[go: up one dir, main page]

TW200536946A - Method for producing Al-Mg-Si alloy excellent in bake-hardenability and hemmability - Google Patents

Method for producing Al-Mg-Si alloy excellent in bake-hardenability and hemmability Download PDF

Info

Publication number
TW200536946A
TW200536946A TW093138136A TW93138136A TW200536946A TW 200536946 A TW200536946 A TW 200536946A TW 093138136 A TW093138136 A TW 093138136A TW 93138136 A TW93138136 A TW 93138136A TW 200536946 A TW200536946 A TW 200536946A
Authority
TW
Taiwan
Prior art keywords
temperature
cooling rate
treatment
cooling
rate
Prior art date
Application number
TW093138136A
Other languages
Chinese (zh)
Inventor
Pi-Zhi Zhao
Toshiya Anami
Takayuki Kobayashi
Ichiro Okamoto
Original Assignee
Nippon Light Metal Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co filed Critical Nippon Light Metal Co
Publication of TW200536946A publication Critical patent/TW200536946A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0605Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two belts, e.g. Hazelett-process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Metal Rolling (AREA)

Abstract

This invention is to provide a method for producing an aluminum alloy plate excellent in bake-hardenability and hemmability at a low cost by using a very short production process. A method for producing an aluminum alloy plate, having a chemical composition, in wt%, of Mg: 0.30 to 1.00%, Si: 0.30 to 1.20%, Fe: 0.05 to 0.50%, Mn: 0.05 to 0.50%, Ti: 0.005 to 0.10%, optionally Cu: 0.05 to 0.70% and Zr: 0.05 to 0.40%, and the balance Al and inevitable impurities, comprises casting the alloy melt into a slab having a thickness of 5 to 15 mm by the twin belt casting method with a cooling rate of 40 to 150 DEG C/s at 1/4 of the thickness of the slab, winding up the coil, subjecting the coil to a homogenizing treatment, cooling the resultant coil to a temperature of 250 DEG C or lower with a cooling rate of 500 DEG C/hr or more, followed by cold rolling, and solution treatment of the resulting product.

Description

200536946 (1) 九、發明說明 【發明所屬之技術領域】 本發明是有關:利用鋁-鎂·矽系合金的連續鑄造來鑄 造出薄胚板,實施均質化處理後,進行冷軋,再因應必要 利用連續退火爐來進行溶體化熱處理,以獲得具有優異的 緣邊加工性以及時效硬化性較高的鋁合金板之製造方法。 根據這種方法’與傳統技術比較的話,可以較低成本就製 造出適合於汽車零件、家電製品等的彎曲成形、沖壓成形 等等的成形加工所採用的銘-鎂-砂系合金的輥軋薄板。 【先前技術】 鋁-鎂-矽系合金是具有:在成形後進行塗裝等的過程 中,受熱的話,強度會變高的特性。所以很適合使用於汽 車面板等的用途。此外,爲了謀求因生產性的提高所導致 的降低成本,有人提出了以連續鑄造輥軋的方法來製造這 種合金板。 例如:日本特開昭62-207 8 5 1號公報所揭示的,是將 含有砂:0 · 4〜2 · 5 %、鎂:0 · 1〜1 . 2 %而且含有由銅:1 · 5 % 以下、鋅:2 · 5 %以下、鉻:0 · 3 %以下、錳·· 〇 . 6 %以下、 鉻:0 · 3 %以下,的四種元素之中的一種或兩種以上的熔融 鋁合金’連續鑄造成板厚度爲3〜1 5 mm的胚板’然後’ 實施冷軋之後,再進行熔體化熱處理、淬火處理而獲得: 以基地(matrix )組織中的金屬間化合物的最大尺寸爲 5 μπι以下爲其特徵的成形加工用鋁合金板及其製造方法。 -5- 200536946 (2) 日本特開平1 0- 1 1 02 3 2號公報所揭示的’是將含有矽 :0.2〜3.0 °/〇、鎂:〇 . 2〜3.0 %作爲必須兀素’而且含有由 锰:0 · 〇 1 〜0 · 5 %、鉻:〇 . 〇 1 〜0.5 %、錯:0.0 1 〜0 · 5 %、鈦 :0.0 0 1〜0 · 5 %,的四種元素之中的一種或兩種以上,而 且又含有由銅:0〜2.5 %、錫·· 〇〜〇 · 2 %、鋅:〇〜2.0 %, 的三種元素之中的一種或兩種以上’且將含鐵量限制爲 1 · 0 %以下,其餘爲鋁和不可避免的雜質所組成的鋁合金的 直接鑄造輥軋板,進行冷軋之後的鋁-鎂-矽系合金板,其 特徵爲:該合金板的金屬組織的最大結晶粒徑爲1 0 0 μ m 以下,且在表層部的呈連續的Mg2Si化合物的最大長度爲 5 0 μ m以下。 此外,日本特開2 0 0 1 - 2 6 2 2 6 4號公報所揭示的,將含 有石夕:0 · 1〜2.0 %、鎂:0 · 1〜2.0 %、鐵:0 · 1〜1 · 5 %或者 又含有由銅:2.0%以下、鉻:0.3%以下、錳:ΐ·〇%以下 、锆:0 · 3 %以下、釩:0.3 %以下、鈦:0 · 0 3 %以下、鋅: 1 . 5 %以下、銀:0 · 2 %以下,的八種元素之中的一種以上, 之具有優異的韌性以及撓曲性的鋁-鎂-矽系合金板,其特 徵爲:該鋁合金板的金屬間化合物的最大尺寸爲5 μιτι以 下,最大的長寬比爲5以下,且平均結晶粒徑3 0 μ m以下 〔專利文獻1〕 此處的專利文獻1是指:日本特開昭6 2 - 2 0 7 8 5 1號公 報。 〔專利文獻2〕 -6- 200536946 (3) 此處的專利文獻2是指:日本特開平10-1 10232號公 報。 〔專利文獻3〕 此處的專利文獻3是指:曰本特開200 1 -2 62264號公 報。 【發明內容】 〔本發明所欲解決的課題〕 作爲汽車用車身板材等的外側面板來使用的合金板, 是要具備優異的緣邊加工性及烘烤硬化性。因此,具有優 異的撓曲性而且受熱後會產生時效硬化的鋁·鎂-矽系合金 板符合這種要求。然而,利用連續鑄造輥軋所製得的鋁板 ,則是存在著:緣邊加工性不良,而且塗裝後的烘烤硬化 性不夠充分的缺點。 因此,本發明的技術課題爲:要如何做才能夠以低成 本製得:可抑制在室溫放置狀態下的自然時效硬化時所晶 析出來的G · P帶(z 〇 n e ),在塗裝、烘烤加熱時可迅速地 晶析出強化相而獲得高烘烤硬化特性,同時又富於撓曲性 的成形用銘-錶-砂系合金板。 〔用以解決課題之手段〕 爲了達成上述目的,本發明提出下列的方案。 利用雙帶式鑄造機來連續鑄造出鋁-鎂-矽系合金的薄 胚板’再將鑄造後的薄胚板直接捲取成帶捲,對於該帶捲 200536946 (4) 在適正的條件下實施均質化處理,經過冷軋後,再因應需 要,藉由追加由連續退火爐所執行的熔體化熱處理等,以 將化合物予以分斷化,而得以提高緣邊加工性,同時可大 幅縮短製程。此外,藉由均質化處理來減少微偏析,而且 藉由加快均質化處理後的冷卻速度,以抑制冷卻中的 M g2 Si的析出,而能夠獲得最終退火後的烘烤硬化性以及 緣邊加工性皆優異的汽車車身用鋁板。 爲了解決上述課題,本發明的鋁合金板的製造方法的 特徵爲:在捲取薄胚板之後,實施均質化處理,進行冷軋 ,然後再執行熔體化熱處理。具體而言,是如請求項1所 述地,一種具有優異的烘烤硬化性及緣邊加工性的 A1-Mg-Si合金板之製造方法,其特徵爲:將含有鎂:〇.30〜 1 .OOwt%、矽:0.30 〜1.20wt%、鐵:0.05 〜0.50wt%、猛 :0.05〜0.5 0wt%以及鈦·· 0.0 0 5〜0· 1 0wt°/〇,或者又含有 銅:0.05〜0.70wt°/〇或锆·· 0.50〜〇.40wt%的其中一種以上 ,其餘爲鋁和不可避免的雜質所組成的熔融合金,利用雙 帶式鑄造法,以胚板厚度1/4處的冷卻速度爲40〜150 t: /秒,鑄造出厚度爲5〜1 5 mm的胚板,再將其捲繞成鋁 合金帶捲後,實施均質化處理,以5 0 0 t /小時以上的冷 卻速度,至少冷卻到25 0°C以下,然後進行冷軋,然後進 行熔體化熱處理(請求項1所述的發明)。 在上述的製造方法中,上述的均質化處理是利用分次 式退火爐以30t /小時以上的升溫速度,升溫到5 2 0〜 5 8 (TC,並且在該溫度的狀態下維持2至24小時爲宜(請 200536946 (5) 求項2所述的發明)。 上述的熔體化熱處理是利用連續退火爐,以1 〇 °C / 秒以上的升溫速度加熱到5 3 0〜5 60 °C,並且在該溫度的 狀態下維持3 0秒以內爲宜(請求項3所述的發明)。 此外,在上述的第3請求項所述的發明中,亦可在上 述熔體化熱處理之後,以1 0 t: /秒以上的速度冷卻到室 溫’然後,利用連續退火爐實施在260〜3 00 °C的溫度的 狀態下維持3 0秒以內的復原處理,以1 〇 °C /秒以上的冷 卻速度冷卻到室溫(請求項4所述的發明)。 或者,在上述的第3請求項所述的發明中,亦可在上 述熔體化熱處理之後,以1 0 °C /秒以上的冷卻速度來水 冷到2 5 0 °C以下,然後,利用空氣以1〜2 0 °C /秒的冷卻 速度來冷卻到60〜100 °C,然後捲起來,再施予冷卻至室 溫爲止的預備時效處理(請求項5所述的發明)。 或者,在上述的第3請求項所述的發明中,亦可在上 述熔體化熱處理之後,以1 〇 °C /秒以上的速度冷卻到室 溫’然後,利用連續退火爐實施在2 6 0〜3 0 0 t:的溫度的 狀態下維持3 0秒以內的復原處理,以1 °C /秒以上的冷 卻速度冷卻到6 0〜1 0 0 °C,然後捲起來,再施予冷卻至室 溫爲止的預備時效處理(請求項6所述的發明)。 〔發明的效果〕 根據本發明的鋁合金板的製造方法,可製得具有優異 的烘烤硬化性及緣邊加工性的鋁合金板。又,該製造方法 -9- 200536946 (6) 的製程極短,只要很低的成本即可獲得鋁合金板。 【實施方式】 〔發明之實施形態〕 本發明是關於鋁-鎂-矽系合金的輥軋板的製造方法, 其特徵爲:利用雙帶式鑄造法鑄造成薄胚板之後,直接捲 成帶捲,對此帶捲施予均質化處理之後,進行冷軋,然後 又進行熔體化熱處理。 本發明是將由上述組成分所構成的熔融合金利用雙帶 式鑄造法,以胚板厚度1 /4處的冷卻速度爲4 0〜1 5 0 °C / 秒,鑄造出厚度爲5〜1 5 m m的胚板,再將其捲繞成纟呂合 金帶捲後,實施均質化處理,以5 0 0 °C /小時以上的冷卻 速度’至少冷卻到25〇t以下,然後進行冷軋,然後進行 熔體化熱處理。 所謂「雙帶式鑄造法」是將熔融合金注入到呈上下對 峙且正在水冷中的迴轉帶之間,利用來自於帶面的冷卻, 使得熔融合金凝固而鑄造成薄胚板的方法。本發明中,是 利用雙帶式鑄造法來鑄造出厚度爲5〜1 5 mm的胚板。因 爲胚板的厚度若超過i 5 mm的話,就很難將薄胚板捲成帶 捲’胚板的厚度若低於5 mm的話,將會招致生產性的降 低,並且薄胚板的鑄造會變得困難。 利用雙帶式鑄造法來鑄造出厚度爲5〜1 5 m m的胚板 的這種做法’能夠將胚板厚度1 /4處的冷卻速度控制在於 4 0〜1 5 0 °C /秒。冷卻速度是觀察胚板厚度1 /4處的微組 200536946 ⑺ 織,並且利用交線法來測定D A S (树枝狀結晶的間距; Dendrite Arm Spacing)而計算出來的。冷卻速度未達40 °C /秒的話,在胚板中心部,於凝固時所產生的鑄造組織 會變粗而會招致緣邊加工性的降低’若冷卻速度超過1 5 〇 °C /秒的話,鋁-鐵··矽晶析物、鋁-(鐵•錳)-矽晶析物 將會變成1 μ m以下的尺寸,再結晶粒的尺寸將會變粗而 成爲30μιη以上。 在於捲取薄胚板之後,將此一金屬帶捲在適當的條件 下,進行均質化處理,以便將對於緣邊加工性有不良影響 的鋁-鐵-矽晶析物、鋁-(鐵•錳)-矽晶析物予以分斷化 ,因而得以謀求改善緣邊加工性。此外,可獲得將殘留在 鑄造組織內較細微的Mg2 Si晶析物完全地固熔在基地( matrix )組織中的狀態之薄胚板,亦可提高冷軋過程後的 熔體化處理的效果。 至於爲何要將均質化處理後的冷卻設定成:以5 00 °C /小時以上的冷卻速度至少予以冷卻到2 5 0 °C以下的理由 ,是基於爲了要極力地抑制較粗大的M g 2 S i晶析出來,要 使得追些纟孟、砂過飽和地固熔於基地(m a t r i X )組織中的 考量。 將薄胚板捲取之後,將這個金屬帶捲插入到分次式退 火爐以3 0 °C /小時以上的升溫速度,升溫到5 2 0〜5 8 0 °C ,並且實施在該溫度的狀態下維持2至2 4小時的均質化 處理之後’亦可從分次式退火爐取出該金屬帶捲,以5 0 0 °C /小時以上的冷卻速度以空氣強制冷卻至室溫爲止。其 -11 - 200536946 (8) 冷卻的方式’例如:可利用一方面將該金屬帶捲鬆開拉直 ,一方面以風扇將其吹冷的方式。 至於爲何要將薄胚板捲取後的均質化處理中的加熱至 均質化處理溫度爲止的升溫速度設定成··以3 0 °C /小時 以上的升溫速度的理由,則是因爲如果升溫速度未達3 0 °C /小時以上的話,到達預定的均質化處理溫度爲止需要 耗費1 6小時以上的時間,如此一來,會提高製造成本的 緣故。 至於爲何要將均質化處理溫度設定在5 2 0〜5 8 0 °C的 範圍的理由,是因爲:溫度未達52(TC的話,鋁-鐵-矽晶 析物、鋁-(鐵•錳)-矽晶析物的分斷化不夠充分,無法 令鑄造時所晶析出來的M g 2 S i充分地固熔在基地組織中, 但是如果溫度超過5 80 °C的話,低熔點金屬將會熔解而產 生熔毀現象。 又,至於爲何要將均質化處理時間設定在2〜24小時 的範圍的理由,是因爲:時間未達2小時的話,鋁-鐵-矽 晶析物、鋁-(鐵•錳)-矽晶析物的分斷化不夠充分,無 法令鑄造時所晶析出來的Mg2Si充分地固熔在基地組織中 ,如果時間超過24小時的話,鑄造時所晶析出來的 M g 2 S i充分地固熔在基地組織中,錳、矽趨於飽和,會導 致提高成本。 將這個金屬帶捲進一步實施冷軋之後,實施熔體化處 理,是其特徵之一。這種熔體化處理,通常是以連續退火 爐(CAL )來實施爲宜。所謂連續退火爐(CAL ),是用 200536946 (9) 來將金屬帶捲連續地實施熔體化處理的設備,其特徵是: 具備有用來實施熱處理的感應加熱裝置、用來實施水冷的 水槽、以及用來實施氣冷的空氣噴嘴等。 至於熔體化處理,是以連續退火爐,以1 〇 °c /秒以 上的升溫速度,加熱至5 3 0〜56(TC,並且保持30秒以內 爲宜。 在熔體化處理時,爲何要將均質化處理中的加熱至均 質化處理溫度爲止的升溫速度設定成:以1 〇 °c /小時以 上的升溫速度的理由,則是因爲如果升溫速度未達1 〇 °C /小時以上的話,金屬帶捲的給送速度將會極端地變得太 慢,結果,其處理時間會變長,進而會提高製造成本。 至於爲何要將熔體化處理溫度設定在5 3 0〜5 60 °C的 範圍的理由,是因爲:溫度未達5 3 (TC的話,無法令鑄造 時或者均質化處理後的冷卻時所晶析出來的M g2 S i充分地 固熔在基地組織中,但是如果溫度超過5 60 °C的話,低熔 點金屬將會熔解而產生熔毀現象。 又,至於爲何要將熔體化處理時間設定在3 0秒以內 的理由,是因爲:處理時間超過3 0秒的話,將會使得鑄 造時或者均質化處理後的冷卻時所晶析出來的Mg2Si充分 地固溶在基地組織中,不僅錳、矽會趨於飽和,金屬帶捲 的給送速度也會變得太慢,結果,其處理時間會變長,進 而會提高製造成本。 熔體化處理後,以1 0 °C /秒以上的冷卻速度予以冷 卻至室溫爲止的做法,是其特徵之一。將熔體化處理後的 •13- (10) (10)200536946 冷卻速度設定爲1 0 °c /秒以上的理由,是因爲如果冷卻 速度未達1 〇 °c /秒的話,在冷卻過程中,矽將會晶析在 結晶粒界上,將會導致緣邊加工性的惡化。 對於薄胚板實施了上述的均質化處理之後,亦可進一 步進行冷軋,再實施熔體化處理之後,以1 0 °c /秒以上 的速度冷卻至室溫,將金屬帶捲放置在室溫下,然後利用 連續退火爐於2 6 0〜3 0 0 °c的溫度下,保持3 0秒以內,然 後再以1 〇°C /秒的速度冷卻至室溫爲止。 這種熔體化處理以及復原處理,通常是以連續退火爐 (CAL )來實施爲宜。所謂連續退火爐(CAL ),是用來 將金屬帶捲連續地實施熔體化處理的設備,其特徵是:具 備有用來實施熱處理的感應加熱裝置、用來實施水冷的水 槽、以及用來實施氣冷的空氣噴嘴等。藉由這種復原處理 ,在於熔體化處理後的放置在室溫下的過程中,可將自然 時效晶析出來的G.P帶(zone)予以再固熔’可於塗裝· 烘烤加熱後獲得充分的強度。 又,爲了想要在塗裝•烘烤加熱後獲得充分的強度, 於熔體化處理後的放置在室溫內的過程之後,在於2 6 0〜 3 00 °C的溫度條件下,進行復原處理。復原處理的溫度如 果未達26(TC的話,無法獲得充分的烘烤硬化性’但是若 超過3 0 0 °C的話,則緣邊加工性將會惡化。 至於爲何要將復原處理的保持時間予以限定爲3 0秒 以內的理由,是因爲處理時間若超過3 0秒的話’不僅在 於熔體化處理後的放置在室溫下的過程中’可將自然時效 -14- 200536946 (11) 晶析出來的G.P帶(zone )充分地予以再固熔,而且金屬 帶捲的給送速度變得太慢,結果,其處理時間會變長,進 而會提高製造成本。 對於薄胚板實施了上述的均質化處理之後,亦可進一 步進行冷軋’再利用連續退火爐(CAL )實施熔體化處理 之後,以1 〇 °C /秒以上的冷卻速度(第一次冷卻速度) 予以水冷至2 5 0 °C以下,然後再利用空氣以1〜2 (TC /秒 的冷卻速度(第二次冷卻速度)予以冷卻至60〜100。〇, 然後將薄胚板捲成金屬帶捲,再予以冷卻至室溫爲止。 這種熔體化處理以及其後的冷卻,通常是利用連續退 火爐(CAL )來實施爲宜。這種熔體化處理以及其後的冷 卻時,可以進行可使基地組織中均勻地產生供晶析出冷” 的晶核之熱處理(預備時效處理),以謀求在塗裝•烘烤 加熱後獲得充分的強度。 對於薄胚板實施了均質化處理之後,亦可進一步進行 冷軋,然後實施以10°c /秒以上的速度加熱至5 3 0〜560 t,並且保持該狀態3 0秒以內的熔體化處理之後,以1 0 °C /秒以上的速度冷卻至室溫,然後,實施在260〜300 。(:的範圍內保持3 0秒以內的復原處理之後,以1 °C /秒 以上的冷卻速度冷卻至60〜100 °C,然後將薄胚板捲成金 屬帶捲,再予以冷卻至室溫爲止之預備時效處理。 這種熔體化處理以及其後的冷卻、復原處理以及其後 的冷卻,通常是利用連續退火爐(CAL )來實施爲宜。根 據這種製造方法’熔體化處理後之放置於室溫過程中’不 -15- (12) (12)200536946 僅可使得自然時效晶析出來的G · P帶充分地予以再固熔’ 而且復原處理之後的冷卻時,可以進行可使基地組織中均 勻地產生供晶析出/3,,的晶核之熱處理(預備時效處理) ,因此可以更加地提高在塗裝·烘烤加熱後的耐力。 其次,說明本發明的合金成份的意義以及限定其含量 的理由。 必要元素之一的鎂,於熔體化處理之後,會固熔在基 地組織中,於塗裝•烘烤加熱時,會與矽一起晶析出來當 作強化相,以提高強度。將鎂的添加量限定爲:〇·3〇〜 1 .00wt%的理由,是因爲如果不足〇.30wt%的話,其效果 很小,若超過l.OOwt%的話,則會降低熔體化處理後的緣 邊加工性。鎂的含量的更佳範圍是限定爲:0.30〜0.70 wt% 〇 必要元素之一的矽,於塗裝•烘烤加熱時,會與鎂一 起當作被稱爲Θ ”的Mg2Si的中間相或者近似於該中間相 的強化相晶析出來,因而可提高強度。將矽的含量限定爲 :0.30〜1 .20wt%的理由,是因爲如果不足 0.30wt%的話 ’其效果很小,若超過1.2〇wt%的話,則會降低熔體化處 理後的緣邊加工性。矽的含量的更佳範圍是限定爲:0.60 〜1.20wt%。 必要元素之一的鐵,藉由讓鐵與矽、錳同時存在的話 ’於鑄造時可產生大量的5 μ m以下的大小之鋁-鐵-矽晶析 物、鋁-(鐵•錳)-矽晶析物’以增加再結晶的核,藉此 可謀求再結晶粒的細微化’而成爲具有優異的成型性的板 -16- (13) (13)200536946 材。鐵的含量如果不足〇 · 〇5 w t%的話’其效果不顯著’若 超過〇.50wt%的話,於鑄造時將會產生粗大的鋁-鐵-矽晶 析物、鋁-(鐵•錳)_矽晶析物,不僅會降低緣邊加工性 ,也會減少薄胚板中的矽的固熔量,因而導致降低了最終 板材的烘烤硬化性。因此,鐵的含量是在0 · 0 5〜0 · 5 0 w t % 的範圍爲宜。鐵的含量的更佳範圍是:0 · 0 5〜0.3 0 w t °/°。 必要元素之一的錳,是添加來作爲使得再結晶粒更加 細微化的元素。藉由將再結晶粒的大小抑制在1 0〜2 5 的較小程度,可成爲具有優異的成型性的板材。錳的含量 如果不足0.05 wt%的話,其效果不足,若超過0.50wt%的 話,於鑄造時將會產生粗大的鋁-鐵-矽晶析物、鋁-(鐵 •錳)-矽晶析物,不僅會降低緣邊加工性,也會減少薄 胚板中的矽的固熔量,因而導致降低了最終板材的烘烤硬 化性。因此,錳的含量是在〇.〇5〜〇.5 0wt%的範圍爲宜。 錳的含量的更佳範圍是:〇.〇5〜0.3 Owt %。 必要元素之一的鈦,如果含量爲〇· 10 wt %以下的話, 即使含有這種程度的鈦,也不會阻礙到本發明的效果,且 可當作薄胚板的結晶粒細微化劑來作用,可確實地防止裂 縫等的胚板的鑄造缺陷。鈦的含量若未滿〇.〇〇5wt%時, 其效果不夠充分,鈦的含量若超過0.1 〇wt%時,鑄造時將 會產生TiAl3等的粗大的金屬間化合物,所以會很明顯地 降低緣邊加工性。因此,鈦的含量是在0.00 5〜0.10 wt % 的範圍爲宜。鈦的含量的更佳範圍是:〇·〇〇5〜0.05wt%。 非絕對必要元素之一的銅是可促進時效硬化’進而提 -17- (14) (14)200536946 筒烘烤硬化性的兀素。銅的含量若未滿〇 · 〇 5 w t %時,:fit效 果很小’銅的含量若超過0.7 0 wt %的話,預備時效處理後 的鋁板的耐力變高’不僅會降低緣邊加工性,而且耐腐軸 性也明顯降低。因此,銅的含量是在〇.〇5〜0.7 〇wt%的範 圍爲宜。銅的含量的更佳範圍是:0.10〜0.60 wt %。 非絕對必要元素之一的鍩是當作可促進再結晶粒細微 化的兀素來添加。錯的含量若未滿0 · 0 5 w t %時,其效果不 夠充分,銷的含量若超過〇 · 4 0 wt %的話,鑄造胚板時會產 生粗大的錫-鉻晶析物而降低緣邊加工性。因此,銷的含 量是在〇 · 〇 5〜0 · 4 0 w t %的範圍爲宜。錯的含量的更佳範圍 是:0.05 〜0.30wt%。 如上所述,根據本發明,可以低成本就製造出具有優 異的最終退火後的烘烤硬化性、緣邊加工性的汽車車體板 用鋁-鎂-矽系合金板。雖然是與傳統方法同樣地,必須實 施爲了抑制自然時效硬化的復原處理或者高溫捲取,但是 因爲可大幅地簡化到其前階段爲止的去除表面層、熱軋等 的過程,所以可大幅地降低整體的製造成本。 茲佐以實施例,說明本發明的最佳形態。 〔實施例一〕 在以下的實施例中,冷軋過程後的試料並不是金屬帶 捲,全部都是切割板。因此,爲了要模擬由連續退火爐( CAL )所進行的金屬帶捲的連續退火過程,是採用:試料 在使用中性鹽的淬火爐中的熔體化處理以及冷水淬火或者 -18- (15) (15)200536946 8 5 °c的溫水淬火。 將表1所示的組成份的熔融金屬經過脫氣鎭靜後,利 用雙帶式鑄造法鑄造成厚度7mm的胚板。藉由觀察胚板 厚度1 /4處的微組織,以交線法來測定D AS (樹枝狀結晶 的間距;Dendrite Arm Spacing)而計算出冷卻速度爲75 °C /秒。對此一胚板實施預定的均質化處理後,以預定的 冷卻速度冷卻至室溫,然後實施冷軋,製作成厚度爲 1 mm的板材。接下來,對於這個冷軋板材,在使用中性 鹽的淬火爐中實施熔體化處理,然後施以(丨)8 5 t的溫 水淬火之後,立即插入到預定的氛圍溫度的退火爐中以預 定的條件下進行熱處理;或者(2 )以冷水淬火之後,在 室溫下放置二十四小時後,以預定的條件下進行熱處理。 此外’爲了要模擬汽車塗裝過程,在熱處理後,在室溫下 保持一個星期,並且測定其〇 · 2 %的耐力,此外,針對於 實施過1 8 0 °C X 3 0分鐘的烘烤處理後的試料,也測定其 0.2 %的耐力。 11¾•進fr過供烤處理則後的耐力的差値視爲「供烤硬化 性」,將超過80MPa者判定爲具有優異的烘烤硬化性。 此外’烘烤處理前的板材,爲了要模擬緣邊加工,先施予 5 %的預變形之後,再以r = 〇 · 5 m m的治具將其彎曲成u字 型後,放入1 m m厚度的間隔件,再進行8 〇。的彎折。對 於無裂痕者註記〇的符號,對於有裂痕者註記χ的符號。 並將詳細的製板過程和評價結果顯示於表2〜6。 200536946 (16) 表1 合成組成 (wt% ) 合金編號 Mg Si Fe Μη Cu Zr Ti A 0.5 0.7 0.2 0.2 _ _ 0.02 B 0.5 0.8 0.2 0.2 _ _ 0.02 C 0.6 0.8 0.2 0.2 _ _ 0.02 D 0.5 1 0.2 0.2 0.5 一 0.02 E 0.5 0.8 0.2 0.2 一 0.15 0.02 F 0.4 1 .2 0.2 0.2 0.1 一 0.02200536946 (1) IX. Description of the invention [Technical field to which the invention belongs] The present invention relates to: continuous casting of aluminum-magnesium-silicon alloys to cast thin blanks, homogenizing treatments, cold rolling, and corresponding measures It is necessary to use a continuous annealing furnace to perform solution heat treatment to obtain a method for manufacturing an aluminum alloy plate having excellent edge workability and high age hardening. According to this method, compared with the conventional technology, it is possible to manufacture the rolls of Ming-Mg-Sand-based alloys that are suitable for forming processes such as bending, stamping, and the like of automobile parts and home appliances at a lower cost. sheet. [Prior art] The aluminum-magnesium-silicon alloy has the characteristic that the strength will increase when heated when it is subjected to coating or the like after forming. Therefore, it is very suitable for applications such as automobile panels. In addition, in order to reduce costs due to improvement in productivity, it has been proposed to manufacture the alloy plate by a continuous casting roll method. For example, as disclosed in Japanese Patent Application Laid-Open No. 62-207 8 51, it will contain sand: 0 · 4 ~ 2 · 5%, magnesium: 0 · 1 ~ 1.2%, and contain copper: 1 · 5. % Or less, zinc: 2.5% or less, chromium: 0.3% or less, manganese 0.6% or less, chromium: 0.3% or less, one or two or more of the four elements are melted The aluminum alloy is 'continuously cast into a blank plate with a thickness of 3 to 15 mm' and then 'cold-rolled', and then subjected to melt heat treatment and quenching treatment to obtain: The maximum amount of intermetallic compounds in the matrix structure An aluminum alloy plate for forming processing having a size of 5 μm or less is a feature and a manufacturing method thereof. -5- 200536946 (2) Japanese Unexamined Patent Publication No. 1 0- 1 1 02 3 2 discloses that "containing silicon: 0.2 to 3.0 ° / 〇, magnesium: 0.2 to 3.0% as essential elements" and Contains four elements of manganese: 0 · 〇1 ~ 0 · 5%, chromium: 〇1 ~ 0.5%, wrong: 0.0 1 ~ 0 · 5%, titanium: 0.0 0 1 ~ 0 · 5%, four elements One or two or more of them, and one or two or more of the three elements consisting of copper: 0 to 2.5%, tin ·· 〇 ~ 〇 · 2%, zinc: 〇 ~ 2.0%, and The iron content is limited to less than 1.0%, and the rest is a direct-cast roll sheet of aluminum alloy composed of aluminum and unavoidable impurities. The aluminum-magnesium-silicon alloy sheet after cold rolling is characterized by: The maximum crystal grain size of the metal structure of the alloy plate is 100 μm or less, and the maximum length of the continuous Mg2Si compound in the surface layer portion is 50 μm or less. In addition, as disclosed in Japanese Patent Application Laid-Open No. 2 0 1-2 6 2 2 6 4, it will contain Shi Xi: 0 · 1 to 2.0%, magnesium: 0 · 1 to 2.0%, and iron: 0 · 1 to 1 · 5% or more containing copper: 2.0% or less, chromium: 0.3% or less, manganese: hafnium · 0% or less, zirconium: 0.3% or less, vanadium: 0.3% or less, titanium: 0.3% or less, Zinc: 1.5% or less, silver: 0.2% or less, one or more of eight elements, an aluminum-magnesium-silicon alloy sheet having excellent toughness and flexibility, which is characterized by: The maximum size of the intermetallic compound of the aluminum alloy plate is 5 μm or less, the maximum aspect ratio is 5 or less, and the average crystal grain size is 30 μm or less. [Patent Document 1] Here, Patent Document 1 refers to: Japanese special Kaizhao 6 2-2 0 7 8 5 1. [Patent Document 2] -6- 200536946 (3) Here, Patent Document 2 refers to Japanese Patent Publication No. 10-1 10232. [Patent Document 3] Here, Patent Document 3 refers to Japanese Patent Publication No. 200 1 -2 62264. [Summary of the Invention] [Problems to be Solved by the Invention] An alloy plate used as an outer panel of a body plate for an automobile is required to have excellent edge workability and baking hardenability. Therefore, an aluminum-magnesium-silicon alloy sheet that has excellent flexibility and age-hardens when heated, meets this requirement. However, the aluminum plate produced by continuous casting and rolling has the disadvantages of poor edge workability and insufficient baking hardenability after painting. Therefore, the technical problem of the present invention is: how to do it can be produced at low cost: it can suppress the G · P band (z 〇ne) crystallized out during natural aging hardening at room temperature, and apply It can quickly crystallize the reinforced phase during packaging, heating, and baking to obtain high baking hardening characteristics, and at the same time, it is rich in flexibility for forming-sand-sand alloy plates. [Means for Solving the Problems] In order to achieve the above object, the present invention proposes the following solutions. A double-belt casting machine is used to continuously cast the aluminum-magnesium-silicon alloy thin blank sheet. Then the cast thin blank sheet is directly wound into a strip roll. For this strip roll, 200536946 (4) under proper conditions Homogenization treatment is performed, and after cold rolling, if necessary, the melt heat treatment performed by a continuous annealing furnace is added to separate the compounds, thereby improving edge processability and greatly reducing Process. In addition, microsegregation is reduced by the homogenization treatment, and the cooling rate after the homogenization treatment is accelerated to suppress the precipitation of M g2 Si during cooling, so that the bake hardenability and edge processing after the final annealing can be obtained. Aluminum sheet for automotive body with excellent properties. In order to solve the above-mentioned problems, the method for manufacturing an aluminum alloy sheet of the present invention is characterized in that after the thin blank sheet is coiled, homogenization treatment is performed, cold rolling is performed, and then melt heat treatment is performed. Specifically, it is a method for manufacturing an A1-Mg-Si alloy plate having excellent baking hardenability and edge workability as described in claim 1, characterized in that it will contain magnesium: 0.30 ~ 1.OOwt%, silicon: 0.30 to 1.20wt%, iron: 0.05 to 0.50wt%, ferrite: 0.05 to 0.50wt%, and titanium ... 0.0 0 5 to 0.10wt ° / 〇, or copper: 0.05 ~ 0.70wt ° / 〇 or zirconium · 0.50 ~ 0.40wt% of one or more of them, the rest is a molten alloy composed of aluminum and unavoidable impurities, using a double-belt casting method to 1/4 of the thickness of the blank The cooling rate is 40 ~ 150 t: / s. The blank with a thickness of 5 ~ 15 mm is casted, and then rolled into an aluminum alloy strip, and then homogenized. The cooling rate should be at least 25 ° C or lower, followed by cold rolling and then melt heat treatment (the invention described in claim 1). In the manufacturing method described above, the homogenization treatment is performed by using a stepwise annealing furnace at a temperature rising rate of 30 t / hour or higher to 5 2 0 to 5 8 (TC, and maintained at the temperature of 2 to 24). An hour is appropriate (please refer to the invention described in claim 2 in 200536946 (5).) The above-mentioned melt heat treatment is performed by using a continuous annealing furnace at a heating rate of 10 ° C / sec or higher to 5 3 0 to 5 60 ° C, and it is preferable to maintain the temperature within 30 seconds (the invention described in claim 3). In addition, in the invention described in claim 3 above, it may be performed after the melt heat treatment. It is cooled to room temperature at a rate of 10 t: / s or more. 'Then, a continuous annealing furnace is used to perform a recovery process maintained at a temperature of 260 to 300 ° C for 30 seconds or less, at 10 ° C / Cooling rate of more than seconds to room temperature (the invention described in claim 4). Alternatively, in the invention described in claim 3 above, after the melt heat treatment, the temperature may be reduced to 10 ° C / Cooling speed above 2 seconds to water cooling below 250 ° C, and then using air to It is cooled to 60 to 100 ° C at a cooling rate of 1 to 20 ° C / second, and then rolled up, and then subjected to preliminary aging treatment (the invention described in claim 5) until it is cooled to room temperature. Or, In the invention described in claim 3, after the above-mentioned melt heat treatment, the temperature may be cooled to room temperature at a rate of 10 ° C / sec or more. Then, the continuous annealing furnace is used to perform the cooling at 2 6 0 to 3 0. 0 t: The temperature is maintained within 30 seconds of recovery under the state of temperature, and it is cooled to 60 to 100 ° C at a cooling rate of 1 ° C / second or more, and then rolled up and then cooled to room temperature. The preliminary aging treatment (invention according to claim 6). [Effects of the Invention] According to the method for producing an aluminum alloy plate of the present invention, an aluminum alloy plate having excellent baking hardenability and edge workability can be obtained. In addition, the manufacturing method-9-200536946 (6) has an extremely short manufacturing process, and an aluminum alloy plate can be obtained at a low cost. [Embodiment] [Embodiment of the Invention] The present invention relates to an aluminum-magnesium-silicon alloy A method for manufacturing a rolled plate, which is characterized by using a double-belt casting After casting into a thin blank, it is directly rolled into a strip, and the strip is subjected to a homogenization treatment, followed by cold rolling, and then a melt heat treatment. The present invention utilizes a molten alloy composed of the above components. Double-belt casting method, with a cooling rate of 1/4 of the thickness of the slab, 40 ~ 150 ° C / s, casting a slab of 5 ~ 15 mm in thickness, and then winding it into a bark After the alloy strip is rolled, it is subjected to a homogenization treatment, cooled at a cooling rate of 500 ° C./hour or higher to at least 250,000 t, and then cold-rolled, followed by melt heat treatment. The so-called "dual-belt casting method" is a method in which molten alloy is injected between rotating belts that face each other and are being water-cooled, and the molten alloy is solidified by cooling from the belt surface to be cast into a thin blank. In the present invention, a green sheet with a thickness of 5 to 15 mm is cast using a dual-belt casting method. If the thickness of the slab is more than 5 mm, it is difficult to roll the thin slab into a roll. If the thickness of the slab is less than 5 mm, the productivity will be reduced, and the casting of the thin slab will be difficult. Become difficult. This method of using a dual-belt casting method to cast a slab with a thickness of 5 to 15 mm m can control the cooling rate at a thickness of 1/4 of the slab to 40 to 150 ° C / sec. The cooling rate was calculated by observing the microstructure 200536946 at a thickness of 1/4 of the embryonic plate, and measuring the D A S (dendritic crystal spacing; Dendrite Arm Spacing) using the intersection method. If the cooling rate is less than 40 ° C / sec, the cast structure generated during solidification at the center of the blank will become coarse and the workability of the edge will be reduced. If the cooling rate exceeds 150 ° C / sec The aluminum-iron-silicon crystals and aluminum- (iron-manganese) -silicon crystals will have a size of 1 μm or less, and the size of the recrystallized grains will become coarse and become 30 μm or more. After winding the thin blank, the metal strip is rolled under appropriate conditions and subjected to homogenization treatment, so that aluminum-iron-silicon crystals, aluminum- (iron • Manganese) -silicon crystals are separated, and the edge processability can be improved. In addition, it is possible to obtain a thin slab in a state where the finer Mg2 Si crystals remaining in the cast structure are completely solidified in the matrix structure, and the effect of the melt treatment after the cold rolling process can be improved. . The reason why the cooling after the homogenization treatment is set to be: at a cooling rate of 500 ° C / hour or more to at least 250 ° C or less, is to suppress the coarse Mg 2 as much as possible. S i crystallizes out, to make the consideration that some mongolian and sand are supersaturated and solidified in matri X organization. After winding the thin blank, the metal strip coil is inserted into a split annealing furnace at a temperature increasing rate of 30 ° C / hour or higher, and the temperature is increased to 5 2 0 to 5 8 0 ° C. After homogenization for 2 to 24 hours, the metal strip coil can be taken out of the fractional annealing furnace and forcedly cooled to room temperature with air at a cooling rate of 500 ° C / hour or more. Its -11-200536946 (8) Cooling method ’For example, on the one hand, the metal strip roll can be loosened and straightened, and on the other hand, it can be cooled by a fan. The reason why the heating rate in the homogenization process after the coiling of the thin slab is heated up to the temperature of the homogenization process is set to a temperature increase rate of 30 ° C / hour or more. If it is less than 30 ° C / hour, it will take more than 16 hours to reach the predetermined homogenization temperature. In this case, the manufacturing cost will be increased. The reason why the homogenization temperature should be set in the range of 5 2 0 to 5 80 ° C is because the temperature is less than 52 (TC, aluminum-iron-silicon precipitates, aluminum- (iron-manganese ) -The separation of silicon crystals is not enough to make the Mg 2 S i crystallized during casting fully solidified in the altar structure, but if the temperature exceeds 5 80 ° C, the low melting point metal will It will melt and cause a meltdown phenomenon. The reason why the homogenization treatment time should be set in the range of 2 to 24 hours is because if the time is less than 2 hours, aluminum-iron-silicon crystals and aluminum- (Iron • Manganese)-The separation of silicon crystals is not sufficient, and Mg2Si crystallized during casting cannot be fully solidified in the altar structure. If the time exceeds 24 hours, M g 2 S i is fully solidified in Al Qaeda, and manganese and silicon tend to be saturated, which will lead to increased costs. This metal strip coil is further cold-rolled and then melt-processed, which is one of its characteristics. This type of melt treatment is usually carried out in a continuous annealing furnace (CAL) as The so-called continuous annealing furnace (CAL) is a facility that continuously melts metal strips in 200536946 (9). It is characterized by: an induction heating device for heat treatment and a water tank for water cooling And air-cooled air nozzles, etc. As for the melt treatment, the continuous annealing furnace is heated to 5 3 0 ~ 56 (TC) at a temperature increase rate of 10 ° c / sec or more, and maintained for 30 seconds. In the melt treatment, the reason why the heating rate during the homogenization process to the temperature of the homogenization process is set to be: a reason why the temperature increase rate is 10 ° c / hour or more. If the heating rate does not exceed 10 ° C / hour or more, the feeding speed of the metal strip coil will become extremely slow, and as a result, the processing time will be longer, which will increase the manufacturing cost. The reason why the temperature of the chemical treatment is set in the range of 5 3 0 to 5 60 ° C is that if the temperature does not reach 5 3 (TC, M g2 S crystallized during casting or cooling after the homogenization treatment cannot be achieved). i fully It melts in Al Qaeda, but if the temperature exceeds 5 60 ° C, the low melting point metal will melt and cause the phenomenon of melting. The reason why the melt treatment time is set to within 30 seconds is because : If the processing time exceeds 30 seconds, the Mg2Si crystallized during casting or cooling after the homogenization process will be fully solid-dissolved in the base structure, not only manganese and silicon will tend to be saturated, but the metal strip will be rolled. The feeding speed will also become too slow, and as a result, the processing time will be longer, which will increase the manufacturing cost. After melt processing, it will be cooled to room temperature at a cooling rate of 10 ° C / sec or more. Is one of its characteristics. The reason for setting the cooling rate of the melt-treated • 13- (10) (10) 200536946 to 10 ° c / sec or more is because if the cooling rate does not reach 10 ° c / sec, during the cooling process , Silicon will crystallize on the grain boundary, which will lead to the deterioration of edge processability. After performing the homogenization treatment on the thin blank sheet, cold rolling may be further performed, and after the melt treatment is performed, it is cooled to room temperature at a rate of 10 ° c / sec or more, and the metal strip coil is placed in the chamber. The temperature is then maintained in a continuous annealing furnace at a temperature of 260 to 300 ° C for 30 seconds, and then cooled to room temperature at a rate of 10 ° C / second. Such a melt treatment process and a recovery process are usually preferably performed in a continuous annealing furnace (CAL). The so-called continuous annealing furnace (CAL) is a device for continuously melting a metal strip coil, and is characterized by including an induction heating device for performing heat treatment, a water tank for water cooling, and Air-cooled air nozzles, etc. Through this restoration process, during the process of being left at room temperature after the melt treatment, the GP zone that is naturally aged and crystallized can be re-solidified. It can be applied after coating, baking and heating. Get full strength. In addition, in order to obtain sufficient strength after coating, baking and heating, after the process of being melt-treated and left at room temperature, the restoration is performed at a temperature of 2 60 to 3 00 ° C. deal with. If the temperature of the recovery process is lower than 26 ° C, sufficient baking hardenability cannot be obtained. However, if it exceeds 300 ° C, the edge processability will be deteriorated. As to why the retention time of the recovery process should be The reason for limiting it to less than 30 seconds is that if the processing time exceeds 30 seconds, 'not only in the process of being placed at room temperature after melt treatment', the natural aging can be performed -14- 200536946 (11) crystallization The GP zone that comes out is fully re-solidified, and the feeding speed of the metal strip coil becomes too slow. As a result, the processing time will be longer, and the manufacturing cost will be increased. After the homogenization treatment, cold rolling may be further performed, and then the continuous annealing furnace (CAL) is used for melt treatment, and then water-cooled to 2 5 at a cooling rate (first cooling rate) of 10 ° C / sec or more. Below 0 ° C, then use air to cool it to 60 ~ 100 at a cooling rate of 1 ~ 2 (TC / sec) (second cooling rate), then roll the thin blank into a metal strip, and then cool it. Until room temperature This melt treatment and subsequent cooling are usually carried out using a continuous annealing furnace (CAL). This melt treatment and subsequent cooling can be performed to uniformly generate supply in the base structure. Heat treatment (preliminary aging treatment) of the crystal nuclei that are "cooled out" to obtain sufficient strength after coating, baking, and heating. After homogenizing the thin green sheet, cold rolling can be performed and then implemented. After heating to 5 3 0 to 560 t at a speed of 10 ° c / second or more, and maintaining the state in a melt treatment within 30 seconds, cool to room temperature at a speed of 10 ° C / second or more, and then, After carrying out a recovery process within 260 to 300 ° (: within a range of 30 seconds, and then cooling to 60 to 100 ° C at a cooling rate of 1 ° C / second or more, the thin blank sheet is rolled into a metal strip roll. Preliminarily aging treatment to cool down to room temperature. This melt treatment, and subsequent cooling, recovery treatment, and subsequent cooling are usually carried out using a continuous annealing furnace (CAL). According to this manufacturing Method 'Melting Place it at room temperature after the treatment. 'No -15- (12) (12) 200536946 Only the G · P bands that have been crystallized by natural aging can be sufficiently re-solidified', and it can be cooled after the restoration treatment. The heat treatment (preliminary aging treatment) of the crystal nuclei for the precipitation of / 3, is uniformly generated in the altar structure, so that the endurance after coating and baking heating can be further improved. Next, the alloy of the present invention will be described. The meaning of the ingredients and the reasons for limiting its content. Magnesium, one of the necessary elements, will be solidified in the almond after the melt treatment, and will be crystallized together with silicon during coating and baking heating as Strengthening phase to increase strength. The reason why the amount of magnesium is limited to 0.30 to 1.00% by weight is because if the amount is less than 0.30% by weight, the effect is small, and if it exceeds 1.000% by weight, the melt treatment will be reduced. Back edge workability. A more preferable range of the magnesium content is limited to 0.30 to 0.70 wt%. Silicon, which is one of the essential elements, will be treated with magnesium as a mesophase of Mg2Si, which is called Θ, during coating and baking heating, or A strengthened phase similar to this mesophase is crystallized, thereby improving the strength. The reason for limiting the content of silicon to 0.30 to 1.20 wt% is because if it is less than 0.30 wt%, the effect is small, and if it exceeds 1.2, 〇wt%, will reduce the edge edge processability after melt processing. The better range of the content of silicon is limited to: 0.60 ~ 1.20wt%. Iron, one of the essential elements, is made by iron and silicon, If manganese is present at the same time, a large amount of aluminum-iron-silicon crystals and aluminum- (iron-manganese) -silicon crystals with a size of 5 μm or less can be generated during casting to increase the recrystallized core, thereby Refinement of the recrystallized grains can be achieved to obtain a plate with excellent moldability. -16- (13) (13) 200536946 material. If the iron content is less than 0.5% by weight, 'the effect is not significant' if it exceeds 〇.50wt%, coarse aluminum-iron-silicon crystals and aluminum- (iron-manganese) will be produced during casting _ Silicon crystals will not only reduce the edge processability, but also reduce the solid solution amount of silicon in the thin blank, thereby reducing the baking hardenability of the final sheet. Therefore, the iron content is between 0 · 0 A range of 5 to 0 · 50 wt% is preferable. A more preferable range of iron content is: 0 · 0 5 to 0.3 0 wt ° / °. Manganese, one of the necessary elements, is added to make the recrystallized grains more Refined element. By suppressing the size of the recrystallized particles to a small extent of 10 to 25, it can become a sheet with excellent moldability. If the content of manganese is less than 0.05 wt%, its effect is insufficient. If it exceeds 0.50wt%, coarse aluminum-iron-silicon precipitates and aluminum- (iron-manganese) -silicon precipitates will be produced during casting, which will not only reduce edge workability, but also reduce thin blanks. The solid-melting amount of silicon in the lead reduces the baking hardenability of the final sheet. Therefore, the content of manganese is preferably in the range of 0.05 to 0.5 wt%. A more preferable range of the content of manganese is : 0.05 to 0.3 Owt%. Titanium, one of the necessary elements, if the content is not more than 0.10wt%, even Titanium having such a degree does not hinder the effect of the present invention, and can act as a micronizer for crystal grains of a thin slab, which can reliably prevent casting defects such as cracks on the slab. If the content of titanium is When the content is less than 0.05% by weight, the effect is insufficient. If the content of titanium exceeds 0.1% by weight, coarse intermetallic compounds such as TiAl3 will be generated during casting, so the edge workability will be significantly reduced. Therefore, the content of titanium is preferably in a range of 0.00 5 to 0.10 wt%. A more preferable range of the content of titanium is: 0.005 to 0.05 wt%. Copper, which is not an absolutely necessary element, can promote aging hardening ', and further improve the hardening property of the tube baking -17- (14) (14) 200536946. If the content of copper is less than 0.05% by weight, the fit effect is small. If the content of copper exceeds 0.70% by weight, the endurance of the aluminum plate after preliminary aging treatment is increased. And the corrosion resistance is also significantly reduced. Therefore, the content of copper is preferably in the range of 0.05 to 0.7 wt%. A more preferable range of the copper content is: 0.10 to 0.60 wt%. Plutonium, which is not an absolutely necessary element, is added as an element that promotes miniaturization of recrystallized grains. If the content is less than 0. 0 5 wt%, the effect is not sufficient. If the content of pin exceeds 0.4 0 wt%, coarse tin-chromium precipitates will be produced during casting of the blank and the edges will be reduced. Processability. Therefore, the content of the pin is preferably in the range of 0.5 to 0.40 wt%. A more preferable range of the content is: 0.05 to 0.30 wt%. As described above, according to the present invention, an aluminum-magnesium-silicon-based alloy plate for an automobile body panel having excellent baking hardenability and edge workability after final annealing can be manufactured at low cost. Although it is necessary to carry out restoration treatment or high-temperature coiling to suppress natural aging hardening in the same manner as the conventional method, the process of removing the surface layer and hot rolling up to the previous stage can be greatly simplified, so it can be greatly reduced. Overall manufacturing costs. Examples are given to explain the best mode of the present invention. [Embodiment 1] In the following embodiments, the samples after the cold rolling process are not metal strip coils, but all are cutting plates. Therefore, in order to simulate the continuous annealing process of metal strip coils performed by a continuous annealing furnace (CAL), the sample is melted in a quenching furnace using a neutral salt and cold water quenched or -18- (15 ) (15) 200536946 8 Warm water quenching at 5 ° C. The molten metal having the composition shown in Table 1 was degassed and then statically casted into a green sheet having a thickness of 7 mm by a two-belt casting method. By observing the microstructure at a thickness of 1/4 of the slab, the DAS (Dendrite Arm Spacing) was measured by the intersection method to calculate the cooling rate of 75 ° C / sec. This blank was subjected to a predetermined homogenization treatment, and then cooled to room temperature at a predetermined cooling rate, and then cold-rolled to produce a sheet having a thickness of 1 mm. Next, for this cold-rolled sheet, melt treatment was performed in a quenching furnace using a neutral salt, and then (5) 8 5 t of warm water was used for quenching, and then immediately inserted into the annealing furnace at a predetermined ambient temperature Heat treatment is performed under predetermined conditions; or (2) After quenching with cold water, leaving it to stand at room temperature for twenty-four hours, heat treatment is performed under predetermined conditions. In addition, in order to simulate the car coating process, it was maintained at room temperature for one week after heat treatment, and its endurance was measured at 0.2%. In addition, the baking treatment was performed at 180 ° CX for 30 minutes. After the test, the endurance of 0.2% was also measured. 11¾ • The difference in endurance after fr has been subjected to baking treatment is regarded as "baking hardening property", and those exceeding 80 MPa are judged to have excellent baking hardening property. In addition, in order to simulate the edge processing, the plate before baking treatment is given a 5% pre-deformation, and then it is bent into a U shape with a jig of r = 0.5 mm, and then put into 1 mm. The thickness of the spacer is then adjusted to 80. Bend. The symbol of 0 is noted for those without cracks, and the symbol of χ is noted for those with cracks. The detailed board-making process and evaluation results are shown in Tables 2 to 6. 200536946 (16) Table 1 Synthetic composition (wt%) Alloy number Mg Si Fe Mn Cu Zr Ti A 0.5 0.7 0.2 0.2 _ _ 0.02 B 0.5 0.8 0.2 0.2 _ _ 0.02 C 0.6 0.8 0.2 0.2 _ _ 0.02 D 0.5 1 0.2 0.2 0.5-0.02 E 0.5 0.8 0.2 0.2-0.15 0.02 F 0.4 1.2 .2 0.2 0.2 0.1-0.02

表2是顯示改變了均質化處理條件以及均質化處理後 的冷卻速度的情況之結果。將均質化處理後的胚板冷軋至 板厚度成爲1 mm爲止,將此一冷軋板利用中性鹽淬火爐 ,在預定溫度保持1 5秒鐘的熔體化處理後,實施8 5 °C溫 水淬火處理後,立即插入到85 °C氛圍溫度的退火爐中進 行8小時的預備時效處理。符合本發明的條件範圍者(1 〜7 ),都具有優異的烘烤硬化性以及緣邊加工性。若未 實施均質化處理的話,烘烤硬化性以及緣邊加工性都不佳 (8、1 0 )。此外,如果均質化處理後的冷卻速度太慢的 話,烘烤硬化性會惡化(9 )。 -20- (17)200536946 緣邊 加工性 〇 〇 〇 〇 〇 〇 〇 X 〇 X I 丨烘烤 I 硬化性 (MPa) (N o r—H s 1 < ON ON O On 5: 00 烘烤前後 的耐力 (MPa) 100/192 1 110/210 刪 107/209 1 122/221 115/213 117/208 1 1 110/158 90/145 92/160 預備時效 85〇Cx8h 85〇Cx8h 85〇C><8h 85〇C><8h 85〇Cx8h 85〇C><8h 85〇Cx8h 85〇Cx8h 85〇C><8h 85〇C><8h I 熔體化 處理溫度 550〇C 550°C 530〇C 540〇C 550〇C 550〇C 550〇C 550〇C 550〇C 冷軋板 i 厚度 1mm 1mm 1mm 1mm 1 1mm 1mm 1mm 1mm 1mm linm rrn 1 勸 m μ 冷卻速度 (°C/h) 1500 1700 〇 ^T) 1000 1000 1000 1000 摧 250 摧 保持時間 VO 〇 o 〇 〇〇 δ 保持溫度 § § 550 i 丨530 530 o m ^T) 550 560 昇溫速度 (°C/h) o O j 鑄造方式/ 胚板厚度 (mm) 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 1 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 合金 編號 < PQ PQ U Q ω < PQ PQ q Η-ί (N m 寸 in 〇〇 ON o 發明 比較Table 2 shows the results of changing the conditions of the homogenization treatment and the cooling rate after the homogenization treatment. The homogenized cold-rolled slab was cold-rolled to a thickness of 1 mm, and this cold-rolled slab was melt-treated at a predetermined temperature for 15 seconds using a neutral salt quenching furnace, and then subjected to 8 5 ° After being quenched with warm water, it was immediately inserted into an annealing furnace at an ambient temperature of 85 ° C for 8 hours of preliminary aging treatment. Those meeting the condition range of the present invention (1 to 7) all have excellent baking hardenability and edge workability. Without homogenization, baking hardenability and edge workability are not good (8, 10). In addition, if the cooling rate after the homogenization process is too slow, the baking hardenability is deteriorated (9). -20- (17) 200536946 Marginal workability 〇〇〇〇〇〇〇〇〇 丨 Bake I hardenability (MPa) (N or—H s 1 < ON ON O On 5: 00 before and after baking Endurance (MPa) 100/192 1 110/210 Delete 107/209 1 122/221 115/213 117/208 1 1 110/158 90/145 92/160 Preliminary aging 85 ° Cx8h 85 ° Cx8h 85 ° C > < 8h 85 ° C > < 8h 85 ° Cx8h 85 ° C > < 8h 85 ° Cx8h 85 ° C × 8h 85 ° C > < 8h 85 ° C > < 8h I Melt treatment temperature 550 ° C 550 ° C 530 ° C 540 ° C 550 ° C 550 ° C 550 ° C 550 ° C 550 ° C Cold rolled platei Thickness 1mm 1mm 1mm 1mm 1 1mm 1mm 1mm 1mm 1mm linm rrn 1 Persuade m μ Cooling speed (° C / h) 1500 1700 〇 ^ T) 1000 1000 1000 1000 Destruction 250 Destruction retention time VO 〇o 〇〇〇δ Holding temperature § § 550 i 丨 530 530 om ^ T) 550 560 Heating rate (° C / h) o O j Casting method / Blank thickness (mm) Dual band / 7 Dual band / 7 Dual band / 7 Dual band / 7 1 Dual band / 7 Dual band / 7 Dual band / 7 Dual band / 7 Dual band / 7 Double-belt / 7 Alloy number < PQ PQ UQ ω < PQ PQ q Η-ί (N m inch in 〇〇 ON o invention comparison

-21 - (18) 200536946 表3是顯示改變了均質化處理的溫度/時間的情況之 結果。將均質化處理後的胚板冷軋至板厚度成爲1 mm爲 止,將此一冷軋板利用中性鹽淬火壚,在預定溫度保持 1 5秒鐘的熔體化處理後,實施8 5 °c溫水淬火處理後,立 即插入到8 5 °C氛圍溫度的退火爐中進行8小時的預備時 效處理。符合本發明的條件範圍者(1 1〜丨4 ),都具有優 異的烘烤硬化性以及緣邊加工性。若均質化處理的溫度太 低的情況(1 5 )或者保持時間太短的情況(〗6 ),烘烤硬 化性以及緣邊加工性都會惡化。-21-(18) 200536946 Table 3 shows the results when the temperature / time of the homogenization process was changed. The homogenized cold-rolled blank was cold-rolled to a thickness of 1 mm. This cold-rolled blank was quenched with a neutral salt, and melt-treated at a predetermined temperature for 15 seconds, and then subjected to 8 5 ° c After the warm water quenching treatment, it was immediately inserted into an annealing furnace at an ambient temperature of 85 ° C for 8 hours of preliminary aging treatment. Those meeting the condition range of the present invention (1 1 to 4) all have excellent baking hardenability and edge workability. If the temperature of the homogenization process is too low (1 5) or the holding time is too short (〗 6), the baking hardenability and edge workability will deteriorate.

-22- 200536946 I 緣邊 i... 加工性 〇 〇 〇 〇 X X 烘烤 硬化性 (MPa) o T—H s s r—H s r 1 i ο JO 烘烤前後 的耐力 YS(MPa) 110/210 111/213 i- 1 107/209 i- 112/215 !- 95/165 100/175 預備時效 85〇C><8h 85〇C><8h 85〇Cx8h 85°〇8h 85〇〇8h 85°C><8h 熔體化 處理溫度 O in 530 540 550 ^T) 冷車L板 厚度 1mm 1mm 1mm 1mm 1mm 1mm mi 1 勁 m 冷卻速度 (°C/h) 1500 1500 1500 1500 1500 1500 保持時間 IT) O 1-Ή η 保持溫度 § IT) 560 550 o m un 500 560 昇溫速度 (°C/h) 鑄造方式/ 胚板厚度 I | (mm) 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 I合金 ί i編號 I PQ m υ U PQ CQ Q h—( :: (N 寸 Ό 發明 比較-22- 200536946 I edge i ... workability 〇〇〇〇XX baking hardening (MPa) o T—H ssr—H sr 1 i ο JO endurance before and after baking YS (MPa) 110/210 111 / 213 i- 1 107/209 i- 112/215!-95/165 100/175 Preliminary aging 85 ° C > < 8h 85 ° C > < 8h 85 ° Cx8h 85 ° 〇8h 85 ° 8h 85 ° C > < 8h Melt treatment temperature O in 530 540 550 ^ T) Thickness of cold car L plate 1mm 1mm 1mm 1mm 1mm 1mm mi 1 Cooling speed (° C / h) 1500 1500 1500 1500 1500 1500 Holding time IT ) O 1-Ή η Holding temperature § IT) 560 550 om un 500 560 Heating rate (° C / h) Casting method / Blank thickness I | (mm) Double-belt type / 7 Double-belt type / 7 Double-belt type / 7 double-belt type / 7 double-belt type / 7 double-belt type / 7 I alloy ί i number I PQ m υ U PQ CQ Q h— (:: (N inchΌ invention comparison

200536946 (20) 表4是顯示改變了均質化處理條件以及復原處理條件 後的情況之結果。將均質化處理後的胚板冷軋至板厚度成 爲1 m m爲止,將此一冷軋板利用中性鹽淬火爐,在預定 溫度保持1 5秒鐘的熔體化處理後,實施冷水淬火處理後 ,在室溫下放置24小時後,在預定溫度下保持丨5秒鐘以 進行復原處理。符合本發明的條件範圍者(1 7〜2 0 ),都 具有優異的烘烤硬化性以及緣邊加工性。復原處理溫度( 再加熱溫度)太低的情況(2 1 ),烘烤硬化性會惡化。復 原處理溫度(再加熱溫度)太高的情況(22 ),緣邊加工 性會惡化。此外,即使復原處理條件符合本發明的範圍, 但是均質化處理溫度太低的情況(2 3 )或者保持時間太短 的情況(2 4 ),緣邊加工性會惡化。均質化處理後的冷卻 速度太慢的情況(25 ),烘烤硬化性會惡化。200536946 (20) Table 4 shows the results after changing the homogenization treatment conditions and the restoration treatment conditions. The homogenized cold-rolled blank was rolled to a thickness of 1 mm. This cold-rolled blank was melt-treated at a predetermined temperature for 15 seconds in a neutral salt quenching furnace, and then subjected to cold-water quenching. After that, it was left at room temperature for 24 hours, and then kept at a predetermined temperature for 5 seconds to perform a recovery process. Those meeting the conditions (17 to 20) of the present invention have excellent baking hardenability and edge workability. If the recovery processing temperature (reheating temperature) is too low (2 1), the baking hardenability will deteriorate. If the restoration temperature (reheating temperature) is too high (22), the edge workability will deteriorate. In addition, even if the restoration processing conditions are within the scope of the present invention, the edge workability is deteriorated in the case where the homogenization treatment temperature is too low (2 3) or the holding time is too short (2 4). If the cooling rate after homogenization is too slow (25), the baking hardenability will be deteriorated.

-24- 200536946-24- 200536946

iH、Haii«#·$Λ5> 酲数sMlfsl癒口 ΐΜ/^4ς_ίΜ^Μ&ί 寸嗽 緣邊 i . … 加工性 〇 〇 〇 〇 〇 X X X 〇 烘烤 硬化性 ! (MPa) o r i s 1—^ s r-H s S o v ^ o 烘烤前後 :的耐力 YS(MPa) 110/210 111/213 107/209 112/215 95/170 127/229 97/197 90/160 95/145 再加熱 溫度 270 O (N 290 290 240 310 290 280 290 熔體化 處理溫度 /s P 〇 m un 540 550 in 550 550 冷乳板 厚度 1mm 1mm 1 1mm 1mm 1mm ί 1mm 1 1mm 1mm 1mm rm 1 Sri m 冷卻速度 1 ί (°c/h) 1500 2000 1000 2500 1500 1500 〇 1000 200 1保持時間 o VO δ 1保持溫度 /^\ § § 550 530 560 560 500 560 昇溫速度 (°C/h) 鑄造方式/ I胚板厚度 (mm) 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 I 雙帶式/7 ! 雙帶式/7 雙帶式/7 1 雙帶式/7 ί 雙帶式/7 合金 編號 PQ 0Q U U m PP PQ PQ PQ q 1—Η 卜 00 (N CN rn (N (N 發明 1 比較 -25- 200536946 (22) 表5是顯示改變了均質化處理條件以及熔體化處理後 的冷卻方式後的情況之結果。將熔體化處理後的冷卻速度 劃分成兩階段,從熔體化處理溫度至中間溫度爲止的冷卻 速度被定義爲第一冷卻速度,從中間溫度至捲繞金屬帶的 溫度爲止的冷卻速度被定義爲第二冷卻速度。將均質化處 理後的胚板冷軋至板厚度成爲1 mm爲止,將此一冷軋板 利用中性鹽淬火爐,在預定溫度保持1 5秒鐘的熔體化處 理後,以第一冷卻速度冷卻至中間溫度爲止,然後,以第 二冷卻速度冷卻至捲繞金屬帶的溫度爲止,然後以5 °C / 小時的速度冷卻至室溫爲止。 符合本發明的條件範圍者(2 6〜2 8 ),都具有優異的 烘烤硬化性以及緣邊加工性。熔體化處理後的第一冷卻速 度太慢的話(29 );或者第二冷卻速度太慢的話(3 1 ); 或者中間溫度太高的話(3 0 ),緣邊加工性會惡化。捲繞 金屬帶時的溫度太低的話(3 2 ),烘烤硬化性會惡化。相 反地,捲繞金屬帶時的溫度太高的話(3 3 ),緣邊加工性 會惡化。此外,均質化處理溫度太低的情況(3 4 )或者保 持時間太短的情況(3 5 ),緣邊加工性會惡化。均質化處 理後的冷卻速度太慢的情況(3 6 ),烘烤硬化性會惡化。 -26- (23) 200536946 (23)iH, Haii `` # · $ Λ5 > Number of sMlfsl more mouth ΐΜ / ^ 4ς_ίΜ ^ Μ & Inch edge edge i... Workability 〇〇〇〇〇XXX 〇 Baking hardening! (MPa) oris 1— ^ s rH s S ov ^ o Before and after baking: Endurance YS (MPa) 110/210 111/213 107/209 112/215 95/170 127/229 97/197 90/160 95/145 Reheat temperature 270 O ( N 290 290 240 310 290 280 290 Melt temperature / s P 〇m un 540 550 in 550 550 Cold milk plate thickness 1mm 1mm 1 1mm 1mm 1mm ί 1mm 1 1mm 1mm 1mm rm 1 Sri m Cooling speed 1 ί (° c / h) 1500 2000 1000 2500 1500 1500 〇1000 200 1 Holding time o VO δ 1 Holding temperature / ^ \ § 550 530 560 560 500 560 Heating rate (° C / h) Casting method / I blank thickness (mm ) Double-Band / 7 Double-Band / 7 Double-Band / 7 Double-Band / 7 I Double-Band / 7! Double-Band / 7 Double-Band / 7 1 Double-Band / 7 ί Double-Band / 7 Alloy number PQ 0Q UU m PP PQ PQ PQ q 1—Η Bu 00 (N CN rn (N (N invention 1 comparison-25- 200536946 (22) Table 5 shows the changes in homogenization treatment conditions and melt treatment The result of the situation after the cooling method. The cooling rate after the melt treatment is divided into two stages, and the cooling rate from the melt treatment temperature to the intermediate temperature is defined as the first cooling rate, from the intermediate temperature to the winding The cooling rate up to the temperature of the metal strip is defined as the second cooling rate. The slab after the homogenization process is cold-rolled to a thickness of 1 mm, and this cold-rolled sheet is subjected to a neutral salt quenching furnace at a predetermined temperature. After the melt treatment for 15 seconds, it is cooled to the intermediate temperature at the first cooling rate, and then cooled to the temperature of the wound metal strip at the second cooling rate, and then cooled at a rate of 5 ° C / hour. Up to room temperature. Those who meet the conditions of the present invention (2 6 to 2 8) have excellent baking hardenability and edge processability. If the first cooling rate after melt processing is too slow (29) If the second cooling rate is too slow (3 1); or if the intermediate temperature is too high (3 0), the edge processability will be deteriorated. If the temperature when winding the metal strip is too low (3 2), the baking hardenability will be deteriorated. Conversely, if the temperature when winding the metal strip is too high (3 3), the edge processability will deteriorate. In addition, when the homogenization treatment temperature is too low (3 4) or when the holding time is too short (3 5), the edge processability is deteriorated. If the cooling rate after homogenization is too slow (3 6), the baking hardenability will deteriorate. -26- (23) 200536946 (23)

ώΗαίίΙί#·$Λ5>醒斅线EMsis 盤 _ 晒領 ii ·坭柁一ί®Λ3>Μ%ί s 嗽 緣邊 加工 性 1_ 〇 〇 〇 X X X 〇 X X X 〇 烘烤 硬化性 (MPa) O s 〇 ON ON cn o o § 烘烤前後 的耐力 YS(MPa) 1_ 110/210 105/207 101/211 106/201 101/197 102/198 112/165 130/240 97/197 -J 104/194 89/134 捲繞金屬帶 時的溫度 (°C) 00 ο § § g o 00 m 00 o 〇〇 第2冷 卻速度 rc/秒) 中間 溫度 丨oc) i 1_ 200 200 200 200 300 250 200 200 200 200 200 第1冷 卻速度 cam O ο r—' o 〇 r—^ o t—1 ο o o o o 熔體化 處理溫度 rc) 550 o m κη 〇 wo 550 550 〇 un uo yr) 冷軋板 1厚度 _ 1mm 1 mm lmm lmm lmm lmm lmm lmm lmm \ lmm lmm mi 1 eti m Μ 冷卻 速度 (°C/h) 1500 Nooo 1000 Ί 1500 1500 1500 1500 2000 1000 1000 200 保持 時間 IT) VO ^sO VsO — δ 保持 i溫度 P ! 500 560 550 o § 560 560 560 o ID s m 560 昇溫 速度 I (°C/h) 鑄造方式/ 胚板厚度 (mm) 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 雙帶式/7 編號 DQ PQ CO 0Q CQ CQ DQ CQ CQ cn Q (N (N 00 (N ON (N 04 m cn m 發明 1 ! | 比較 -27- (24) (24)200536946 表6是顯示改變了熔體化處理後的復原溫度(再加熱 溫度)以及捲繞金屬帶時的溫度的情況之結果。將均質化 處理後的胚板冷軋至板厚度成爲1 m m爲止,將此一冷軋 板利用中性鹽淬火爐,在預定溫度保持1 5秒鐘的熔體化 處理後,以冷水淬火,在室溫下放置二十四小時後,以預 定的溫度(再加熱溫度)保持1 5秒之後,以1 〇 t: /秒的 冷卻速度冷卻至捲繞金屬帶的溫度爲止,然後,再以i 〇 °C /小時的冷卻速度冷卻至室溫爲止。符合本發明的條件 範圍者(3 7〜4 0 ),都具有優異的烘烤硬化性以及緣邊加 工性。復原溫度(再加熱溫度)太高的話(4 1 ),緣邊加 工性會惡化。復原溫度(再加熱溫度)太低的話(42 ), 烘烤硬化性會降低。捲繞金屬帶時的溫度太低的話(4 3 ) ’烘烤硬化性會惡化。相反地,捲繞金屬帶時的溫度太高 的話(4 4 ),緣邊加工性會惡化。ώΗαίίΙί # · $ Λ5 > Awake line EMsis plate _ sun collar ii · 坭 柁 一 ί®Λ3 > Μ% ί s edge edge processability 1_ 〇〇〇XXX 〇XXX 〇 baking hardening (MPa) O s 〇 ON ON cn oo § Endurance before and after baking YS (MPa) 1_ 110/210 105/207 101/211 106/201 101/197 102/198 112/165 130/240 97/197 -J 104/194 89/134 Temperature when winding the metal strip (° C) 00 ο § § go 00 m 00 o 〇〇 2nd cooling rate rc / s) Intermediate temperature 丨 oc) i 1_ 200 200 200 200 300 250 200 200 200 200 200 1 Cooling speed cam O ο r— 'o 〇r— ^ ot—1 ο oooo Melt treatment temperature rc) 550 om κη 〇wo 550 550 〇un uo yr) Cold rolled plate 1 thickness_ 1mm 1 mm lmm lmm lmm lmm lmm lmm lmm lmm \ lmm lmm mi 1 eti m Μ Cooling speed (° C / h) 1500 Nooo 1000 Ί 1500 1500 1500 1500 2000 1000 1000 200 Hold time IT) VO ^ sO VsO — δ Hold i temperature P! 500 560 550 o § 560 560 560 o ID sm 560 Heating rate I (° C / h) Casting method / Blank thickness (mm) Double belt type / 7 Double belt type / 7 Belt / 7 Double-Band / 7 Double-Band / 7 Double-Band / 7 Double-Band / 7 Double-Band / 7 Double-Band / 7 Double-Band / 7 Double-Band / 7 Number DQ PQ CO 0Q CQ CQ DQ CQ CQ cn Q (N (N 00 (N ON (N 04 m cn m Invention 1! | Comparison -27- (24) (24) 200536946 Table 6 shows the recovery temperature after the melt treatment has been changed ( Reheating temperature) and the temperature at the time of winding the metal strip. The slab after homogenization was cold-rolled to a thickness of 1 mm. This cold-rolled sheet was subjected to a neutral salt quenching furnace at a predetermined temperature. After the melt treatment with the temperature maintained for 15 seconds, it was quenched with cold water, left at room temperature for 24 hours, and then maintained at a predetermined temperature (reheating temperature) for 15 seconds, and then at 10 t / sec. The cooling rate was cooled to the temperature of the coiled metal strip, and then cooled to room temperature at a cooling rate of 10 ° C / hour. Those meeting the condition range of the present invention (37 to 40) have excellent baking hardenability and edge workability. If the recovery temperature (reheating temperature) is too high (41), the edge workability will deteriorate. If the recovery temperature (reheating temperature) is too low (42), the baking hardenability will decrease. If the temperature at the time of winding the metal strip is too low, (4 3) 'bake hardenability will deteriorate. Conversely, if the temperature at which the metal strip is wound is too high (4 4), the edge workability deteriorates.

-28- 200536946-28- 200536946

-iilssll— -si 緣邊加工性 〇 〇 〇 〇 X 〇 〇 X 烘烤硬化性 (MPa) 〇 Γ1 'i r—Η 寸 T—Η T—H t—H (N 1—^ o t—H r—H JO OO r-H i1 mi 烘烤前後的耐力 i YS(MPa) 121/231 125/237 117/228 119/231 124/234 111/198 110/185 131/249 捲繞金屬帶時的溫度 (°C ) o 00 § o r-H 再加熱溫度 (°c ) 270 270 290 290 320 250 260 290 熔體化處理溫度 (°c ) 550 530 O in 550 550 550 合金編號 ί PQ CQ PQ CQ P3 PQ PQ PQ 1 I.D. Pi 00 On cn o 琴< 9 rn 發明 -1 比較 ^- 00000- 5X 000^ -29- (26) (26)200536946 〔產業上的可利用性〕 根據本發明所提供的方法,可以較之傳統技術更爲低 廉的成本製造出可適合用在汽車零件、家電製品等的撓曲 成型、沖壓成型等用途上的成型用板材之鋁-鎂-矽系合金 的板材。-iilssll— -si edge edge workability 〇〇〇〇 × 〇〇X baking hardening (MPa) 〇Γ1 'ir-Η inch T-Η T-H t-H (N 1- ^ ot-H r- H JO OO rH i1 mi Endurance before and after baking i YS (MPa) 121/231 125/237 117/228 119/231 124/234 111/198 110/185 131/249 Temperature when winding metal strip (° C ) o 00 § o rH Reheating temperature (° c) 270 270 290 290 290 320 250 250 260 290 Melt temperature (° c) 550 530 O in 550 550 550 Alloy number ί PQ CQ PQ CQ P3 PQ PQ PQ 1 ID Pi 00 On cn o Qin < 9 rn Invention -1 Comparison ^-00000- 5X 000 ^ -29- (26) (26) 200536946 [Industrial availability] According to the method provided by the present invention, it can be compared with Conventional technology produces a sheet of aluminum-magnesium-silicon alloy that can be used for forming parts such as flexure forming and press forming of automobile parts and home appliances at a lower cost.

-30--30-

Claims (1)

200536946 (1) 十、申請專利範圍 1 ·一種具有優異的烘烤硬化性及緣邊加工性的Al-Mg-Si合金板之製造方法,其特徵爲: 將含有鎂·· 0.3 0 〜1 · 0 0 w t %、5夕·· 0 · 3 0 〜1 · 2 0 w t %、鐵 :0.05 〜0.50wt%、猛:0.05 〜0.50wt°/〇 以及 i太:0.005 〜 O.lOwt%,或者又含有銅:〇.〇5〜0.70wt%或锆:0.50〜 0· 40 wt%的其中一種以上,其餘爲鋁和不可避免的雜質所 組成的熔融合金,利用雙帶式鑄造法,以胚板厚度1 /4處 的冷卻速度爲 4 0〜1 5 0 °C /秒,鑄造出厚度爲 5〜1 5 mm 的胚板,再將其捲繞成鋁合金帶捲後,實施均質化處理, 以 5 0 0 °C /小時以上的冷卻速度,至少冷卻到25 0 °C以下 ,然後進行冷軋,然後進行熔體化熱處理。 2 ·如申請專利範圍第1項之具有優異的烘烤硬化性及 緣邊加工性的 Al-Mg-Si合金板之製造方法,其中,上述 的均質化處理是利用分次式退火爐以3 0 °C /小時以上的 升溫速度,升溫到5 2 0〜5 8 0 °C,並且在該溫度的狀態下 維持2至24小時。 3 ·如申請專利範圍第1或2項之具有優異的烘烤硬化 性及緣邊加工性的Al-Mg-Si合金板之製造方法,其中, 上述的熔體化熱處理是利用連續退火爐,以1 〇。(: /秒以 上的升溫速度加熱到5 3 0〜5 60 °C,並且在該溫度的狀態 下維持3 0秒以內。 4 ·如申請專利範圍第3項之具有優異的烘烤硬化性及 緣邊加工性的Al-Mg_ Si合金板之製造方法,其中,在上 200536946 (2) 述熔體化熱處理之後,以1 〇 °c /秒以上的速度冷卻到室 溫,然後,利用連續退火爐實施在2 6 0〜3 0 0 °c的溫度的 狀態下維持3 0秒以內的復原處理,以1 〇 °C /秒以上的冷 卻速度冷卻到室溫。 5 .如申請專利範圍第3項之具有優異的烘烤硬化性及 緣邊加工性的 Al-Mg-Si合金板之製造方法,其中,在上 述熔體化熱處理之後,以1 〇 °C /秒以上的冷卻速度來水 冷到25 0 °C以下,然後,利用空氣以1〜20 °C /秒的冷卻 速度來冷卻到60〜100 °C,然後捲起來,再施予冷卻至室 溫爲止的預備時效處理。 6 ·如申請專利範圍第3項之具有優異的烘烤硬化性及 緣邊加工性的 Al_ Mg-Si合金板之製造方法,其中,在上 述熔體化熱處理之後,以1 〇 °C /秒以上的速度冷卻到室 溫,然後,利用連續退火爐實施在2 6 0〜3 0 0 °C的溫度的 狀態下維持3 0秒以內的復原處理,以It /秒以上的冷 卻速度冷卻到60〜10 (TC,然後捲起來,再施予冷卻至室 溫爲止的預備時效處理。 -32- 200536946 七 無 明 說 單 無簡 iLIu :號 為符 圖件 表元 代之 定圖 :指表 圖案代 表本本 代 定一二 指CC 八 學 化 的 徵 特 明 發 示 顯 能 最 示 揭 請 時 式 學 化 有 若無 案: 本式200536946 (1) X. Application for patent scope 1 · A method for manufacturing an Al-Mg-Si alloy plate with excellent baking hardenability and edge workability, which is characterized in that it will contain magnesium ·· 0.3 0 ~ 1 · 0 0 wt%, 5 y ·· 0 · 3 0 ~ 1 · 2 0 wt%, iron: 0.05 to 0.50 wt%, fierce: 0.05 to 0.50 wt ° / 〇, and i too: 0.005 to 0.1 wt%, or It also contains one of copper: 0.05 to 0.70 wt% or zirconium: 0.50 to 0.40 wt%, and the remainder is a molten alloy composed of aluminum and unavoidable impurities. The cooling rate at the thickness of 1/4 of the plate is 40 ~ 150 ° C / sec. The blank plate with a thickness of 5 ~ 15 mm is casted, and then rolled into an aluminum alloy strip, and then homogenized. , At a cooling rate of more than 500 ° C / hour, at least to less than 25 0 ° C, then cold rolling, and then melt heat treatment. 2 · The method of manufacturing an Al-Mg-Si alloy plate with excellent baking hardenability and edge workability as described in item 1 of the scope of patent application, wherein the above-mentioned homogenization treatment is performed by using a graded annealing furnace in 3 A temperature increase rate of 0 ° C / hour or more, the temperature is raised to 5 2 0 to 5 8 0 ° C, and the temperature is maintained at the temperature for 2 to 24 hours. 3. If a method for manufacturing an Al-Mg-Si alloy plate with excellent baking hardenability and edge workability is applied in item 1 or 2 of the scope of patent application, wherein the above-mentioned melt heat treatment is performed using a continuous annealing furnace, Take 10. (: The heating rate is higher than 5/0 to 5 3 0 ~ 5 60 ° C, and the temperature is maintained within 30 seconds at this temperature. 4 · As shown in item 3 of the patent application, it has excellent baking hardenability and A method for manufacturing edge-processable Al-Mg_Si alloy plate, after the melt heat treatment described in 200536946 (2) above, cooling to room temperature at a rate of 10 ° c / sec or more, and then continuously using The furnace is subjected to a recovery process that is maintained at a temperature of 260 to 300 ° C for less than 30 seconds, and cooled to room temperature at a cooling rate of 10 ° C / second or more. 5. If the scope of patent application is the third According to the method for producing an Al-Mg-Si alloy plate having excellent baking hardenability and edge workability, after the above-mentioned melt heat treatment, water cooling is performed at a cooling rate of 10 ° C / sec or more. Below 25 0 ° C, then use air to cool to 60 to 100 ° C at a cooling rate of 1 to 20 ° C / second, then roll it up and apply preliminary aging treatment to cool to room temperature. 6 · 如Excellent baking hardening and edge workability in the scope of patent application No. 3 A method for manufacturing an Al_Mg-Si alloy plate, wherein after the above-mentioned melt heat treatment, cooling to room temperature at a rate of 10 ° C / sec or more, and then using a continuous annealing furnace at a temperature of 2 0 to 30 The recovery process is maintained within 30 seconds at a temperature of 0 ° C, and it is cooled to 60 to 10 (TC) at a cooling rate of It / sec or more, and then rolled up, and then pre-aging treatment is performed until it is cooled to room temperature. -32- 200536946 Seven Wuming Saying Lists without Jane iLIu: No. is the symbol map of the Yuan Dynasty: the table design represents the current generation of one or two fingers. If there is no case for tense learning:
TW093138136A 2003-12-11 2004-12-09 Method for producing Al-Mg-Si alloy excellent in bake-hardenability and hemmability TW200536946A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003413885 2003-12-11

Publications (1)

Publication Number Publication Date
TW200536946A true TW200536946A (en) 2005-11-16

Family

ID=34675076

Family Applications (1)

Application Number Title Priority Date Filing Date
TW093138136A TW200536946A (en) 2003-12-11 2004-12-09 Method for producing Al-Mg-Si alloy excellent in bake-hardenability and hemmability

Country Status (8)

Country Link
US (1) US20070209739A1 (en)
EP (1) EP1702995A1 (en)
JP (1) JP4577218B2 (en)
KR (1) KR20060133996A (en)
CN (1) CN1914348A (en)
CA (1) CA2548788A1 (en)
TW (1) TW200536946A (en)
WO (1) WO2005056859A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5180496B2 (en) * 2007-03-14 2013-04-10 株式会社神戸製鋼所 Aluminum alloy forging and method for producing the same
JP5203772B2 (en) * 2008-03-31 2013-06-05 株式会社神戸製鋼所 Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
GB0817169D0 (en) * 2008-09-19 2008-10-29 Univ Birmingham Improved process for forming aluminium alloy sheet components
KR20100099554A (en) * 2009-03-03 2010-09-13 현대모비스 주식회사 Al-si-mg based aluminum alloy excellent in machinability and method of producing the same
ES2661551T3 (en) * 2009-05-28 2018-04-02 Bluescope Steel Limited Metal coated steel band
KR101417549B1 (en) * 2009-12-22 2014-07-08 쇼와 덴코 가부시키가이샤 Aluminum alloy for anodization and aluminum alloy component
US9194028B2 (en) * 2010-09-08 2015-11-24 Alcoa Inc. 2xxx aluminum alloys, and methods for producing the same
JP5758676B2 (en) * 2011-03-31 2015-08-05 株式会社神戸製鋼所 Aluminum alloy plate for forming and method for producing the same
CN103255324B (en) 2013-04-19 2017-02-08 北京有色金属研究总院 Aluminum alloy material suitable for manufacturing car body panel and preparation method
CN103343304B (en) * 2013-06-18 2015-11-18 常州大学 The deformation heat treatment method of a kind of raising 6000 line aluminium alloy Sheet stretch performances
CN103305779A (en) * 2013-06-18 2013-09-18 常州大学 Thermomechanical treatment method of 6000-series aluminum alloy
WO2015112450A1 (en) * 2014-01-21 2015-07-30 Alcoa Inc. 6xxx aluminum alloys
GB2527486A (en) 2014-03-14 2015-12-30 Imp Innovations Ltd A method of forming complex parts from sheet metal alloy
JP6224550B2 (en) * 2014-08-27 2017-11-01 株式会社神戸製鋼所 Aluminum alloy sheet for forming
CA2960321C (en) * 2014-09-12 2022-08-16 Aleris Aluminum Duffel Bvba Method of annealing aluminium alloy sheet material
EP3006579B2 (en) * 2014-12-11 2022-06-01 Aleris Aluminum Duffel BVBA Method of continuously heat-treating 7000-series aluminium alloy sheet material
CN105349848B (en) * 2015-11-19 2017-07-14 江苏常铝铝业股份有限公司 A kind of used in blinds continuous casting and rolling aluminium alloy material and its manufacture method
BR112018010166B1 (en) 2015-12-18 2021-12-21 Novelis Inc 6XXX ALUMINUM ALLOY, METHOD FOR PRODUCING AN ALUMINUM ALLOY SHEET, AND, 6XXX ALUMINUM ALLOY SHEET
RU2720277C2 (en) * 2015-12-18 2020-04-28 Новелис Инк. High-strength aluminium alloys 6xxx and methods for production thereof
CN108368570B (en) * 2015-12-25 2021-02-12 株式会社Uacj Aluminum alloy plate for can and method for producing same
JP6208389B1 (en) * 2016-07-14 2017-10-04 株式会社Uacj Method for producing rolled aluminum alloy material for forming comprising aluminum alloy having excellent bending workability and ridging resistance
EP4242339A3 (en) 2016-10-27 2024-02-21 Novelis Inc. Method of continuous casting and rolling aluminium alloy and aluminum alloy intermediate product
EP3532218B1 (en) 2016-10-27 2021-12-22 Novelis Inc. High strength 7xxx series aluminum alloys and methods of making the same
WO2018080710A1 (en) 2016-10-27 2018-05-03 Novelis Inc. High strength 6xxx series aluminum alloys and methods of making the same
FR3065013B1 (en) * 2017-04-06 2020-08-07 Constellium Neuf-Brisach IMPROVED PROCESS FOR MANUFACTURING AN AUTOMOTIVE BODY STRUCTURE COMPONENT
EP3676410B1 (en) * 2017-10-23 2023-08-09 Novelis Inc. High-strength, highly formable aluminum alloys and methods of making the same
CN109082566B (en) * 2018-08-07 2020-05-05 中铝瑞闽股份有限公司 6-series alloy aluminum plate strip for mobile phone frame and preparation method thereof
CN109868398B (en) * 2019-02-02 2021-04-06 中铝材料应用研究院有限公司 6xxx series aluminum alloy plate with high flanging performance and preparation method thereof
CN110079709A (en) * 2019-05-08 2019-08-02 常熟希那基汽车零件有限公司 A kind of alloy material and its production technology
EP3839085B1 (en) 2019-12-17 2023-04-26 Constellium Neuf-Brisach Improved method for manufacturing a structure component for a motor vehicle body
KR20220033650A (en) * 2020-09-09 2022-03-17 삼성디스플레이 주식회사 Reflective electrode and display device having the same
CN113337761A (en) * 2021-04-20 2021-09-03 山东国泰铝业有限公司 Aluminum alloy building door and window material and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207851A (en) * 1986-03-10 1987-09-12 Sky Alum Co Ltd Rolled aluminum alloy sheet for forming and its production
US5616189A (en) * 1993-07-28 1997-04-01 Alcan International Limited Aluminum alloys and process for making aluminum alloy sheet
JP3734317B2 (en) * 1996-10-09 2006-01-11 古河スカイ株式会社 Method for producing Al-Mg-Si alloy plate
JP3656150B2 (en) * 1997-09-11 2005-06-08 日本軽金属株式会社 Method for producing aluminum alloy plate
JP3398835B2 (en) * 1997-09-11 2003-04-21 日本軽金属株式会社 Automotive aluminum alloy sheet with excellent continuous resistance spot weldability
JP2001262264A (en) * 2000-03-21 2001-09-26 Kobe Steel Ltd Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY
US20030133825A1 (en) * 2002-01-17 2003-07-17 Tom Davisson Composition and method of forming aluminum alloy foil
JP4175818B2 (en) * 2001-03-28 2008-11-05 住友軽金属工業株式会社 Aluminum alloy plate excellent in formability and paint bake hardenability and method for producing the same

Also Published As

Publication number Publication date
KR20060133996A (en) 2006-12-27
EP1702995A1 (en) 2006-09-20
CN1914348A (en) 2007-02-14
WO2005056859A1 (en) 2005-06-23
CA2548788A1 (en) 2005-06-23
JP4577218B2 (en) 2010-11-10
JPWO2005056859A1 (en) 2008-04-17
US20070209739A1 (en) 2007-09-13

Similar Documents

Publication Publication Date Title
TW200536946A (en) Method for producing Al-Mg-Si alloy excellent in bake-hardenability and hemmability
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
TW200827455A (en) Method of producing aluminum alloy sheet
WO2017168890A1 (en) Al-mg-si-based alloy material, al-mg-si-based alloy plate, and method for manufacturing al-mg-si-based alloy plate
JPH0569898B2 (en)
CN102719698B (en) CuNiSiMg alloy material and preparation method thereof as well as method for preparing strip using alloy material
JPS6223973A (en) Manufacture of aluminum alloy for automobile wheel
JP3734317B2 (en) Method for producing Al-Mg-Si alloy plate
JP5412714B2 (en) Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability
JPH06136478A (en) Baking hardening type al alloy sheet excellent in formability and its production
JPH0874014A (en) Method for producing aluminum alloy sheet having high formability and good bake hardenability
JP4237326B2 (en) Method for producing aluminum alloy sheet excellent in formability and corrosion resistance
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPS5941506B2 (en) Manufacturing method for structural aluminum alloy with excellent strength and formability
JP3557953B2 (en) Aluminum alloy sheet for precision machining and method of manufacturing the same
JP2017179443A (en) Al-Mg-Si-BASED ALLOY MATERIAL
JP3843021B2 (en) Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability
JP3697539B2 (en) Al-Mg-Si alloy plate having excellent forming processability and method for producing the same
JP4329065B2 (en) Method for producing Ti-containing copper alloy sheet or strip
JP2004043939A (en) Method for manufacturing annealed aluminum alloy sheet superior in appearance
JPS62290851A (en) Manufacture of rolled aluminum alloy plate
JPH04124251A (en) Production of aluminum foil
JPS59166659A (en) Preparation of high tensile aluminum alloy plate for forming
JPH06128707A (en) Production of aluminum alloy foil
JPS62127455A (en) Manufacture of heat treatment-type aluminum-alloy rolled sheet