[go: up one dir, main page]

JP3697539B2 - Al-Mg-Si alloy plate having excellent forming processability and method for producing the same - Google Patents

Al-Mg-Si alloy plate having excellent forming processability and method for producing the same Download PDF

Info

Publication number
JP3697539B2
JP3697539B2 JP35539093A JP35539093A JP3697539B2 JP 3697539 B2 JP3697539 B2 JP 3697539B2 JP 35539093 A JP35539093 A JP 35539093A JP 35539093 A JP35539093 A JP 35539093A JP 3697539 B2 JP3697539 B2 JP 3697539B2
Authority
JP
Japan
Prior art keywords
less
alloy
content
size
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35539093A
Other languages
Japanese (ja)
Other versions
JPH07197214A (en
Inventor
櫻井健夫
修 竹添
Original Assignee
神鋼アルコア輸送機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神鋼アルコア輸送機材株式会社 filed Critical 神鋼アルコア輸送機材株式会社
Priority to JP35539093A priority Critical patent/JP3697539B2/en
Publication of JPH07197214A publication Critical patent/JPH07197214A/en
Application granted granted Critical
Publication of JP3697539B2 publication Critical patent/JP3697539B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、成形加工性に優れたAl合金板及びその製造方法に係り、より詳しくは、自動車用、家電製品用、機械部品用等のパネル材に用いられるAl合金板材で、プレスや曲げ等の加工時の成形加工性が優れるAl合金板及びその製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、自動車用、家電製品用、機械部品用等の軽量化を主として使用されているAl合金板は、プレスや曲げ等の成形加工が行われ、加工後の塗装工程において塗装膜に強度を与えるために加熱処理(焼付塗装:ベーキング)が行われている。これはその際の加熱温度を利用してAl合金板の強度を向上させる方法である。
【0003】
かゝるAl合金板としては、プレス等の成形加工時には強度を低くし、成形が容易で、成形加工後は焼付塗装の加熱処理により強度が著しく向上する材料であることが理想とされ、主としてAl−Mg−Si系Al合金が使用されている。本発明者は先に特開平1−111851号を提案した。
【0004】
しかし、従来、この種の用途に使用されるAl−Mg−Si系Al合金及びその製造方法においては、成形性或いは形状凍結性の重視により、T4状態での強度が極めて低く、更には焼付硬化後に強度が向上したとしても十分な強度が得られず、軽度な外力を加えただけで変形してしまう問題があった。実用化されているAl−Mg系合金に比べて成形性が劣っている。
【0005】
一方、自動車用部品においては、自動車の低燃費規制により、更に軽量化が促進する傾向にある。これにより、Al合金板の薄肉化が要求されるが、従来のAl合金板及びその製造方法では、T4状態での素材強度を低くし成形性を向上させているが、薄肉化のためには強度不足であり、或いは、薄肉化のため素材強度を高くすると成形性が著しく劣る等の問題があった。
【0006】
更に、最近の焼付塗装時の焼付条件は、省エネルギー化及び生産性向上のため、加えて樹脂等の多用化が進み、更には塗料の進歩により低温化している。例えば、自動車用部品に用いられるAl合金の焼付温度は、従来は200℃であったが、150〜170℃と低温化しているのが現状である。このため、本発明者は、Al−Mg−Si系Al合金板及びその製造方法において、従来法でなく、低温・短時間処理において焼付硬化性を向上させるための製造方法を開発したが、この処理法を行うと、殆どの合金において成形性劣化の原因となる金属間化合物がマトリックス中に多量に晶出或いは析出し、成形加工性が著しく劣化するという問題があった。
【0007】
本発明は、上記従来技術の問題点を解決し、実用化されているAl−Mg系合金と同等の優れた成形加工性を有するAl−Mg−Si系合金並びにその製造方法を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
前記課題を解決するための手段として、本発明は、重量%で(以下同じ)、Mg:0.2〜1.0%、Si:0.5〜2.0%を含有し、残部がAl及び不可避的不純物からなるAl合金鋳塊に550乃至600℃の高温範囲で均質化処理を行い、その後、熱間圧延、冷間圧延を施し、所定の板厚とした後、温度530〜600℃、保持時間5〜45秒の条件の溶体化処理を行い、マトリクス中に含まれる晶出物のサイズを10μm以下にすると共に前記晶出物の含有量を体積含有率で5%以下にし、更に、分散析出物のサイズを2000Å以下にすると共に前記分散析出物の含有量を体積含有率で100ppm以下にすることを特徴とする。なお、前記Al合金鋳塊は、必要に応じて、Mn:0.5%以下、Ti:0.1%以下、Fe:0.3%以下の1種或いは2種以上を含有していてもよい。
【0009】
また、他の本発明は、上記の製造方法により得られたAl−Mg−Si系合金板材であって、マトリクス中に含まれる晶出物のサイズが10μm以下であると共に前記晶出物の含有量が体積含有率で5%以下であり、且つ分散析出物のサイズが2000Å以下であると共に前記分散析出物の含有量が体積含有率で100ppm以下であること特徴とする。
【0010】
【作用】
以下に本発明を更に詳細に説明する。まず、本発明の知見を得るに至った研究結果を示す。
【0011】
まず、本発明者は、前記課題を解決するために、先の開発技術に係る方法を改良するべく鋭意研究を重ねた。その結果、従来のAl−Mg−Si系合金は、通常の方法で製造すると、添加元素或いはAl中に含有される不可避的不純物により合金中の金属間化合物が晶出或いは析出することが判明した。
【0012】
これらの金属間化合物は、強度に寄与したり、時効析出により強度を向上させたり、更に再結晶抑制効果となって、結晶粒を微細化したりするのに重要な役割を果たしていると考えられていた。しかし、これら金属間化合物の晶出或いは析出は適度なサイズと体積含有率を持つ必要があり、サイズが大きすぎたり、体積含有率が多すぎたりすると、著しく成形性が劣化することを見い出した。そのための手段としては、これらの金属間化合物を固溶させるために、均質化や溶体化の処理温度を上げることで、成形性に悪影響を及ぼすこれらの金属間化合物を抑制することにより成形性の向上が認められ、更に固溶体硬化により強度が向上し、加えて、固溶度が大きいためベークハード性を向上させる効果があることがわかった。
【0013】
上記した均質化或いは溶体化処理温度は、温度を上げるほど金属間化合物の晶出或いは析出を減少させることが可能であるが、その温度が高すぎると、サイズの粗大化が起こり、成形性劣化の原因ともなる。よって、均質化及び溶体化処理の最適な温度範囲を選定することにより、最適な金属間化合物のサイズと含有量を選定する必要がある。
【0014】
本発明は、かゝる知見に基づき、更にその含有成分や製造条件について詳細に研究を重ね、ここに完成したものである。
【0015】
まず、本発明はAl合金中の内部組織(晶出物、分散析出物)をコントロールすることを最も特徴とする技術であり、Al−Mg−Si系合金であって、Mg及びSiを主成分として含有する合金であれば、成形性及び強度(ベークハード性)の効果が顕著に向上する。よって、化学成分の限定理由について説明する。
【0016】
Mg:
Mgはそれ自体の固溶体強化と、Siと協同して強度を付与する元素で、時効析出物β′−Mg2Siを析出し、Mgの添加量によりこの量が依存する。しかし、0.2%未満では十分な強度(以下、強度とは素材及び170℃の焼付塗装後の耐力をいう。)が得られず、また、1.0%を超えて添加すると鋳造時に平衡相Mg2Siが晶出物として成長し、伸びの低下が見られることにより成形性が著しく低下する。よって、Mg含有量は0.2〜1.0%の範囲とする。
【0017】
Si:
SiはMgと協同し主として時効析出物β′−Mg2Siの析出による析出硬化で強度に付与する元素で、Siの添加量によりこの量は依存する。しかし、0.5%未満では十分な強度が得られず、また2.0%を超えると平衡相Mg2Siが晶出し、伸びを大きく低下させ、すなわち、成形性の劣化を生ずる。よって、Si含有量は0.5〜2.0%の範囲とする。
【0018】
なお、本発明におけるAl−Mg−Si系Al合金は、上述のMg、Siを必須成分とすれば、その効果は十分得られるが、他の元素を本発明の効果を損なわない限度で必要に応じて添加し或いは不純物として、Cu、Mn、Ti、Feのうち少なくとも1種或いは2種以上を含有させることができる。
【0019】
Mn:
Mnは第二相析出物としてMnAl6が析出し、均質化や溶体化処理を十分に行い、固溶させて強度を上昇させることができ、しかも、合金組織の再結晶を抑制して結晶粒を微細化する効果がある。そのため、成形向上に付与する元素である。しかし、0.5%を超えて含有すると、粗大な析出物でかつその体積含有率が急激に高くなり、成形性を著しく劣化させる。よって、Mnの含有量は0.5%以下とする。
【0020】
Cu:
Cuは時効析出物θ′−CuAl2により強度を付与する元素である。本発明では、強度の増加はβ′−Mg2Siによるものだけでなく、Cu添加によりこの時効析出物(β´−Mg2Si)が緻密で微細になることにより、強度の向上並びに低温焼付で焼付硬化性を向上させることができる。しかし、1.0%を超えるとθ′−CuAl2の析出が増大し、かつ、このθ′−CuAl2の析出物は室温で成長するため、経時変化により強度が上がり、それに伴い伸びと成形性が低下する。よって、Cu含有量は1.0%以下とする。
【0021】
上述のとおり、Mg、Siの主成分に更にCu及び/又はMnを添加したAl−Mg−Si−(Cu、Mn)系Al合金は、更に本発明の効果が向上できる。
【0022】
Ti:
Tiは鋳塊の結晶粒を微細にし、かつ成形性を向上させる元素であるが、0.1%を超えて含有すると、粗大な晶出物を生成し、成形性を低下させる。よって、Tiの含有量は0.1%以下とする。
【0023】
Fe:
Feは強度向上効果は小さいが、0.3%を超えると晶出物の生成が著しく、粗大化の原因ともなり、更に結晶粒を粗大化させる。これらは、成形性を著しく低下させることになる。よって、Fe含有量は0.3%以下とする。
【0024】
次に本発明の製造条件について説明する。
【0025】
上記Al−Mg−Si系Al合金は、常法により、溶解→鋳造を行うが、その後の均質化熱処理は、添加元素の偏析を均一分散させたり、分散析出物のサイズや体積含有率をコントロールするのに重要な熱処理である。この熱処理を550℃より低い温度で行うと、添加元素からなる金属間化合物が固溶せず、高い密度をもって残存するため成形性を劣化させ、またに600℃を超えるとバーニングを起こし、熱間圧延時に割れを発生する。よって、均質化熱処理の温度範囲は550〜600℃とする。なお、保持時間は適宜決められる。
【0026】
前記条件で均質化熱処理を施した鋳塊を、熱間圧延→冷間圧延(必要に応じて中間焼鈍が可能)を行って所定の板厚とした後、溶体化処理を行う。溶体化処理は、530℃より低い温度では、均質化熱処理と同様、添加元素からなる金属間化合物が固溶せず、残存するため成形性を劣化させる。また、600℃より高い温度になると、バーニングを起こし、板の割れが発生する。よって、溶体化処理の温度範囲は530〜600℃とする。溶体化温度での保持時間は適宜決められる。
【0027】
なお、溶体化処理後の冷却に関しては、水冷或いは空冷により焼入れを行うのがよい。また、焼入れは低温ベークハード性を向上させるために高温焼入を行ってもかまわない。
【0028】
次に、本発明のAl−Mg−Si系合金板材の組織について説明する。
【0029】
このAl合金板中の内部組織は、凝固時に発生する晶出物と固体化してから発生する析出物とがある。これらは、それぞれ強度や時効硬化性、結晶粒のコントロール等に効果を与える因子であるが、適度なサイズと体積含有率をもつ必要がある。
【0030】
すなわち、晶出物系の金属間化合物は、サイズが10μmより大きく、かつマトリックス中の体積含有率が5%より多いと、この晶出物を起点として成形時に割れを発生する。よって、晶出物系の金属間化合物のサイズは10μm以下、体積含有率は5%以下とする。
【0031】
更には、分散析出物系の金属間化合物のサイズ及び体積含有率を規制するのが好ましい。分散析出物系の金属間化合物は、サイズが2000Åより大きく、かつ、体積含有率が100ppmを超えると成形性は著しく劣化する。よって、分散析出物系の金属間化合物のサイズは2000Å以下、体積含有率は100ppm以下とするのが好ましい。
【0032】
次に本発明の実施例を示す。
【0033】
【実施例1】
表1に示す化学成分を有するAl合金を常法により溶解、鋳造して得られた50mm厚鋳塊に560℃×4hrの均質化処理を施した後、即熱間圧延を行い板厚5mmとした。熱間圧延材を室温で放置し、昇温速度200℃/hrで500℃×5秒の条件にて焼鈍処理を行い、その後、常温にて冷間圧延を施し、板厚1mmとした。この冷延材を560℃の溶体化処理温度に加熱して30秒間保持し、次いで50℃の温湯焼入れし、2時間の保持を行い、実験に供した。
【0034】
成形性は、エリクセン試験機を用い、JIS−Z2247エリクセン試験B方法に従って評価した。そのときのエリクセン値として10.0mm以上の値を示したものをAl−Mg系合金と同等の成形性とし、合格とした。成形試験の結果を表2に示す。表2より明らかなように、本発明例の合金は、成形性の指標であるエリクセン値が10.0mm以上と非常に成形性に優れることがわかる。
【0035】
【表1】

Figure 0003697539
【0036】
【表2】
Figure 0003697539
【0037】
【実施例2】
実施例1の表1に示したNo.5のAl合金(本発明範囲内の化学成分)と、No.8のAl合金(本発明範囲外の化学成分)を常法で溶解、鋳造し、得られた鋳塊について、加熱速度40℃/hrで450〜610℃で4hrの均質化熱処理を施した後、熱間圧延を行い、厚さ5mmの板とした。得られた熱間圧延材を室温に放置した後、200℃/minの加熱速度で500℃×5秒間の焼鈍処理を行い、その後室温にて冷間圧延を行い、厚さ1.0mmの板とした。
【0038】
次いで、得られた板を加熱速度400℃/minで560℃の温度に30秒間保持し、800℃/minの冷却速度で50℃の温度に焼入れし、そのまま50℃の温度に2時間保持し、実験に供した。この熱処理を施した材料につき、成形性、晶出物、分散析出物の測定を行った。その結果を表3に示す。
【0039】
表3より明らかなように、本発明例の合金は、高温均質化熱処理を行うことにより、晶出物のサイズが10μm以下、体積含有率が5%以下に抑制され、かつ、分散析出物のサイズが2000Å以下、体積含有率が100ppm以下に抑制されており、このような晶出物及び分散析出物により、成形性の指標であるエリクセン値が10.0mm以上と良好な値となっている。これに対し、比較例は化学成分又は均質化熱処理条件の少なくとも一方が本発明範囲外であるため、適切な内部組織が得られず、成形加工性が劣っている。
【0040】
【表3】
Figure 0003697539
【0041】
【実施例3】
実施例1の表1に示したNo.5のAl合金(本発明範囲内の化学成分)と、No.8のAl合金(本発明範囲外の化学成分)を常法で溶解、鋳造し、得られた鋳塊について、加熱速度40℃/hrで温度560℃、保持時間4hrの均質化熱処理を施した後、熱間圧延を行い、厚さ5mmの板とした。得られた熱間圧延材を室温に放置した後、200℃/minの加熱速度で500℃×5秒間の焼鈍処理を行い、その後室温にて冷間圧延を行い、厚さ1.0mmの板とした。
【0042】
次いで、得られた板を加熱速度400℃/minで500〜620℃の温度に30秒間保持し、800℃/minの冷却速度で50℃の温度に焼入れをし、そのまま50℃の温度に2時間保持し、実験に供した。この熱処理を施した材料につき、成形性、晶出物、分散析出物の測定を行った。その結果を表4に示す。
【0043】
表4より明らかなように、本発明例の合金は、高温溶体化処理を行うことにより、晶出物のサイズが10μm以下、体積含有率が5%以下に抑制され、かつ、分散析出物のサイズが2000Å以下、体積含有率が100ppm以下に抑制されており、このような晶出物及び分散析出物により、成形性の指標であるエリクセン値が10.0mm以上と良好な値となっている。これに対し、比較例は化学成分又は溶体化処理条件の少なくとも一方が本発明範囲外であるため、適切な内部組織が得られず、成形加工性が劣っている。
【0044】
【表4】
Figure 0003697539
【0045】
【発明の効果】
以上詳述したように、本発明によれば、Al−Mg−Si系合金板につき、均質化熱処理及び溶体化処理の温度を高温化し、固溶度を増大させて、晶出物のサイズ及び体積含有率を制御し、或いは更に分散析出物のサイズ及び体積含有率を制御することにより、Al−Mg−Si系合金であっても、Al−Mg系合金と同等の成形性(張出性)を得ることができる。このため、Al−Mg−Si系合金の特徴(時効硬化性:ベークハード性)を活かし、この系のAl合金を使用することによる板材の薄肉化が可能となり、更には成形性がAl−Mg系並に良好なため、自動車、家電製品、機械部品の軽量化に寄与し、工業的に使用頻度を向上させることが可能となり、その効果は極めて高い。[0001]
[Industrial application fields]
The present invention relates to an Al alloy plate having excellent formability and a method for producing the same, and more specifically, an Al alloy plate material used for panel materials for automobiles, home appliances, machine parts, and the like, such as pressing and bending. The present invention relates to an Al alloy plate that is excellent in forming processability at the time of processing and a manufacturing method thereof.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, Al alloy plates mainly used for weight reduction such as for automobiles, home appliances, and machine parts are subjected to forming processing such as pressing and bending, and give strength to the coating film in the coating process after processing. Therefore, heat treatment (baking coating: baking) is performed. This is a method for improving the strength of the Al alloy sheet by utilizing the heating temperature at that time.
[0003]
It is ideal for such an Al alloy plate to be a material that has a low strength during molding such as a press, is easy to mold, and has a significantly improved strength by heat treatment after baking. Al-Mg-Si series Al alloy is used. The present inventor previously proposed Japanese Patent Application Laid-Open No. 1-111851.
[0004]
However, in the past, Al-Mg-Si Al alloys and their production methods used for this type of application have extremely low strength in the T4 state due to the emphasis on formability or shape freezing properties, and further bake hardening. Even if the strength was improved later, sufficient strength could not be obtained, and there was a problem that deformation occurred only by applying a slight external force. The formability is inferior to that of Al-Mg alloys that are put into practical use.
[0005]
On the other hand, in automotive parts, weight reduction tends to be further promoted due to automobile fuel efficiency regulations. As a result, it is required to reduce the thickness of the Al alloy plate. In the conventional Al alloy plate and its manufacturing method, the material strength in the T4 state is lowered and the formability is improved. There are problems such as insufficient strength, or if the strength of the material is increased to reduce the thickness, the moldability is significantly inferior.
[0006]
Furthermore, the baking conditions during the recent baking coating have been increasingly used in addition to the use of resins, etc., in order to save energy and improve productivity. For example, the baking temperature of an Al alloy used for automobile parts has been 200 ° C. in the past, but is currently lowered to 150 to 170 ° C. For this reason, the present inventor has developed a manufacturing method for improving the bake hardenability in a low temperature and short time treatment in the Al-Mg-Si Al alloy plate and the manufacturing method thereof, rather than the conventional method. When the treatment method is used, there is a problem that in most alloys, an intermetallic compound which causes deterioration of formability is crystallized or precipitated in a large amount in the matrix, and formability is remarkably deteriorated.
[0007]
The present invention solves the above-mentioned problems of the prior art and provides an Al-Mg-Si alloy having excellent formability equivalent to that of an Al-Mg alloy that has been put into practical use and a method for producing the same. It is the purpose.
[0008]
[Means for Solving the Problems]
As a means for solving the above-mentioned problems, the present invention includes, by weight% (hereinafter the same), Mg: 0.2-1.0%, Si: 0.5-2.0%, with the balance being Al. Then, the Al alloy ingot made of inevitable impurities is subjected to a homogenization treatment in a high temperature range of 550 to 600 ° C., and then subjected to hot rolling and cold rolling to obtain a predetermined plate thickness, and then a temperature of 530 to 600 ° C. performs solution treatment conditions the retention time 5-45 seconds, at a volume content of the content of the crystallizate well as the size of the crystallized substances contained in the matrix to 10μm or less and 5% or less, further The size of the dispersed precipitate is set to 2000 mm or less, and the content of the dispersed precipitate is set to 100 ppm or less by volume content. The Al alloy ingot may contain one or more of Mn: 0.5% or less, Ti: 0.1% or less, and Fe: 0.3% or less as necessary. Good.
[0009]
Another aspect of the present invention is an Al—Mg—Si-based alloy sheet obtained by the above-described manufacturing method , wherein the size of the crystallized substance contained in the matrix is 10 μm or less and the content of the crystallized substance is included. The amount is 5% or less in volume content, the size of the dispersed precipitate is 2000 mm or less, and the content of the dispersed precipitate is 100 ppm or less in volume content.
[0010]
[Action]
The present invention is described in further detail below. First, the research results that led to obtaining the knowledge of the present invention will be shown.
[0011]
First, in order to solve the above-mentioned problems, the present inventor has conducted intensive studies to improve the method according to the previously developed technology. As a result, it has been found that when conventional Al-Mg-Si alloys are produced by a conventional method, intermetallic compounds in the alloy crystallize or precipitate due to the additive elements or inevitable impurities contained in Al. .
[0012]
These intermetallic compounds are thought to play an important role in contributing to strength, improving strength by aging precipitation, and further recrystallizing suppression effects to refine crystal grains. It was. However, the crystallization or precipitation of these intermetallic compounds needs to have an appropriate size and volume content, and it has been found that if the size is too large or the volume content is too large, the formability deteriorates remarkably. . As a means for this purpose, in order to dissolve these intermetallic compounds, the processing temperature of homogenization and solution treatment is raised, and by suppressing these intermetallic compounds that adversely affect moldability, The improvement was recognized, and the strength was further improved by solid solution hardening, and in addition, it was found that there was an effect of improving the bake hardness due to the high solid solubility.
[0013]
The above-mentioned homogenization or solution treatment temperature can reduce the crystallization or precipitation of intermetallic compounds as the temperature is raised, but if the temperature is too high, the size becomes coarse and the formability deteriorates. It becomes the cause of. Therefore, it is necessary to select the optimal size and content of the intermetallic compound by selecting the optimal temperature range for the homogenization and solution treatment.
[0014]
The present invention has been completed based on such findings and further researched in detail on the components and production conditions thereof.
[0015]
First, the present invention is a technique characterized by controlling the internal structure (crystallized product, dispersed precipitate) in an Al alloy, and is an Al-Mg-Si alloy, which is mainly composed of Mg and Si. If the alloy is contained as an alloy, the effects of formability and strength (bake hardness) are remarkably improved. Therefore, the reason for limiting the chemical components will be described.
[0016]
Mg:
Mg is an element that strengthens its own solid solution and gives strength in cooperation with Si, and precipitates an aging precipitate β′-Mg 2 Si, which depends on the amount of Mg added. However, if it is less than 0.2%, sufficient strength (hereinafter, strength means the material and the proof strength after baking coating at 170 ° C) cannot be obtained, and if it exceeds 1.0%, it is balanced during casting. The phase Mg 2 Si grows as a crystallized product, and the moldability is remarkably lowered due to the decrease in elongation. Therefore, the Mg content is in the range of 0.2 to 1.0%.
[0017]
Si:
Si is an element which is given to strength by precipitation hardening mainly by precipitation of aging precipitate β'-Mg 2 Si in cooperation with Mg, and this amount depends on the amount of Si added. However, if the content is less than 0.5%, sufficient strength cannot be obtained. If the content exceeds 2.0%, the equilibrium phase Mg 2 Si crystallizes and the elongation is greatly reduced, that is, the moldability is deteriorated. Therefore, the Si content is in the range of 0.5 to 2.0%.
[0018]
The Al-Mg-Si-based Al alloy in the present invention can be sufficiently effective if the above-mentioned Mg and Si are used as essential components, but other elements are necessary as long as the effects of the present invention are not impaired. Accordingly, at least one or more of Cu, Mn, Ti, and Fe can be added as impurities or impurities.
[0019]
Mn:
Mn is precipitated as MnAl 6 as a second phase precipitate, and can be sufficiently homogenized and solution treated to increase the strength by solid solution, while suppressing recrystallization of the alloy structure. Has the effect of miniaturizing. Therefore, it is an element imparted to molding improvement. However, if it exceeds 0.5%, it is a coarse precipitate and its volume content increases rapidly, and the moldability is remarkably deteriorated. Therefore, the Mn content is 0.5% or less.
[0020]
Cu:
Cu is an element that imparts strength by aging precipitates θ′-CuAl 2 . In the present invention, the increase in strength is not only due to β′-Mg 2 Si, but the addition of Cu makes the aging precipitates (β′-Mg 2 Si) dense and fine, thereby improving strength and baking at low temperature. The bake hardenability can be improved. However, if it exceeds 1.0%, the precipitation of θ'-CuAl 2 increases and the precipitate of θ'-CuAl 2 grows at room temperature. Sexuality decreases. Therefore, the Cu content is 1.0% or less.
[0021]
As described above, an Al-Mg-Si- (Cu, Mn) -based Al alloy in which Cu and / or Mn is further added to the main components of Mg and Si can further improve the effects of the present invention.
[0022]
Ti:
Ti is an element that makes the crystal grains of the ingot finer and improves the moldability, but if contained over 0.1%, a coarse crystallized product is generated and the moldability is lowered. Therefore, the Ti content is 0.1% or less.
[0023]
Fe:
Fe has a small strength improvement effect, but if it exceeds 0.3%, the formation of crystallized substances becomes remarkable, which causes coarsening and further coarsens the crystal grains. These significantly reduce moldability. Therefore, the Fe content is set to 0.3% or less.
[0024]
Next, the manufacturing conditions of the present invention will be described.
[0025]
The Al-Mg-Si-based Al alloy is melted and cast by a conventional method, but the subsequent homogenization heat treatment uniformly disperses the segregation of additive elements and controls the size and volume content of the dispersed precipitates. This is an important heat treatment. When this heat treatment is performed at a temperature lower than 550 ° C., the intermetallic compound composed of the additive element does not dissolve, and remains at a high density, so that the formability is deteriorated. Cracks occur during rolling. Therefore, the temperature range of the homogenization heat treatment is set to 550 to 600 ° C. The holding time is appropriately determined.
[0026]
The ingot subjected to the homogenization heat treatment under the above conditions is subjected to hot rolling → cold rolling (intermediate annealing is possible if necessary) to obtain a predetermined plate thickness, followed by solution treatment. In the solution treatment, at a temperature lower than 530 ° C., as in the homogenization heat treatment, the intermetallic compound composed of the additive element does not form a solid solution and remains, so that the formability is deteriorated. Moreover, when it becomes temperature higher than 600 degreeC, a burning will be raise | generated and the crack of a board will generate | occur | produce. Therefore, the temperature range of the solution treatment is 530 to 600 ° C. The holding time at the solution temperature is appropriately determined.
[0027]
In addition, about the cooling after solution treatment, it is good to quench by water cooling or air cooling. Further, the quenching may be performed at a high temperature in order to improve the low-temperature baking hardness.
[0028]
Next, the structure of the Al—Mg—Si alloy plate material of the present invention will be described.
[0029]
The internal structure in the Al alloy sheet includes crystallized substances generated during solidification and precipitates generated after solidification. These are factors that have an effect on strength, age-hardening properties, control of crystal grains, and the like, but need to have an appropriate size and volume content.
[0030]
That is, if the crystallized intermetallic compound has a size larger than 10 μm and a volume content in the matrix of more than 5%, the crystallized material starts as a crack at the time of molding. Therefore, the size of the crystallized intermetallic compound is 10 μm or less, and the volume content is 5% or less.
[0031]
Furthermore, it is preferable to regulate the size and volume content of the dispersed precipitate-based intermetallic compound. When the size of the dispersed precipitate-based intermetallic compound is larger than 2000 mm and the volume content exceeds 100 ppm, the formability is remarkably deteriorated. Therefore, it is preferable that the size of the intermetallic compound of the dispersed precipitate system is 2000 kg or less and the volume content is 100 ppm or less.
[0032]
Next, examples of the present invention will be described.
[0033]
[Example 1]
A 50 mm thick ingot obtained by melting and casting an Al alloy having the chemical components shown in Table 1 by a conventional method is homogenized at 560 ° C. for 4 hours, and then immediately hot-rolled to a thickness of 5 mm. did. The hot-rolled material was allowed to stand at room temperature, annealed under conditions of 500 ° C. × 5 seconds at a rate of temperature increase of 200 ° C./hr, and then cold-rolled at room temperature to a thickness of 1 mm. This cold-rolled material was heated to a solution treatment temperature of 560 ° C. and held for 30 seconds, then quenched with hot water at 50 ° C., held for 2 hours, and subjected to an experiment.
[0034]
The moldability was evaluated according to JIS-Z2247 Eriksen test B method using an Eriksen tester. The Eriksen value at that time showed a value of 10.0 mm or more as a formability equivalent to that of the Al-Mg alloy, and was accepted. Table 2 shows the results of the molding test. As is apparent from Table 2, the alloys of the examples of the present invention have a very excellent formability with an Erichsen value, which is an index of formability, of 10.0 mm or more.
[0035]
[Table 1]
Figure 0003697539
[0036]
[Table 2]
Figure 0003697539
[0037]
[Example 2]
A No. 5 Al alloy (chemical component within the scope of the present invention) shown in Table 1 of Example 1 and an No. 8 Al alloy (chemical component outside the scope of the present invention) were melted and cast by a conventional method. The obtained ingot was subjected to a homogenization heat treatment at 450 to 610 ° C. for 4 hours at a heating rate of 40 ° C./hr, and then hot-rolled to obtain a plate having a thickness of 5 mm. The obtained hot-rolled material was left at room temperature, and then annealed at 500 ° C. for 5 seconds at a heating rate of 200 ° C./min, then cold-rolled at room temperature, and a plate having a thickness of 1.0 mm It was.
[0038]
Next, the obtained plate was held at a temperature of 560 ° C. for 30 seconds at a heating rate of 400 ° C./min, quenched at a temperature of 50 ° C. at a cooling rate of 800 ° C./min, and kept at a temperature of 50 ° C. for 2 hours. It was used for the experiment. With respect to the heat-treated material, the moldability, crystallized material, and dispersed precipitate were measured. The results are shown in Table 3.
[0039]
As is apparent from Table 3, the alloy of the present invention was subjected to high-temperature homogenization heat treatment, whereby the size of the crystallized product was suppressed to 10 μm or less, the volume content was suppressed to 5% or less, and the dispersed precipitates were The size is suppressed to 2000 mm or less and the volume content is suppressed to 100 ppm or less. Due to such crystallized substances and dispersed precipitates, the Erichsen value, which is an index of moldability, is a favorable value of 10.0 mm or more. . On the other hand, since at least one of the chemical component or the homogenization heat treatment condition is outside the scope of the present invention in the comparative example, an appropriate internal structure cannot be obtained and the molding processability is inferior.
[0040]
[Table 3]
Figure 0003697539
[0041]
[Example 3]
A No. 5 Al alloy (chemical component within the scope of the present invention) shown in Table 1 of Example 1 and an No. 8 Al alloy (chemical component outside the scope of the present invention) were melted and cast by a conventional method. The obtained ingot was subjected to a homogenizing heat treatment at a heating rate of 40 ° C./hr at a temperature of 560 ° C. and a holding time of 4 hr, and then hot-rolled to obtain a plate having a thickness of 5 mm. The obtained hot-rolled material was left at room temperature, and then annealed at 500 ° C. for 5 seconds at a heating rate of 200 ° C./min, then cold-rolled at room temperature, and a plate having a thickness of 1.0 mm It was.
[0042]
Subsequently, the obtained plate was held at a temperature of 500 to 620 ° C. for 30 seconds at a heating rate of 400 ° C./min, quenched to a temperature of 50 ° C. at a cooling rate of 800 ° C./min, and left as it was at a temperature of 50 ° C. The time was maintained and used for the experiment. With respect to the heat-treated material, the moldability, crystallized material, and dispersed precipitate were measured. The results are shown in Table 4.
[0043]
As is apparent from Table 4, the alloy of the present invention example is controlled by high-temperature solution treatment, the size of the crystallized product is suppressed to 10 μm or less, the volume content is suppressed to 5% or less, and the dispersed precipitates The size is suppressed to 2000 mm or less and the volume content is suppressed to 100 ppm or less. Due to such crystallized substances and dispersed precipitates, the Erichsen value, which is an index of moldability, is a favorable value of 10.0 mm or more. . On the other hand, since at least one of a chemical component or solution treatment conditions is outside the scope of the present invention in the comparative example, an appropriate internal structure cannot be obtained and molding processability is inferior.
[0044]
[Table 4]
Figure 0003697539
[0045]
【The invention's effect】
As described above in detail, according to the present invention, the temperature of the homogenization heat treatment and the solution treatment is increased and the solid solubility is increased for the Al-Mg-Si alloy plate, By controlling the volume content, or further controlling the size and volume content of the dispersed precipitate, even an Al-Mg-Si alloy can be formed with the same formability (extrusion property) as the Al-Mg alloy. ) Can be obtained. Therefore, taking advantage of the characteristics of Al-Mg-Si alloys (age hardening: bake hardness), it becomes possible to reduce the thickness of the plate material by using this Al alloy, and the formability is Al-Mg. Since it is as good as the system, it contributes to weight reduction of automobiles, home appliances, and machine parts, and it is possible to improve the frequency of use industrially, and the effect is extremely high.

Claims (3)

重量%で(以下同じ)、Mg:0.2〜1.0%、Si:0.5〜2.0%を含有し、残部がAl及び不可避的不純物からなるAl合金鋳塊に550乃至600℃の高温範囲で均質化処理を行い、その後、熱間圧延、冷間圧延を施し、所定の板厚とした後、温度530〜600℃、保持時間5〜45秒の条件の溶体化処理を行い、マトリクス中に含まれる晶出物のサイズを10μm以下にすると共に前記晶出物の含有量を体積含有率で5%以下にし、更に、分散析出物のサイズを2000Å以下にすると共に前記分散析出物の含有量を体積含有率で100ppm以下にすることを特徴とする成形加工性に優れたAl−Mg−Si系合金板の製造方法。550 to 600 in an Al alloy ingot containing Mg: 0.2-1.0%, Si: 0.5-2.0% by weight% (hereinafter the same), the balance being Al and inevitable impurities A homogenization treatment is performed in a high temperature range of ° C., and then hot rolling and cold rolling are performed to obtain a predetermined plate thickness, followed by solution treatment under conditions of a temperature of 530 to 600 ° C. and a holding time of 5 to 45 seconds. The size of the crystallized substance contained in the matrix is 10 μm or less, the content of the crystallized substance is 5% or less by volume, and the size of the dispersed precipitate is 2000 kg or less and the dispersion The manufacturing method of the Al-Mg-Si type alloy plate excellent in the moldability characterized by making content of a precipitate into 100 ppm or less by volume content rate. 前記Al合金鋳塊は、更に、Mn:0.5%以下、Ti:0.1%以下、Fe:0.3%以下の1種或いは2種以上を含有することを特徴とする請求項1に記載の成形加工性に優れたAl−Mg−Si系合金板の製造方法。  The Al alloy ingot further contains one or more of Mn: 0.5% or less, Ti: 0.1% or less, and Fe: 0.3% or less. The manufacturing method of the Al-Mg-Si type alloy plate excellent in the moldability of description. 請求項1又は2に記載の製造方法により得られたAl−Mg−Si系合金板材であって、マトリクス中に含まれる晶出物のサイズが10μm以下であると共に前記晶出物の含有量が体積含有率で5%以下であり、且つ分散析出物のサイズが2000Å以下であると共に前記分散析出物の含有量が体積含有率で100ppm以下であること特徴とする成形加工性に優れたAl−Mg−Si系合金板。  The Al-Mg-Si based alloy sheet obtained by the manufacturing method according to claim 1 or 2, wherein the size of the crystallized substance contained in the matrix is 10 µm or less and the content of the crystallized substance is Al- excellent in processability, characterized in that the volume content is 5% or less, the size of the dispersed precipitate is 2000 mm or less, and the content of the dispersed precipitate is 100 ppm or less in volume content. Mg-Si alloy plate.
JP35539093A 1993-12-30 1993-12-30 Al-Mg-Si alloy plate having excellent forming processability and method for producing the same Expired - Lifetime JP3697539B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35539093A JP3697539B2 (en) 1993-12-30 1993-12-30 Al-Mg-Si alloy plate having excellent forming processability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35539093A JP3697539B2 (en) 1993-12-30 1993-12-30 Al-Mg-Si alloy plate having excellent forming processability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH07197214A JPH07197214A (en) 1995-08-01
JP3697539B2 true JP3697539B2 (en) 2005-09-21

Family

ID=18443664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35539093A Expired - Lifetime JP3697539B2 (en) 1993-12-30 1993-12-30 Al-Mg-Si alloy plate having excellent forming processability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3697539B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3802695B2 (en) * 1998-11-12 2006-07-26 株式会社神戸製鋼所 Aluminum alloy plate with excellent press formability and hemmability
JP4515363B2 (en) * 2005-09-15 2010-07-28 株式会社神戸製鋼所 Aluminum alloy plate excellent in formability and method for producing the same
CN109778030B (en) * 2019-03-19 2022-03-04 苏州铭恒金属科技有限公司 Novel aluminum alloy material and preparation thereof

Also Published As

Publication number Publication date
JPH07197214A (en) 1995-08-01

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
CN103255323B (en) Al-Mg-Zn-Cu alloy and preparation method thereof
JP2007031819A (en) Method for producing aluminum alloy plate
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH06136478A (en) Baking hardening type al alloy sheet excellent in formability and its production
JPS6119705B2 (en)
JP2000160310A (en) Production of aluminum alloy sheet suppressed in cold aging property
JPH09249950A (en) Method for producing aluminum alloy sheet excellent in formability and paint bake hardenability
JPH0874014A (en) Method for producing aluminum alloy sheet having high formability and good bake hardenability
JP3697539B2 (en) Al-Mg-Si alloy plate having excellent forming processability and method for producing the same
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JP2599861B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property
JP4237326B2 (en) Method for producing aluminum alloy sheet excellent in formability and corrosion resistance
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JPH08176764A (en) Production of aluminum alloy sheet for forming
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP2007239005A (en) Manufacturing method of 6000 series aluminum alloy plate excellent in room temperature non-aging property, formability and paint bake hardenability
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080715

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090715

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100715

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110715

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120715

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130715

Year of fee payment: 8

EXPY Cancellation because of completion of term