing layer connected to the second polyimide resin layer by a casting process And the adhesive resin-containing layer of the first conductor and the adhesive resin-containing layer of the second conductor are joined by a press-bonding process to be joined to each other. 4. The conductor laminate of claim 1 or 2, wherein the first conductor and the second conductor are joined under the same heat treatment conditions. 5. The conductor laminate according to claim 1 or 2, wherein the polyamido resin is a resin having a melamine ring structure and is selected from the group consisting of polyether amides and polyfluorenes. Between the amine imine and the polyester amide. 6. The conductor laminate according to claim 1 or 2, wherein the conductor and the first polyimide resin layer or the second conductor and the second polyimide resin The layer has a difference in thermal expansion coefficient of 20 10 ppm/°C or less. The conductor laminate according to claim 6, wherein the first polyimide resin layer or the second polyimide resin layer comprises a polyamidene resin, the polyamine The resin is composed of -〇-, -co-, -NHCO-, -s-, -so2-, -co-ο-, -ch2-, or ·〇(εΗ3)2-42 between the aromatic rings thereof. a soft monomer of a chain dianhydride and a diamine, and having no -0-, -CO-, -NHCO-, -S-, -S〇2-, -CO-O-, -CH2 between its aromatic rings A hard monomer of -, or -C(CH3)2-chain dianhydride and diamine is polymerized in a molar ratio ranging from 0 to 10 to 8 to 2. The conductor laminate according to claim 7, wherein the first polyimide resin layer or the second polyimide resin layer comprises one or more polyimide resin mixtures. The conductive laminate according to claim 1 or 2, wherein the first polyamido resin layer and the second polyimide resin layer 10 have the same composition and thickness. The conductor laminate according to claim 1 or 2, wherein the first polyimide resin layer or the second polyimide resin layer has a hygroscopicity of 1% or more. low. 11. The conductor laminate according to claim 1 or 2, wherein the adhesive resin-containing layer comprises one or more adhesive resins, and φ is selected from the group consisting of glass transfer after the hydrazide reaction. The temperature is between 120QC and 350 °C ^ between the thermoplastic poly] amide resin, epoxy resin and phenol resin. 12. The conductor laminate according to claim 11, wherein the thermoplastic polyamidamide resin comprises a mixture between the aromatic rings... 20 -CO-、-NHCO-、-S-、-S02-、_c〇-〇-、d、或-C(CH3)2- 鍵之一酐及一胺的軟性單體聚合而成之熱可塑性聚亞酸 胺0 13·如申請專利範圍第11項所述之導體層板,其中, 該熱可塑性聚亞醯胺樹脂為一種包含玻璃轉移溫度為 43 200806100 120 c至350°c之熱可塑性聚亞醯胺樹脂的混合物。 1 14·如申請專利範圍第^項所述之導體層板,其中, ,熱可塑性聚亞醯胺包含一種聚亞醯胺樹脂,該聚亞醯胺 树脂係由包含在其芳香環間具有_〇-、_c〇一 _NHC〇_、_s_、 =2、_C〇_〇-、或_C(CH3)2-鍵之二酐及二胺的軟 眭單體,以及在其芳香環間不具有_〇_、_c〇_、_NHC〇_、_s_、 s〇厂、_C0-0-、-CHr、或-C(CH3)2_鏈之二酐及二胺的硬 ^生單體,在莫耳比範圍為1〇比〇到2比8的條件下聚合而 成0 15·如申請專利範圍第1項或第2項所述之導體層板, 〃中該弟一聚亞酿胺樹脂層與該第二聚亞蕴胺樹脂層之 厚度’係滿足下列方程式1 : 方程式1 [0.8 χ(Ε2 X Τ2)]<[Ε1 χ Τ1]<[1.2 χ(Ε2 χ Τ2)] 其中’ Ε1為該第一聚亞醯胺樹脂層之熱膨脹係數 (Ppm/0c), E2為該第二聚亞酸胺樹脂層之熱膨脹係數(ppm/〇c), Tl為該第一聚亞醮胺樹脂層之厚度(pm),以及 Τ2為該第二聚亞酿胺樹脂層之厚度(gm)。 M·如申請專利範圍第1項或第2項所述之導體層板, 其中’該至少一層之黏著性樹脂包含層、該第一聚亞醯胺 樹月旨層及該第二聚亞醯胺樹脂層之厚度,係滿足下列方程 式2 : 方程式2 44 200806100 [0·01 X (ΤΙ + Τ2)]<Τ3<[3·0 χ(Τ1 + Τ2)],且 〇·5<Τ3 其中,ΤΙ為該第一聚亞醯胺樹脂層之厚度(μιη), Τ2為β弟—聚亞酸胺樹脂層之厚度(μ]^),以及 Τ3為5玄黏耆性樹脂包含層之厚度以瓜)。 5 I7·如申請專利範圍第1項或第2項所述之導體層板, 其中,該第一導體或該第二導體,包含銅、鋁、金、銀、 鎳、鋅、鐵、鈷、鉛、鈕、鍅、及前述金屬之合金、或前 述金屬之氧化物。 18· —種製造如申請專利範圍第1項所述之可撓性雙 1〇面導體層板的方法,包含: 在弟一聚亞醯胺薄膜之一面上層疊黏著性樹脂包含 層;以及 在高溫/高壓的氣氛下將第二聚亞醯胺薄膜壓合於該黏 著性樹脂包含層上。 15 19·如申請專利範圍第18項所述之方法,更包含將導 體沉積於該第一聚亞醯胺薄膜與該第二聚亞醯胺薄膜之另 一面上。 20· —種製造如申請專利範圍第1項或第2項所述之可 撓性雙面導體層板的方法,包括: 20 在第一導體之一面上塗佈第一聚亞醯胺樹脂或其前驅 物,之後乾燥,再將黏著性樹脂塗佈於其上,而後乾燥, 以及在高溫氣氛下進行亞醯胺化反應,以製備包含有第一 導體、第一聚亞醯胺樹脂與黏著性樹脂包含層之第一層板; 在第二導體之一面上塗佈第二聚亞醯胺樹脂或其前驅 45 200806100 物之後乾燥,再將黏著性樹脂塗佈於其上,而後乾燥, 以^在向溫氣氛下進行亞醯胺化反應,以各別地製備包含 有第一導體、第二聚亞醯胺樹脂與黏著性樹脂包含層之 一層板;以及 5 #在尚溫及高壓下壓合該第一層板與該第二層板,使該 第一層板之黏著性樹脂包含層與該第二層板之黏著性樹脂 包含層相互接合。 士 如申請專利範圍第20項所述之方法,更包含有在 層板或該第二層板的黏著性樹脂包含層上,塗佈第 10二或其前驅物,之後乾燥,以製備第三樹脂層,並在 1溫,高壓下壓合該第—層板與該第二層板,使該第三樹 月曰人U亥黏著性樹脂包含層相互接合之步驟。 22· —種製造如申請專利範圍第丨項或第2項所述之可 抗性雙面導體層板的方法,包括: 15物,在第一導體之一面上塗佈第一聚亞醯胺樹脂或其前驅 之後乾纟呆,再將第三樹脂或其前驅物塗佈於其上,而 章乞丈品 、,_、 第一、Γ ’―亚在兩溫氣氛下進行亞醯胺化反應,以製備包含 弟導,、第一聚亞醯胺樹脂與第三樹脂層之第一層板; 2〇物,在第二導體之一面上塗佈第二聚亞醯胺樹脂或其前驅 2〇二=後乾燥,再將黏著性樹脂塗佈於其上,而後乾燥, 並f叼皱氣氛下進行亞醯胺化反應,以各別地製備包含第 % 弟—♦亞酿胺樹脂與黏著性樹腊包含層之第二芦 板;以及 曰 在高溫及高壓下壓合該第一層板與該第二層板,使該 46 200806100 第一層板之第三樹脂與該第二層板之黏著性樹脂包含層相 互接合。 23·如申請專利範圍第μ項所述之方法,其中,該高 溫係等於或兩於該黏著性樹脂包含層之玻璃轉移溫度,該 5南壓的壓力範圍係為1至200 kgf/cm2或1至200 kgf/cm。 24·如申請專利範圍第2〇項所述之方法,其中,該高 溫係等於或高於該黏著性樹脂包含層之玻璃轉移溫度,該 高壓的壓力範圍係為1至200kgf/cm24 i至200kgf/crn。 25.如申請專利範圍第21項所述之方法,其中,該高 ίο溫係等於或高於該黏著性樹脂包含層之玻璃轉移溫度,該 高壓的壓力範圍係為1至2〇〇kgf/cm2或1至200kgf/cm。 26·如申請專利範圍第22項所述之方法,其中,該高 溫係等於或高於該黏著性樹脂包含層之玻璃轉移溫度,該 高壓的壓力範圍係為〗至2〇〇1^价1112或1至200吆价111。Thermoplasticity of polymerization of soft monomers such as 20-CO-, -NHCO-, -S-, -S02-, _c〇-〇-, d, or -C(CH3)2- bond and one amine The conductive laminate according to claim 11, wherein the thermoplastic polyamidamide resin is a thermoplastic polymer comprising a glass transition temperature of 43 200806100 120 c to 350 ° C. A mixture of melamine resins. The conductor laminate according to claim 4, wherein the thermoplastic polyamine contains a polyamidene resin, and the polyamidene resin is contained between the aromatic rings thereof. 〇-, _c〇__NHC〇_, _s_, =2, _C〇_〇-, or _C(CH3)2-bond dianhydride and diamine soft oxime monomer, and not between its aromatic rings a hard monomer having _〇_, _c〇_, _NHC〇_, _s_, s〇厂, _C0-0-, -CHr, or -C(CH3)2_ chain dianhydride and diamine The molar ratio ranges from 1 to 聚合 to 2 to 8 and is polymerized as 0. 15. The conductor laminate according to item 1 or 2 of the patent application, 该中该一聚亚胺胺树脂The thickness of the layer and the second polyimine resin layer 'stains to satisfy the following Equation 1: Equation 1 [0.8 χ(Ε2 X Τ2)]<[Ε1 χ Τ1]<[1.2 χ(Ε2 χ Τ2)] 'Ε1 is the thermal expansion coefficient (Ppm/0c) of the first polyamidite resin layer, E2 is the thermal expansion coefficient (ppm/〇c) of the second polyamic acid amine resin layer, and T1 is the first polyarylene The thickness of the amine resin layer (pm), and Τ2 is the second polyamidamine resin The thickness of the layer (gm). The conductor laminate according to claim 1 or 2, wherein the at least one layer of the adhesive resin-containing layer, the first polyimide layer, and the second polyimide layer The thickness of the amine resin layer satisfies the following Equation 2: Equation 2 44 200806100 [0·01 X (ΤΙ + Τ2)] <Τ3<[3·0 χ(Τ1 + Τ2)], and 〇·5<Τ3 , ΤΙ is the thickness of the first polyamidamine resin layer (μιη), Τ2 is the thickness of the β-polyimide resin layer (μ)^, and Τ3 is the thickness of the layer containing 5 Take melon). The conductor layer according to claim 1 or 2, wherein the first conductor or the second conductor comprises copper, aluminum, gold, silver, nickel, zinc, iron, cobalt, Lead, button, bismuth, and alloys of the foregoing metals, or oxides of the foregoing metals. The method of manufacturing the flexible double-sided conductor layer according to claim 1, comprising: laminating an adhesive resin-containing layer on one side of the polyimide film; The second polyimide film is pressed onto the adhesive resin containing layer under a high temperature/high pressure atmosphere. The method of claim 18, further comprising depositing a conductor on the other side of the first polyamido film and the second polyimide film. A method of manufacturing a flexible double-sided conductor laminate as described in claim 1 or 2, comprising: 20 coating a first polyamido resin on one side of the first conductor or a precursor thereof, followed by drying, applying an adhesive resin thereon, followed by drying, and performing a mercaptomination reaction under a high temperature atmosphere to prepare a first conductor, a first polyamido resin and an adhesive The resin comprises a first layer of the layer; a second polyimide resin or its precursor 45 200806100 is coated on one side of the second conductor, dried, and then the adhesive resin is coated thereon, and then dried to ^ performing a mercaptomination reaction under a warm atmosphere to separately prepare a laminate comprising a first conductor, a second polyimide resin and an adhesive resin-containing layer; and 5 # under temperature and pressure The first layer and the second layer are pressed together such that the adhesive resin-containing layer of the first layer and the adhesive resin-containing layer of the second layer are joined to each other. The method of claim 20, further comprising coating the layer 10 or its precursor on the adhesive resin containing layer of the laminate or the second laminate, followed by drying to prepare the third And a resin layer, and pressing the first layer and the second layer at a temperature of 1 degree and high pressure to bond the third layer of the Uygur adhesive resin to each other. A method of manufacturing a resistant double-sided conductor laminate as described in claim 2 or 2, comprising: 15 coating the first polyamine on one side of the first conductor After the resin or its precursor is dried, the third resin or its precursor is applied to it, and Zhang Yizhang, _, first, Γ '-Asia are sub-alkalized under two-temperature atmosphere. Reacting to prepare a first layer comprising a first conductor, a first polyimide resin and a third resin layer; 2, coating a second polyimide resin on one side of the second conductor or a precursor thereof 2 〇 2 = post-drying, then applying an adhesive resin thereon, and then drying, and performing a mercapto amination reaction under a w wrinkle atmosphere to separately prepare a resin containing the ninth The adhesive tree wax comprises a second reed of the layer; and the first layer and the second layer are pressed under high temperature and high pressure to make the third resin of the first layer of the 2008 2008100100 and the second layer The adhesive resin of the board comprises layers bonded to each other. The method of claim 5, wherein the high temperature is equal to or greater than a glass transition temperature of the adhesive resin-containing layer, and the pressure of the 5 south pressure is 1 to 200 kgf/cm 2 or 1 to 200 kgf/cm. The method of claim 2, wherein the high temperature is equal to or higher than a glass transition temperature of the adhesive resin-containing layer, and the high pressure is in a range of from 1 to 200 kgf/cm 24 i to 200 kgf. /crn. The method of claim 21, wherein the high temperature system is equal to or higher than a glass transition temperature of the adhesive resin-containing layer, and the high pressure has a pressure range of 1 to 2 〇〇 kgf / Cm2 or 1 to 200 kgf/cm. The method of claim 22, wherein the high temperature is equal to or higher than a glass transition temperature of the adhesive resin-containing layer, and the high pressure pressure range is 〖to 2〇〇1^ price 1112 Or 1 to 200 吆 111. 4747
TW096106469A 2006-02-24 2007-02-26 Double side conductor laminates and its manufacture TWI340610B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020060018005A KR100793177B1 (en) 2006-02-24 2006-02-24 Flexible double-sided conductor laminate and its manufacturing method
KR1020060109981A KR20080041855A (en) 2006-11-08 2006-11-08 Flexible double-sided conductor laminated material

Publications (2)

Publication Number Publication Date
TW200806100A true TW200806100A (en) 2008-01-16
TWI340610B TWI340610B (en) 2011-04-11

Family

ID=38437585

Family Applications (1)

Application Number Title Priority Date Filing Date
TW096106469A TWI340610B (en) 2006-02-24 2007-02-26 Double side conductor laminates and its manufacture

Country Status (2)

Country Link
TW (1) TWI340610B (en)
WO (1) WO2007097585A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410188B (en) * 2009-04-09 2013-09-21 Nhk Spring Co Ltd Metal-base circuit substrate and method for manufacturing the same

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102009515B (en) * 2010-07-21 2013-01-02 广东生益科技股份有限公司 Two-layer-method double-sided flexible CCL (Copper-Clad Laminate) and manufacture method thereof
JP5594148B2 (en) * 2011-01-06 2014-09-24 三菱化学株式会社 Thermoplastic polyimide, laminate and printed wiring board substrate
US20130040517A1 (en) * 2011-03-07 2013-02-14 Mitsubishi Gas Chemical Company, Inc. Resin composition for printed circuit board
WO2014198684A1 (en) * 2013-06-11 2014-12-18 Solvay Specialty Polymers Usa, Llc Improved mobile electronic parts
JP6713825B2 (en) * 2016-05-18 2020-06-24 株式会社カネカ Method for producing single-sided metal-clad laminate and method for producing double-sided metal-clad laminate
WO2021153339A1 (en) 2020-01-28 2021-08-05 三井金属鉱業株式会社 Resin layered product, dielectric layer, metal foil with resin, capacitor element, and printed wiring board with built-in capacitor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63288744A (en) * 1987-05-20 1988-11-25 Hitachi Chem Co Ltd Preparation of metal plate-based laminated plate for printed circuit
KR100502177B1 (en) * 2003-03-26 2005-07-20 주식회사 엘지화학 Double-Sided Metallic Laminate and Method for Preparing thereof
WO2005000576A1 (en) * 2003-06-25 2005-01-06 Shin-Etsu Chemical Co., Ltd. Flexible metal foil-polyimide laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI410188B (en) * 2009-04-09 2013-09-21 Nhk Spring Co Ltd Metal-base circuit substrate and method for manufacturing the same

Also Published As

Publication number Publication date
WO2007097585A1 (en) 2007-08-30
TWI340610B (en) 2011-04-11

Similar Documents

Publication Publication Date Title
TW562735B (en) Flexible aromatic polyimide film/metal film composite sheet
TWI777950B (en) Polyimide, polyimide-based adhesive, film-like adhesive material, adhesive layer, adhesive sheet, copper foil with resin, copper-clad laminate and printed wiring board, and multilayer wiring board and method for producing the same
TWI500501B (en) Second layer double sided flexible metal laminated board and manufacturing method thereof
TWI292740B (en) Metallic laminate and method for preparing thereof
TWI385198B (en) Double-sided metal clad laminate and fabrication method thereof
TWI400268B (en) Thermosetting resin composition and use thereof
TW200409569A (en) Copper-clad laminate
JPWO2007132529A1 (en) Metal composite film and manufacturing method thereof
TW200806100A (en) Double side conductor laminates and its manufacture
TWI771500B (en) Polyimide film, metal-clad laminate and circuit substrate
TW200819000A (en) Laminate for wiring board
KR100793177B1 (en) Flexible double-sided conductor laminate and its manufacturing method
TW200940328A (en) Flexible copper-clad lamination board
WO2006129526A1 (en) Polyimide film, polyimide metal laminate and process for producing the same
JP2006224644A (en) Insulating sheet, metallic layer and insulating sheet laminate, and printed wiring board using same
CN102741330A (en) Method for producing a polyimide film, and polyimide film
JPH08230103A (en) Metal foil laminated polyimide film
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP4936729B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP4193461B2 (en) Heat-sealable polyimide and laminate using the polyimide
JPWO2005027597A1 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP5151297B2 (en) Manufacturing method of resin film, manufacturing method of conductive layer laminated resin film
JP2005290327A (en) Electrical insulation adhesive film and laminate containing the same, and printed wiring board
JP2006312727A (en) Polyimide film, polyimide metal laminate using the same and method for manufacturing the same
KR101690058B1 (en) Thermoplastic polyimide adhesive film with excellent slip property and flexible laminated plate including the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees