TW200425384A - Wafer carrier having improved processing characteristics - Google Patents
Wafer carrier having improved processing characteristics Download PDFInfo
- Publication number
- TW200425384A TW200425384A TW093106956A TW93106956A TW200425384A TW 200425384 A TW200425384 A TW 200425384A TW 093106956 A TW093106956 A TW 093106956A TW 93106956 A TW93106956 A TW 93106956A TW 200425384 A TW200425384 A TW 200425384A
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer carrier
- wafers
- wafer
- patent application
- item
- Prior art date
Links
- 235000012431 wafers Nutrition 0.000 claims abstract description 186
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 27
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 24
- 230000003647 oxidation Effects 0.000 claims description 15
- 238000007254 oxidation reaction Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000013078 crystal Substances 0.000 claims description 7
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 239000010703 silicon Substances 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 3
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 claims 1
- 239000004065 semiconductor Substances 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000013467 fragmentation Methods 0.000 description 2
- 238000006062 fragmentation reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910021426 porous silicon Inorganic materials 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000003958 fumigation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/67326—Horizontal carrier comprising wall type elements whereby the substrates are vertically supported, e.g. comprising sidewalls
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Packaging Frangible Articles (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
200425384 玖、發明說明: 【發明所屬之技術領域】 本發明-般係關於熏設備,而更明確言之係關於一種用 於支撐晶圓以經歷諸如曝露於一高溫處理操作之類處理之 晶圓載體。此外,本發明一船孫μ μ 月奴係關於使用此類晶圓載體來 處理晶圓。 【先前技術】 在此項技術中瞭解,半導體程序在包括高溫程序(包括退 火化學π相沈積、氧化及其他)的各種處理步驟中一般採 用工件以支撐及/或傳輸半導體晶圓。在此方面,使用水平 及垂直晶圓載體(在此項技術中亦稱為晶圓舟)來支撐複數 個晶圓,該等複數個晶圓一般以一恆定間距相互相隔而形 成一晶圓陣列。在此方面,該晶圓曝露於處理操作一般稱 為「分批處理」,其中同時處理複數個晶圓。200425384 发明 Description of the invention: [Technical field to which the invention belongs] The present invention generally relates to fumigation equipment, and more specifically to a wafer for supporting a wafer to undergo processing such as exposure to a high temperature processing operation Carrier. In addition, the present invention relates to the use of such wafer carriers for wafer processing. [Previous Technology] It is understood in this technology that semiconductor processes generally employ workpieces to support and / or transport semiconductor wafers in various processing steps including high-temperature processes (including annealing chemical π-phase deposition, oxidation, and others). In this regard, horizontal and vertical wafer carriers (also known as wafer boats in this technology) are used to support a plurality of wafers, which are generally separated from each other at a constant pitch to form a wafer array . In this regard, the exposure of the wafer to a processing operation is generally referred to as "batch processing," in which multiple wafers are processed simultaneously.
Ik著電晶體關鍵尺寸、晶粒尺寸及積體電路尺寸之減 小所處理晶圓之貫際直控不斷增加。例如,該產業已從4 英忖晶圓轉移至6英吋晶圓,而現在一般使用8英吋晶圓。 進一步,12英吋(300 mm)的半導體製造工廠(fabricati〇n plant ; fab)也出現於線上。隨著增加的晶圓尺寸之引入, 在該製造程序的許多階段都產生新的工程問題。 進一步,主要由矽組成之半導體晶圓正在用於形成包括 邏輯與記憶體裝置之傳統積體電路結構,而且用於形成光 電裝置’例如波導多工器及微機電系統(micro-electro_mechanical system ; MEMS)。在此方面,裝置製造有時使用一延長的氧化Reduction in Ik critical crystal size, die size, and integrated circuit size The direct control of wafers processed has been increasing. For example, the industry has moved from 4-inch wafers to 6-inch wafers, and now generally uses 8-inch wafers. Further, a 12-inch (300 mm) semiconductor manufacturing plant (fabrication plant; fab) also appeared online. With the introduction of increased wafer sizes, new engineering issues arise at many stages of the manufacturing process. Further, semiconductor wafers mainly composed of silicon are being used to form traditional integrated circuit structures including logic and memory devices, and are also used to form optoelectronic devices such as waveguide multiplexers and micro-electromechanical systems (MEMS) ). In this regard, device fabrication sometimes uses an extended oxidation
O:\91\91516.DOC -6- 200425384 步驟,在此步驟中氧化該等半導體晶圓,有時延長之時間 k J超出在傳統半導體處理中一般遇到的時間週期。例 如,常常一次將一晶圓曝露於一處理操作數曰,例如以五 至十日為等級。如上面所提及,此類處理操作時常包括該 等晶圓之氧化。 鑒於所延長的處理時間以及所增加的晶圓尺寸,已產生 :響該等装置之強固性及品質之技術問題。在此方面,本 發明者在經受此類處理操作後已遇到該等晶圓中之缺陷, 例如該等晶圓之局部或甚至災難性的破碎。其他缺陷包括 圍繞外部周邊的晶圓變形及缺口,特別是在接觸該 ^ ^ Wh U ^ . 0如,在一水平晶圓舟之情況下的該晶圓載體 之底部支撐部分。 、,此在此項技術中需要改善晶圓載體或舟(特定言之係 平曰曰圓載體)並需要提供改善裝置良率及低缺陷率之改 善的處理操作。 【發明内容】 曰口據本^日月之一方面提供一種晶圓載體用於支撐複數個 曰曰圓4載體包括提供於—托架内的複數個槽,該托架包 含碳切並具有覆蓋該碳切之—氧化層。 依據本發明t I丄w 方面k供一種具有複數個槽之晶圓載 體’該等複數個槽具有一 一立 负特疋見度。特定言之,每一槽之 ^分具有—寬度㈤’其中WS不小於Utw而tw為該等晶 圓之一厚度。 依據本發明之另 特徵’提供一種用於支撐複數個晶圓O: \ 91 \ 91516.DOC -6- 200425384 step, in which the semiconductor wafers are oxidized, and sometimes the extended time k J exceeds the time period commonly encountered in traditional semiconductor processing. For example, one wafer is often exposed to one processing operation at a time, such as on a scale of five to ten days. As mentioned above, such processing operations often include oxidation of such wafers. In view of the increased processing time and the increased wafer size, technical problems have arisen that affect the robustness and quality of these devices. In this regard, the inventors have encountered defects in the wafers after undergoing such processing operations, such as partial or even catastrophic fragmentation of the wafers. Other defects include wafer deformation and notches around the outer perimeter, especially when contacting the ^ Wh U ^. 0, such as the bottom support portion of the wafer carrier in the case of a horizontal wafer boat. In this technology, it is necessary to improve the wafer carrier or boat (specifically, round carrier), and to provide improved processing operations to improve device yield and low defect rate. [Summary of the Invention] According to one aspect of the present invention, a wafer carrier is provided for supporting a plurality of Y4 round carriers including a plurality of slots provided in a bracket, the bracket containing a carbon cut and having a cover. The carbon cuts-the oxide layer. According to the aspect t of the present invention, a wafer carrier having a plurality of slots is provided. The plurality of slots have a negative visibility. In particular, the fraction of each groove has a width of ㈤ 'where WS is not less than Utw and tw is one of the thicknesses of the crystal circles. According to another feature of the present invention, a method for supporting a plurality of wafers is provided.
O:\91\91516.DOC 200425384 之B曰圓載體,該等晶圓具有一半徑、,且該晶圓載體包括 用於支撐該等晶圓之複數個槽,其中每一槽之至少一部分 具有一曲率半徑rs,此半徑不小於約1.15 rw。依據本發明之 此方面之一變化,匕可具有一負值而、具有一正值。 依據本發明之另一方面,提供用於處理複數個晶圓之方 法:中將複數個晶圓載至具有上述任一項或所有特徵之 一晶圓載體上,並使該等晶圓在載於該晶圓載體上時經受 一處理操作。該處理操作可為其中將該等晶圓曝露於一氧 化環境以氧化該等晶圓之一操作。 【實施方式】 依據本發明之一項具體實施例,提供一特定的晶圓載體 以用於支撐複數個晶圓。在此方面,應注意圖丨,該圖式說 明依據本發明之一項具體實施例的一晶圓載體之一透視 圖。如圖所示,晶圓載體丨包括一托架2,該托架2具有一般 為開放之一結構並包括呈現一般為弓形之一形狀的複數個 托架臂3,且該等托架臂與複數個支撐部件整合以支撐該等 曰曰圓。特定言之,提供第一、第二及第三支撐部件1〇、以 及14,每一部件經向内向突出,並且沿該等部件提供複數 個槽16。每一槽16之置放及定向使其沿固定半徑之相同弧 而定位以支撐一單一的個別晶圓。每一槽分別由第一、第 二及第三槽區段18、2〇及22組成,每一槽分別沿第一、第 二及第三支撐部件10、12及14定位。 士 Θ 2所示,&供一斷面圖,其說明唾合並載至該晶圓載 體1上面的晶圓30之定向。圖1及2所說明的該晶圓載體之一O: \ 91 \ 91516.DOC 200425384 B-round carrier, the wafers have a radius, and the wafer carrier includes a plurality of slots for supporting the wafers, at least a portion of each slot has A radius of curvature rs, this radius is not less than about 1.15 rw. According to a variation of this aspect of the invention, the dagger may have a negative value and a positive value. According to another aspect of the present invention, a method for processing a plurality of wafers is provided. In the method, a plurality of wafers are loaded on a wafer carrier having any one or all of the above characteristics, and the wafers are loaded on The wafer carrier is subjected to a processing operation. The processing operation may be one in which the wafers are exposed to an oxidation environment to oxidize the wafers. [Embodiment] According to a specific embodiment of the present invention, a specific wafer carrier is provided for supporting a plurality of wafers. In this regard, attention should be paid to the drawing, which illustrates a perspective view of a wafer carrier according to a specific embodiment of the present invention. As shown in the figure, the wafer carrier includes a bracket 2 which has a generally open structure and includes a plurality of bracket arms 3 having a generally arcuate shape, and the bracket arms and A plurality of support members are integrated to support such a circle. In particular, first, second and third support members 10, and 14 are provided, each of which protrudes inwardly, and a plurality of grooves 16 are provided along these members. Each slot 16 is positioned and oriented such that it is positioned along the same arc of a fixed radius to support a single individual wafer. Each slot is composed of first, second, and third slot sections 18, 20, and 22, respectively, and each slot is positioned along the first, second, and third support members 10, 12, and 14, respectively. As shown by taxi Θ 2, & provides a cross-sectional view illustrating the orientation of the wafer 30 which is spitted onto the wafer carrier 1. One of the wafer carriers illustrated in Figures 1 and 2
O:\91\91516.DOC 200425384 般朝向為水平,並係使用中的晶圓載體之定向(特定言之係 在一半導體工廠環境中)。如所說明,該載體支撐一般為一 直立、垂直位置之晶圓。 如圖1很清楚顯示,該等槽丨6係配置為一線性陣列並以一 恆疋間距相互間隔。例如,顯示第二槽區段2〇以一恆定間 距相互間隔並為一陣列袼式。如此,該載體線性固定該等 晶圓,形成一水平晶圓堆疊。該等凹槽之間距及相應地, 3 4 aa圓之間距,可依據特定應用而變動,但一般在約2 至約4 mm之一範圍内,標稱約為2.38 mm。 如圖2所示,該等第一、第二及第三支撐部件10、12及14 沿一弧32定位,該弧32具有一半徑等於該晶圓、之一半 徑,從而使得該等第一、第二及第三支撐部件依順序沿該 弧32定位而該第二支撐部件在該等第一與第三支撐部件 1〇、14之間沿圓周定位。在此方面,目為該第二支撐部件 係置放於一最底部位置,即在該六點鐘位置,因此該第二 支撐部件-般支撐該晶圓重量之—較大部分。該孤32掠過 不大於180度之一角度,以便輔助該等晶圓之載入。一般 地’定位該等支撐部份以定義不大於約150度或-般不大於 約130度之一弧32。 儘官圖1及2顯示三個支撐部件,但該晶圓載體可具有一 不同數目之支撐部件。例如,可將該第二支撐部件雙叉以 便形成具有不同槽區段之二不同支撐部件。在此情況下, 該等支撐部件可與該最底部六點鐘位置相等間隔。 如上面所提及,該晶圓載體具有一般為開放之O: \ 91 \ 91516.DOC 200425384 is generally oriented horizontally and is the orientation of the wafer carrier in use (specifically, in a semiconductor factory environment). As illustrated, the carrier support is typically a wafer in an upright, vertical position. As clearly shown in Figure 1, the slots 6 are arranged as a linear array and are spaced from each other at a constant pitch. For example, it is shown that the second groove sections 20 are spaced from each other at a constant pitch and are in an array pattern. In this way, the carrier linearly holds the wafers to form a horizontal wafer stack. The distance between the grooves and correspondingly, the 3 4 aa circle distance can vary depending on the particular application, but is generally in the range of about 2 to about 4 mm, nominally about 2.38 mm. As shown in FIG. 2, the first, second, and third support members 10, 12, and 14 are positioned along an arc 32 having a radius equal to the wafer and a radius, so that the first The second, third and third support members are positioned along the arc 32 in sequence and the second support member is positioned circumferentially between the first and third support members 10, 14. In this regard, it is intended that the second support member is placed at a bottom-most position, that is, at the six o'clock position, so the second support member generally supports a larger portion of the weight of the wafer. The lone 32 is swept by an angle not greater than 180 degrees to assist in loading the wafers. Generally, the support portions are positioned to define an arc 32 that is not greater than about 150 degrees or-generally not greater than about 130 degrees. The official figures 1 and 2 show three support members, but the wafer carrier may have a different number of support members. For example, the second support member may be double-forked to form two different support members having different groove sections. In this case, the support members may be equally spaced from the bottom six o'clock position. As mentioned above, the wafer carrier has a generally open
O:\91\91516.DOC 200425384 / 又汁提供下面詳細說明之數項優點。一般地,定義 於^亥等托木# 3與該等支擇部件之間的窗口沿該托架之一 外部部分®柱表面提供至少4_開放區域。—般地,該 開放區域科於約5G%。該晶圓載體之此開放料有利地 、口々:預氧化步驟期間圍繞該晶圓載體之氣體流動,以形 成等角的、相對較均勻的氧化層。 現在來說該晶圓夕#少 W之材枓,如上面所提及,該托架係由碳 ,石夕組成。依據-項具體實施例,該碳切包含再結晶的 坡化石夕’其係在此項技術中所暸解之—材料。一般地,將 半¥體級★切粉之_、綠色主體與燒結助劑及黏結劑 。模製成所而的經成形、乾燥、加熱至燃盡之一有機 黏結劑並經熱處理以密化並再結晶該綠色主體。可使用接 下來的雄化、加工步驟以達到該晶圓載體之最終尺寸。 可使用其他形式的碳化石夕以替代再結晶的碳化石夕或與再 結晶的碳化矽組合。例如,該碳化矽基板可藉由一轉化程 序而I成’其中藉由氣相或液相技術將—碳預成形物轉化 成奴化矽。一般地,在此情況下,該預成形物係由一含碳 材料形成,例如半導體級石墨。進一步,在將一多孔碳化 矽用於該晶圓載體之基底材料之情況下,該載體可充滿 矽。此類組合特徵稱為Si_Sic或矽化碳化矽。在此方面,在 形成一相對較為多孔之碳化矽基板後,接著該基板便充滿 熔化矽,以將该結構密化至適合用於耐火應用(例如,在半 導體處理環境中)之一程度。該矽化碳化矽可塗佈有一進— 步的碳化矽層,例如化學汽相沈積(chemical v邛μO: \ 91 \ 91516.DOC 200425384 / You provide several advantages detailed below. In general, the window defined between ^ HI et al. # 3 and the optional components provides at least 4_ open areas along one of the bracket's outer part® column surfaces. In general, the open area section is at about 5G%. This open material of the wafer carrier is advantageous in that the gas flowing around the wafer carrier during the pre-oxidation step forms an equiangular, relatively uniform oxide layer. Now let ’s talk about the material of the wafer. As mentioned above, the bracket is composed of carbon and stone. According to a specific embodiment, the carbon cut contains a recrystallized slope fossil eve 'which is a material known in the art. Generally, half ¥ body grade ★ cut powder _, green body and sintering aids and binders. One of the organic binders molded, dried, heated to burn out and heat treated to densify and recrystallize the green body. The subsequent maleation and processing steps can be used to reach the final size of the wafer carrier. Other forms of carbides can be used instead of or in combination with recrystallized silicon carbide. For example, the silicon carbide substrate can be converted into a silicon carbide substrate by a conversion process, wherein the carbon preform is converted into silicon carbide by a gas phase or liquid phase technique. Generally, in this case, the preform is formed of a carbonaceous material, such as semiconductor-grade graphite. Further, in the case where a porous silicon carbide is used as a base material of the wafer carrier, the carrier may be filled with silicon. This type of combination feature is called Si_Sic or Silicon Carbide. In this regard, after a relatively porous silicon carbide substrate is formed, the substrate is then filled with molten silicon to densify the structure to a degree suitable for refractory applications (for example, in a semiconductor processing environment). The siliconized silicon carbide can be coated with a further silicon carbide layer, such as chemical vapor deposition (chemical v 邛 μ
O:\91\91516.DOC 200425384 deposited ; CVD)碳化矽。 進一步,該晶圓載體可由獨立式SiC形成,該獨立式Sic 係藉由CVD而形成。在此情況下,實施一延長的cvD程序 以自己形成該晶圓載體。 提供一氧化層以便覆蓋該晶圓載體之碳化矽。該氧化層 可藉由在一氧化環境中該載體之氧化而形成,例如,藉由 在一含氧環境中在一升高溫度下氧化該載體,該升高溫度 為,例如,在950至約13〇0攝氏度之一範圍内,而更為一般 則在約1000至約1250攝氏度之一範圍内。可在一乾燥或潮 濕大氣中實施氧化,並一般實施於大氣壓力下。一潮濕環 境可藉由引入蒸汽而產生,並用來提高氧化率且改善該氧 化層之密度。在此方面,U5(rc之濕氧化可採取約^至“ 小時之等級形成一強固而厚(例如約2至3微米)的氧化層。另 一方面,此類層可採取5日之等級,例如1〇至2〇日,用於依 據:乾燥氧化處理而形成氧化層。儘管該氧化層一般係藉 =氧化而形成,但亦可沈積該氧化層(例如,藉由彻㈣ 札體反應)。但是’為具有耐用性及強固性,較佳則係熱生 長層。 2。該氧化矽層 一中間層(例如 如同在充滿矽 一般地,該氧化層為碳化矽,一般為Si〇 可/、忒曰曰圓載體之碳化矽直接接觸。或者, 矽)可存在於該碳化矽與該覆蓋氧化層之間, 的碳化矽之情況下一樣。 氧化層之生長曲線,其 ,該氧化層按照一般為 圖3說明在該碳化矽晶圓載體上一 與成長時間成函數關係。如所說明O: \ 91 \ 91516.DOC 200425384 deposited; CVD) silicon carbide. Further, the wafer carrier may be formed of free-standing SiC, and the free-standing Sic is formed by CVD. In this case, an extended cvD procedure is performed to form the wafer carrier by itself. An oxide layer is provided to cover the silicon carbide of the wafer carrier. The oxide layer may be formed by oxidation of the support in an oxidizing environment, for example, by oxidizing the support at an elevated temperature in an oxygen-containing environment, the elevated temperature being, for example, between 950 and about It is in the range of 1300 degrees Celsius, and more generally in the range of about 1000 to about 1250 degrees Celsius. Oxidation can be carried out in a dry or humid atmosphere and is generally carried out under atmospheric pressure. A humid environment can be created by introducing steam and used to increase the oxidation rate and improve the density of the oxide layer. In this regard, U5 (wet oxidation of rc can take a grade of about ^ to "hours to form a strong and thick (such as about 2 to 3 microns) oxide layer. On the other hand, such a layer can take a grade of 5 days, For example, from 10 to 20 days, it is used to form an oxide layer based on dry oxidation treatment. Although the oxide layer is generally formed by oxidation, the oxide layer can also be deposited (for example, through a thorough-body reaction) . But 'for durability and robustness, it is preferably a thermal growth layer. 2. The silicon oxide layer is an intermediate layer (for example, as in the case of being filled with silicon, the oxide layer is silicon carbide, generally SiO, The silicon carbide of the round carrier is in direct contact. Alternatively, silicon) may exist between the silicon carbide and the covering oxide layer, as in the case of silicon carbide. The growth curve of the oxide layer, which is in accordance with the general For FIG. 3, a functional relationship with the growth time on the silicon carbide wafer carrier is illustrated.
O:\9U91516.DOC -11 - 200425384 抛物線之-生長曲線來生長。由於下面所論述之原因,依 據本U之j員具體實施例,該氧化層具有超過該曲線之 相對較快生長部分之一厚度。例如,該氧化層可具有大於 約0.5微米之一厚度,或特定言之大於約〇·75微米,例如大 於約1.G微来,以及甚至15微米。依據本發明之特定具體實 施例’該氧化物具有至少2微米之一厚度,例如為約2至約3 微米之等級。應注意,依據本發明之具體實施例之氧化層 係提供於該晶圓載體上之一層,與可存在於該晶圓載體上 之任何原生氧化物相對,但其厚度相對較低。進一步,儘 官上述氧化層一般係藉由熱氧化技術而形成,但亦可使用 其他技術,例如直接沈積一氧化層。 已發現-氧化層之形成(例如藉由一熱預氧化步驟)改盖 一半導體工廠環境中的程序控制。特定言之,本發明者已 發現,在該等晶®上形成—相對較厚的氧化層之傳統氧化 處理期間’該等晶圓往往經由該氧化層在該等晶圓上的生 長及/或形成於該晶圓载體上之一氧化層而與該晶圓載體 黏接。咸信在隨後該晶圓/晶圓載體裝配件之冷卻期間,該 晶圓與該載體之收縮差異與熱膨脹係數之差異會引起該等 晶圓中㈣致應力。&類熱膨脹/收縮特性之差異可由於組 合及結構差異所致,且最終能造成對該等晶圓之損宝。在 ^端,況下,該等晶圓可藉由—裂化機制而發生炎難性故 ρ早。精由併入-預氧化步驟以在該載體上形成一氧化層, 而削弱在該等晶圓之熱處理期間在該載體上一氧化層二生 長’並且減少該等晶圓與該載體之間的黏接傾向二而增O: \ 9U91516.DOC -11-200425384 Parabolic-growth curve to grow. For reasons discussed below, according to a specific embodiment of the present invention, the oxide layer has a thickness that exceeds one of the relatively faster growing portions of the curve. For example, the oxide layer may have a thickness greater than about 0.5 micrometers, or specifically greater than about 0.75 micrometers, such as greater than about 1. G micrometers, and even 15 micrometers. According to a particular embodiment of the present invention ', the oxide has a thickness of at least 2 microns, for example, on the order of about 2 to about 3 microns. It should be noted that the oxide layer according to a specific embodiment of the present invention is a layer provided on the wafer carrier, as opposed to any native oxide that may be present on the wafer carrier, but its thickness is relatively low. Further, although the above oxide layer is generally formed by a thermal oxidation technique, other techniques such as direct deposition of an oxide layer may also be used. It has been found that the formation of an oxide layer (e.g., by a thermal pre-oxidation step) overrides process control in a semiconductor factory environment. In particular, the inventors have discovered that during the traditional oxidation process of forming a relatively thick oxide layer on the crystals, the wafers often pass through the growth of the oxide layer on the wafers and / or An oxide layer formed on the wafer carrier is adhered to the wafer carrier. During the subsequent cooling of the wafer / wafer carrier assembly, the difference in shrinkage and thermal expansion coefficient between the wafer and the carrier may cause stress in the wafers. The difference in & like thermal expansion / contraction characteristics can be caused by the combination and structure difference, and can eventually cause damage to these wafers. At the end, under the condition, these wafers can be inflammable due to the cracking mechanism, so early. Incorporating a pre-oxidation step to form an oxide layer on the carrier, thereby reducing the growth of the oxide layer on the carrier during the heat treatment of the wafers' and reducing the Increasing adhesion tendency
O:\91\91516.DOC -12- 200425384 強程序控制及晶圓良率。 依據本發明之另一特徵,該晶圓載體中的槽具有一特定 的曲率半徑rs,此半徑進一步增強程序控制及晶圓良率,特 定言之係在上述高溫處理期間。 如結合圖2所示,該晶圓具有一標稱半徑、。當前最新技 術的晶圓工廠使用8英吋,並且越來越多地使用12英吋(3〇〇 匪直徑)晶圓。因此,儘管較老的工廠可使用較小晶圓而 較新一代工廠則使用較大晶圓,但新工廠可使用一晶圓, 其具有等級約為15G mm之-半徑^。依據—項具體實施例 之-特定特徵,該槽之曲率半徑匕不小於約115 ^。或者 說,用於支撐該晶圓的槽曲率半徑比該等晶圓之半徑大至 現在來看圖4,顯示1約為〜之二倍。甚至進-步,該槽曲 率半仫可接近一直線(rs==無窮大)。圖5中說明此特定且體實 施例。在此情況下’槽之接觸該晶圓之—部分沿—直線延 伸。 進-步槽曲率之半徑可具有相反定向,即,鱼該晶 圓之半徑^相比較具有—負的曲率半徑。此顯示於圖6中, 其中該槽具有一般為凸起之-形狀並具有-半徑,此半徑 自該晶圓與_之間的接觸點起以與該日日日®半徑相反之一 方向延伸。 在該等前述具體實施例中, 同的曲率半徑。作是,二母—槽區段具有相 仁疋一般沿該第二支撐部件之第二槽區 又之至少-部分具有上述之_半徑特色。O: \ 91 \ 91516.DOC -12- 200425384 Strong program control and wafer yield. According to another feature of the present invention, the groove in the wafer carrier has a specific radius of curvature rs, which further enhances program control and wafer yield, specifically during the above-mentioned high temperature processing. As shown in FIG. 2, the wafer has a nominal radius. Current state-of-the-art wafer fabs use 8-inch wafers and are increasingly using 12-inch (300 mm diameter) wafers. Therefore, although older plants can use smaller wafers and newer generation plants use larger wafers, the new plant can use one wafer with a grade of about 15G mm-radius ^. According to a specific feature of a specific embodiment, the curvature radius of the groove is not less than about 115 mm. In other words, the radius of curvature of the groove used to support the wafer is larger than the radius of the wafers. Looking at FIG. 4 now, it is shown that 1 is approximately twice as large. Even further-the curvature of the slot can be close to a straight line (rs == infinity). This particular embodiment is illustrated in FIG. 5. In this case, the portion of the 'groove' that contacts the wafer extends in a straight line. The radius of the progressive groove curvature may have the opposite orientation, i.e. the radius of the crystal circle of the fish ^ has a negative radius of curvature. This is shown in Figure 6, where the groove has a generally convex-shape and has a -radius that extends from the point of contact between the wafer and _ in a direction opposite to the day-to-day® radius . In the foregoing specific embodiments, the curvature radii are the same. As a matter of fact, the second mother-groove section has the same characteristics as the above-mentioned radius at least in part along the second groove area of the second support member.
O:\91\91516.DOC -13- 200425384 精由提供具有上述之—曲率半#rs之一槽部分,來最小化 該晶圓與該載體之間的潛在氧化黏接區域。如此, 晶圓與該載體之間形成—氧化物黏接,則最小化的黏接: 面更弱且更可能在處理湘鬥以丨 , 功間(例如,在冷卻期間)破裂,從而 削弱該晶圓中造成上述破碎的熱應力。 依據本么明之另一項具體實施例,該晶圓載體的槽之至 少一部分具有-寬度WS大於該等晶圓之一厚度、。特定+ 之,該寬度-般不小於l3Gtw。依據另—項㈣實施/, WS不小於1.35 tw並可在約i 35 tw至約i 5〇 之一範圍内。在 此方面’圖7說明與該晶圓厚度〜相對的該槽寬度Ws(未按比 例顯示)。應注意,該等晶圓之實際厚度W可依據晶圓品牌、 所希望用途、晶圓直徑、組成(例如,絕緣體上梦(仙c⑽⑽ insulator; SOI))等而變動。但是,晶圓一般具有在約〇 45 _ 至約0.80 mm之-範圍内之一厚度,更為一般地係在約〇 5〇 至約0.765 mm之間。藉由將以上相對寬度提供給該等槽, 曰曰 /、/、諸如1 · 10、至1.25 tw等級之較窄寬度相對,相對較厚 氧化層之形成得到該等槽中的額外空間輔助。此外,藉由 削弱在氧化物生長期間晶圓在該等槽内受約束之程度, 圓潛變變得不太成問題。在此方面,使用傳統技術,該 圓在該槽内所受之約束往往使得該晶圓在高溫下潛變而造 成缺口。在繞該外部周邊之該晶圓内缺口之形成往往形成 一不利的機械聯鎖結構。特定言之,由於該晶圓與該晶圓 載體之不同熱收縮特色而導致一經冷卻該缺口便往往嚙合 該槽且造成在該晶圓内施以機械應力。O: \ 91 \ 91516.DOC -13- 200425384 The minimization of the potential oxidative adhesion area between the wafer and the carrier is provided by providing a groove portion having the above-curvature half #rs. In this way, an oxide-to-oxide bond is formed between the wafer and the carrier, and the adhesion is minimized: the surface is weaker and more likely to break during processing (for example, during cooling), thereby weakening the surface. The thermal stress in the wafer that caused the above fragmentation. According to another specific embodiment of this Meming, at least a part of the grooves of the wafer carrier has a width WS greater than a thickness of one of the wafers. Specific +, the width is generally not less than l3Gtw. According to the implementation of another item, WS is not less than 1.35 tw and may be in the range of about i 35 tw to about i 50. In this regard 'FIG. 7 illustrates the groove width Ws (not shown in scale) relative to the wafer thickness ~. It should be noted that the actual thickness W of such wafers may vary depending on the wafer brand, the intended use, the wafer diameter, and the composition (eg, SOI). However, the wafer generally has a thickness in the range of about 0 45 mm to about 0.80 mm, and more generally is between about 0.50 to about 0.765 mm. By providing the above relative widths to the grooves, the narrower widths such as /, /, such as 1 · 10, to 1.25 tw, and the formation of relatively thick oxide layers are assisted by the extra space in the grooves. In addition, by weakening the degree to which wafers are constrained within the trenches during oxide growth, circular latent becomes less problematic. In this regard, using traditional techniques, the confinement of the circle in the groove often causes the wafer to creep at high temperatures and create a gap. The formation of a notch in the wafer around the outer periphery often forms an unfavorable mechanical interlocking structure. In particular, due to the different thermal shrinkage characteristics of the wafer and the wafer carrier, once the notch is cooled, the notch often engages the groove and causes mechanical stress in the wafer.
O:\91\9I516.DOC -14· 200425384 除上述該sa圓載體之具體實施例之特定特徵之外,本發 明=提供對複數個晶圓之處理,稱為分批處理。在此方面, 曰曰圓載體載有複數個晶圓,該等晶圓一般以一恆定間距 配2為一線性陣列。然後,將該晶圓/晶圓載體裝配件放置 於一爐(例如一處理管)中以作高溫處理。如上所述,一理想 的處理插作係在該等晶圓上形成—相對較厚氧化層,其特 別適合於MEMS及光電應用。 k吕上面已對本發明之具體實施例作特定說明,但應瞭 解可進行各種修改而不致麟本申請專利範圍之範脅。 【圖式簡單說明】 〜藉由參考隨附圖式可更好地瞭解本發明,且熟習此項技 術者會更明白其許多目的、特徵及優點。 圖1為依據本發明_項具體實施例之_水平晶圓載體之 一透視圖。 圖2為依據本發明_項具體實施例之_載㈣晶圓的水 平晶圓載體之一斷面圖。 圖3為說明在—碳切晶圓載體上之氧化物生長曲線之 一曲線圖。 圖…員7Γ依據本發明一項具體實施例載有一半導體晶圓 之一槽的曲率半徑。 圖5顯不依據本發明y a ^ ^ / 月另一項具體貫%例載有一半導體晶 圓之一槽的曲率半徑。 圖6顯不依據本發明2 s a a- 月另一項具體貝軛例載有一半導體晶 圓之一槽的曲率半徑。O: \ 91 \ 9I516.DOC -14 · 200425384 In addition to the specific features of the specific embodiment of the sa circular carrier described above, the present invention = provides processing of a plurality of wafers, which is called batch processing. In this regard, a round carrier carries a plurality of wafers, which are generally arranged at a constant pitch as a linear array. The wafer / wafer carrier assembly is then placed in a furnace (e.g., a processing tube) for high temperature processing. As mentioned above, an ideal processing insert is formed on these wafers—a relatively thick oxide layer—which is particularly suitable for MEMS and optoelectronic applications. The specific embodiments of the present invention have been specifically described above, but it should be understood that various modifications can be made without departing from the scope of the patent scope of this application. [Brief description of the drawings] ~ The present invention can be better understood by referring to the accompanying drawings, and those skilled in the art will better understand its many purposes, features and advantages. FIG. 1 is a perspective view of a horizontal wafer carrier according to a specific embodiment of the present invention. FIG. 2 is a cross-sectional view of a horizontal wafer carrier carrying a wafer according to a specific embodiment of the present invention. Figure 3 is a graph illustrating the oxide growth curve on a carbon-cut wafer carrier. FIG. 7 shows a radius of curvature of a groove of a semiconductor wafer according to a specific embodiment of the present invention. Fig. 5 shows the curvature radius of a groove of a semiconductor crystal circle according to another embodiment of the present invention. Fig. 6 shows the curvature radius of a groove of a semiconductor crystal circle according to another specific example of a yoke according to the present invention.
O:\91\91516.DOC 200425384 圖7顯示依據本發明之一項具體實施例,載於一槽内的晶 圓斷面厚度,其與槽寬度相對。 不同圖式中使用之相同參考符號表示類似或相同項目。 【圖式代表符號說明】 1 晶圓載體 2 托架 3 托架臂 10 第一支撐部件 12 第二支撐部件 14 第三支撐部件 16 槽 18 第一槽區段 20 第二槽區段 22 第三槽區段 30 晶圓 32 弧 O:\91\91516.DOC -16-O: \ 91 \ 91516.DOC 200425384 FIG. 7 shows the thickness of the cross section of a wafer in a groove according to a specific embodiment of the present invention, which is opposite to the width of the groove. The use of the same reference symbols in different drawings indicates similar or identical items. [Illustration of representative symbols] 1 wafer carrier 2 bracket 3 bracket arm 10 first support member 12 second support member 14 third support member 16 slot 18 first slot section 20 second slot section 22 third Slot section 30 wafer 32 arc O: \ 91 \ 91516.DOC -16-
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/402,915 US20040188319A1 (en) | 2003-03-28 | 2003-03-28 | Wafer carrier having improved processing characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200425384A true TW200425384A (en) | 2004-11-16 |
TWI288454B TWI288454B (en) | 2007-10-11 |
Family
ID=32989844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW093106956A TWI288454B (en) | 2003-03-28 | 2004-03-16 | Wafer carrier having improved processing characteristics |
Country Status (7)
Country | Link |
---|---|
US (1) | US20040188319A1 (en) |
EP (1) | EP1609171A2 (en) |
JP (2) | JP2006521689A (en) |
KR (1) | KR100755196B1 (en) |
CN (1) | CN100390927C (en) |
TW (1) | TWI288454B (en) |
WO (1) | WO2004095545A2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101146742B (en) * | 2005-03-30 | 2013-05-01 | 揖斐电株式会社 | Silicon carbide-containing particle, method of manufacturing a silicon carbide-based sintered object, silicon carbide-based sintered object, and filter |
CN101928934B (en) * | 2009-06-18 | 2012-11-28 | 中芯国际集成电路制造(上海)有限公司 | Method for improving uniformity of high-temperature oxide of wafer |
CN103151289B (en) * | 2011-12-07 | 2015-11-25 | 无锡华润华晶微电子有限公司 | Brilliant boat, brilliant boat transfer device and comprise its wafer transfer system |
JP5991284B2 (en) * | 2013-08-23 | 2016-09-14 | 信越半導体株式会社 | Heat treatment method for silicon wafer |
CN103681416A (en) * | 2013-11-29 | 2014-03-26 | 上海华力微电子有限公司 | Method for monitoring thickness of polycrystalline silicon furnace tube wafers |
CN104269351B (en) * | 2014-09-30 | 2017-02-22 | 上海华力微电子有限公司 | Method for overcoming stress defect of HCD silicon nitride sedimentation technology |
TWI714574B (en) * | 2015-04-13 | 2021-01-01 | 德商柯恩梅爾碳集團有限公司 | Pecvd-boot |
JP7251458B2 (en) * | 2019-12-05 | 2023-04-04 | 株式会社Sumco | Silicon wafer manufacturing method |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3634116A (en) * | 1969-06-02 | 1972-01-11 | Dow Corning | Silicon-carbide-encased graphite articles and their production |
NL7206014A (en) * | 1971-07-07 | 1973-01-09 | ||
US3923156A (en) * | 1974-04-29 | 1975-12-02 | Fluoroware Inc | Wafer basket |
JPS512161U (en) * | 1974-06-24 | 1976-01-09 | ||
JPS5285476A (en) * | 1976-01-09 | 1977-07-15 | Hitachi Ltd | Semiconductor wafer accommodating jig |
US4355974A (en) * | 1980-11-24 | 1982-10-26 | Asq Boats, Inc. | Wafer boat |
JPS59191327A (en) * | 1983-04-15 | 1984-10-30 | Hitachi Ltd | Heat-treatment jig |
US4548159A (en) * | 1984-07-06 | 1985-10-22 | Anicon, Inc. | Chemical vapor deposition wafer boat |
JPS6142153A (en) * | 1984-08-03 | 1986-02-28 | Fujitsu Ltd | Heat-resisting jig |
JPS61213374A (en) * | 1985-03-18 | 1986-09-22 | Hitachi Micro Comput Eng Ltd | jig |
US4653636A (en) * | 1985-05-14 | 1987-03-31 | Microglass, Inc. | Wafer carrier and method |
JPH0622262B2 (en) * | 1985-07-01 | 1994-03-23 | 東芝セラミツクス株式会社 | Method for manufacturing boat for supporting semiconductor wafer |
JP2573480B2 (en) * | 1985-11-22 | 1997-01-22 | 東芝セラミックス 株式会社 | Jig for semiconductor heat treatment |
JPH0824140B2 (en) * | 1986-12-26 | 1996-03-06 | 東芝セラミックス株式会社 | Silicon wafer processing jig |
JP2548949B2 (en) * | 1987-09-01 | 1996-10-30 | 東芝セラミックス株式会社 | Semiconductor manufacturing components |
JPH0752720B2 (en) * | 1988-05-31 | 1995-06-05 | 信越半導体株式会社 | Method for forming holding groove of semiconductor wafer holding device |
US4981222A (en) * | 1988-08-24 | 1991-01-01 | Asq Boats, Inc. | Wafer boat |
JPH04287915A (en) * | 1991-02-07 | 1992-10-13 | Mitsubishi Electric Corp | Wafer boat |
JPH065530A (en) * | 1992-06-17 | 1994-01-14 | Toshiba Corp | Heat treatment furnace boat |
JPH06302532A (en) * | 1993-04-13 | 1994-10-28 | Japan Energy Corp | Method for heat treating compound semiconductor single crystal wafer and wafer support used therefor |
US5417767A (en) * | 1993-12-28 | 1995-05-23 | Stinson; Mark G. | Wafer carrier |
US5538230A (en) * | 1994-08-08 | 1996-07-23 | Sibley; Thomas | Silicon carbide carrier for wafer processing |
JP3285723B2 (en) * | 1994-11-17 | 2002-05-27 | 信越半導体株式会社 | Semiconductor heat treatment jig and surface treatment method thereof |
US5443649A (en) * | 1994-11-22 | 1995-08-22 | Sibley; Thomas | Silicon carbide carrier for wafer processing in vertical furnaces |
US5702997A (en) * | 1996-10-04 | 1997-12-30 | Saint-Gobain/Norton Industrial Ceramics Corp. | Process for making crack-free silicon carbide diffusion components |
JPH10242254A (en) * | 1997-02-21 | 1998-09-11 | Ado Matsupu:Kk | Jig for manufacture of semiconductor |
JP3362113B2 (en) * | 1997-07-15 | 2003-01-07 | 日本碍子株式会社 | Corrosion-resistant member, wafer mounting member, and method of manufacturing corrosion-resistant member |
US6171400B1 (en) * | 1998-10-02 | 2001-01-09 | Union Oil Company Of California | Vertical semiconductor wafer carrier |
US6162543A (en) * | 1998-12-11 | 2000-12-19 | Saint-Gobain Industrial Ceramics, Inc. | High purity siliconized silicon carbide having high thermal shock resistance |
EP1187189A1 (en) * | 2000-02-10 | 2002-03-13 | Shin-Etsu Handotai Co., Ltd | Silicon boat with protective film, method of manufacture thereof, and silicon wafer heat-treated using silicon boat |
US6699401B1 (en) * | 2000-02-15 | 2004-03-02 | Toshiba Ceramics Co., Ltd. | Method for manufacturing Si-SiC member for semiconductor heat treatment |
US7055702B1 (en) * | 2000-06-06 | 2006-06-06 | Saint-Gobain Ceramics & Plastics, Inc. | Slip resistant horizontal semiconductor wafer boat |
US6488497B1 (en) * | 2001-07-12 | 2002-12-03 | Saint-Gobain Ceramics & Plastics, Inc. | Wafer boat with arcuate wafer support arms |
JP3535853B2 (en) * | 2001-09-18 | 2004-06-07 | エム・エフエスアイ株式会社 | Substrate support fixture and method for drying substrate surface using the same |
-
2003
- 2003-03-28 US US10/402,915 patent/US20040188319A1/en not_active Abandoned
-
2004
- 2004-03-05 KR KR1020057018160A patent/KR100755196B1/en not_active Expired - Fee Related
- 2004-03-05 JP JP2005518892A patent/JP2006521689A/en active Pending
- 2004-03-05 EP EP04718089A patent/EP1609171A2/en not_active Withdrawn
- 2004-03-05 WO PCT/US2004/006847 patent/WO2004095545A2/en active Application Filing
- 2004-03-05 CN CNB2004800081624A patent/CN100390927C/en not_active Expired - Fee Related
- 2004-03-16 TW TW093106956A patent/TWI288454B/en not_active IP Right Cessation
-
2009
- 2009-12-25 JP JP2009295992A patent/JP2010103554A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
JP2006521689A (en) | 2006-09-21 |
HK1089561A1 (en) | 2006-12-01 |
JP2010103554A (en) | 2010-05-06 |
KR20060002875A (en) | 2006-01-09 |
WO2004095545A8 (en) | 2005-12-08 |
TWI288454B (en) | 2007-10-11 |
WO2004095545A3 (en) | 2005-05-12 |
CN1765005A (en) | 2006-04-26 |
EP1609171A2 (en) | 2005-12-28 |
KR100755196B1 (en) | 2007-09-05 |
US20040188319A1 (en) | 2004-09-30 |
CN100390927C (en) | 2008-05-28 |
WO2004095545A2 (en) | 2004-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7442038B2 (en) | Heat treatment jig for semiconductor silicon substrate | |
KR100935141B1 (en) | Heat treatment apparatus, manufacturing method of semiconductor device, manufacturing method of substrate, manufacturing method of SIOM substrate, support part and substrate support | |
JP2010103554A (en) | Wafer carrier having improved processing characteristic | |
JP2010064918A (en) | Method for producing silicon carbide single crystal, silicon carbide single crystal wafer, and silicon carbide single crystal semiconductor power device | |
JP4998246B2 (en) | Semiconductor substrate support jig and manufacturing method thereof. | |
JP2006521689A5 (en) | ||
CN115885377A (en) | Backside design for planar SiC pedestals | |
JP4290187B2 (en) | Surface cleaning method for semiconductor wafer heat treatment boat | |
JP2009049047A (en) | Vapor-phase growth apparatus and vapor-phase growth method | |
JP3687578B2 (en) | Heat treatment jig for semiconductor silicon substrate | |
US20100032857A1 (en) | Ceramic components, coated structures and methods for making same | |
JP4608884B2 (en) | Method for forming surface protective film of jig for heat treatment | |
JP7322371B2 (en) | Method for manufacturing polycrystalline silicon carbide substrate | |
CN114026263B (en) | Chemical Vapor Deposition Chamber Products | |
JP2010070797A (en) | SiC COATED CARBON MEMBER, AND MANUFACTURING METHOD THEREOF | |
JP2005235906A (en) | Wafer holding jig and vapor phase growing apparatus | |
KR20140127954A (en) | SiC THIN FILM DEPOSITION METHOD AND SUSCEPTOR OF THE SAME | |
HK1089561B (en) | Wafer carrier having improved processing characteristics | |
JP4350438B2 (en) | Semiconductor heat treatment materials | |
JP5087375B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP6322159B2 (en) | Wafer boat and manufacturing method thereof | |
KR20130019569A (en) | Method for manufacturing of silicon carbide substrate | |
JP2020194835A (en) | Forming method of silicon carbide polycrystalline film, susceptor, and film forming apparatus | |
JP2020090420A (en) | Graphite or ceramic substrate, substrate manufacturing method, silicon carbide film forming method, and silicon carbide substrate manufacturing method | |
JP2021103720A (en) | Epitaxial film growth wafer, epitaxial film growth method, removal method, and epitaxial wafer manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |