[go: up one dir, main page]

JPH06302532A - Method for heat treating compound semiconductor single crystal wafer and wafer support used therefor - Google Patents

Method for heat treating compound semiconductor single crystal wafer and wafer support used therefor

Info

Publication number
JPH06302532A
JPH06302532A JP8622293A JP8622293A JPH06302532A JP H06302532 A JPH06302532 A JP H06302532A JP 8622293 A JP8622293 A JP 8622293A JP 8622293 A JP8622293 A JP 8622293A JP H06302532 A JPH06302532 A JP H06302532A
Authority
JP
Japan
Prior art keywords
wafer
support plate
heat treatment
compound semiconductor
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8622293A
Other languages
Japanese (ja)
Inventor
Haruto Shimakura
春人 島倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP8622293A priority Critical patent/JPH06302532A/en
Publication of JPH06302532A publication Critical patent/JPH06302532A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

(57)【要約】 【目的】 結晶欠陥を生じさせることなく熱処理を行う
ことのできる化合物半導体単結晶ウェハの熱処理方法及
びそれに用いるウェハ支持具を提供する。 【構成】 ウェハ20の裏面に当接する平板状の支持板
12をウェハホルダー10に設け、その支持板12を熱
分解窒化ホウ素、グラファイト、モリブデン、タングス
テン、タンタル、又はシリコンにより形成した。横型炉
用の場合には設置時に支持板12が垂直よりも10度傾
くようにホルダー10を形成した。縦型炉用の場合には
支持板32が水平よりも10度傾くようにホルダー30
を形成した。 【効果】 ウェハの自重による圧縮応力が分散し、また
ウェハ内の温度差による熱応力が低減して、結晶欠陥の
発生が防止され、製造歩留りが向上する。さらに、残留
応力が低減し、電気的特性のバラツキを改善することが
できる。
(57) [Summary] [Object] To provide a heat treatment method for a compound semiconductor single crystal wafer capable of performing heat treatment without causing crystal defects, and a wafer support used therefor. [Structure] A flat plate-shaped support plate 12 that contacts the back surface of the wafer 20 is provided on the wafer holder 10, and the support plate 12 is formed of pyrolytic boron nitride, graphite, molybdenum, tungsten, tantalum, or silicon. In the case of a horizontal furnace, the holder 10 was formed so that the support plate 12 was inclined 10 degrees from the vertical when installed. In the case of a vertical furnace, the holder 30 should be installed so that the support plate 32 is inclined 10 degrees from the horizontal.
Was formed. [Effect] The compressive stress due to the weight of the wafer is dispersed, and the thermal stress due to the temperature difference in the wafer is reduced, so that the occurrence of crystal defects is prevented and the manufacturing yield is improved. Furthermore, residual stress is reduced, and variations in electrical characteristics can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、GaAsなどの化合物
半導体単結晶ウェハの熱処理方法及びそれに用いるウェ
ハ支持具に関し、特に熱処理時のウェハの支持構造に適
用して有用な熱処理方法及びウェハ支持具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for a compound semiconductor single crystal wafer such as GaAs and a wafer support used therefor, and particularly to a heat treatment method and a wafer support useful when applied to a wafer support structure during heat treatment. Regarding

【0002】[0002]

【従来の技術】高周波デバイスや高速ICなどの基板と
して用いられる半絶縁性のGaAsなどの化合物半導体
単結晶ウェハにおいては、抵抗率等の特性の面内均一性
を向上させるため、或は不純物の拡散や活性化を行なう
ため、熱処理を行なう場合があり、その熱処理方法や処
理条件等に付いて種々提案されている。一般に熱処理に
おいては、所謂ウェハホルダーと呼ばれる支持具に、横
型炉の場合には複数枚のウェハを立たせた状態で、また
縦型炉の場合には複数枚のウェハを寝かせた状態で、支
持させて同時に処理している。従来、そのホルダーは、
図6又は図7に示すウェハホルダー50,55のよう
に、炉内における輻射熱及び対流による炉内雰囲気の均
一化の妨げを最小に抑えてウェハ全体を均一な温度にす
るために、複数本の棒状をなす石英製ロッド材51,5
6よりなるフレームで構成されたものが多い。そして、
それらロッド材51,56には夫々ウェハ60,65の
縁を差し込む溝が形成されており、その溝に夫々ウェハ
60,65の外周部を差し込んで外周部の4点又は3点
を支持するようになっていた。
2. Description of the Related Art In a semi-insulating compound semiconductor single crystal wafer such as GaAs used as a substrate for high-frequency devices and high-speed ICs, in order to improve the in-plane uniformity of characteristics such as resistivity, impurities of impurities are used. In order to perform diffusion and activation, heat treatment may be performed, and various heat treatment methods and treatment conditions have been proposed. Generally, in heat treatment, a support tool called a so-called wafer holder is used to support a horizontal furnace with a plurality of wafers standing upright, and in a vertical furnace with a plurality of wafers lying down. Are being processed at the same time. Conventionally, the holder is
As shown in the wafer holders 50 and 55 shown in FIG. 6 or FIG. 7, a plurality of wafer holders are provided in order to keep the temperature of the entire wafer at a uniform temperature by minimizing the hindrance to the uniformization of the atmosphere in the furnace due to radiant heat and convection. Quartz rod members 51, 5 in the shape of rods
Many are composed of 6 frames. And
Grooves into which the edges of the wafers 60 and 65 are inserted are formed in the rod members 51 and 56, respectively, and the outer peripheral portions of the wafers 60 and 65 are inserted into the grooves to support four or three points on the outer peripheral portions. It was.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、本発明
者は、上述したウェハホルダー50を用いて4インチ径
のGaAs単結晶ウェハを900℃以上の高温で長時間
の熱処理を行なうと、図8に示すように、ウェハ60
の、ウェハホルダー50との接触箇所、即ち溝に対応す
る箇所に微小なスリップライン(すべり線)状の結晶欠
陥群61が発生してしまい、そのウェハは電子デバイス
などの作製には適さないということを見つけた。上述し
たウェハホルダー55を用いた場合も、図9に示すウェ
ハ65のように、ウェハ60と同様の欠陥群66が発生
した。この様な欠陥は、熱処理後の2インチ径や3イン
チ径のウェハにおいても認められた。
However, when the present inventor heat-treats a GaAs single crystal wafer having a diameter of 4 inches at a high temperature of 900 ° C. or higher for a long time using the above-mentioned wafer holder 50, the result shown in FIG. As shown, the wafer 60
That is, a minute slip line (slip line) crystal defect group 61 is generated at a contact position with the wafer holder 50, that is, a position corresponding to the groove, and the wafer is not suitable for manufacturing an electronic device or the like. I found that. Even when the above-mentioned wafer holder 55 was used, a defect group 66 similar to that of the wafer 60 occurred like the wafer 65 shown in FIG. Such defects were also found in the wafers having a diameter of 2 inches or 3 inches after the heat treatment.

【0004】本発明は、上記問題点を解決するためにな
されたもので、結晶欠陥を生じさせることなく熱処理を
行うことのできる化合物半導体単結晶ウェハの熱処理方
法及びそれに用いるウェハ支持具を提供することを目的
とする。
The present invention has been made to solve the above problems, and provides a heat treatment method for a compound semiconductor single crystal wafer which can be heat treated without causing crystal defects, and a wafer support used therefor. The purpose is to

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る化合物半導体単結晶ウェハの熱処理方
法においては、化合物半導体の熱伝導率と同程度又はそ
れよりも大きな熱伝導率を有し、且つウェハに加わる歪
力が熱処理温度における化合物半導体の臨界剪断応力以
下の大きさになるようにウェハの荷重を分散可能な支持
板に、ウェハの裏面を均一に支持させて熱処理を行うよ
うにした。
In order to achieve the above object, in the heat treatment method for a compound semiconductor single crystal wafer according to the present invention, the thermal conductivity of the compound semiconductor is equal to or higher than that of the compound semiconductor. The back surface of the wafer is uniformly supported by a supporting plate that has a strain force applied to the wafer and is equal to or less than the critical shear stress of the compound semiconductor at the heat treatment temperature so that the back surface of the wafer is supported uniformly. I did it.

【0006】また、上記の本発明に係る化合物半導体単
結晶ウェハの熱処理方法に用いるウェハ支持具として、
次のような構造のウェハ支持具を提案する。即ち、熱処
理するウェハと同様もしくはそれより大きな形状の平板
からなる支持板と、その支持板を水平または垂直に対し
て所定の傾斜角傾けた状態に設置させる支持部と、前記
傾いた支持板の低所側にてウェハの外周部を当接させる
受部とを備える支持具である。なお、傾いた支持板の低
所側とは、通常、ウェハ支持具をその使用目的にそって
設置された状態、即ちウェハの荷重による力が傾いた支
持板に加わるようにウェハ支持具が設置された状態にお
いて、重力によりウェハが傾いた支持板の面上を滑りな
がら移動する時、その移動する側(方向)を意味する。
また、支持板の傾斜角は、ウェハ裏面ならびに支持板の
ウェハと当接する面の表面状態(粗さ)に応じ、更には
ウェハの大きさ(厚さ及び面積)に応じて、ウェハの荷
重を支持板に分散可能とするように選ばれる。具体的に
は、ウェハの裏面に当接する平板状の複数の平行な支持
板をウェハホルダー(ウェハ支持具)に設け、その支持
板を熱分解窒化ホウ素、グラファイト、モリブデン、タ
ングステン、タンタル、又はシリコンにより形成する。
そして、横型炉用のホルダーの場合には支持板を垂直よ
りも僅かに(例えば、数度〜10度程度)傾けて形成す
る。この場合、望ましくはウェハのオリエンタルフラッ
ト(以下、単に「フラット」と略記する。)部をホルダ
ーの底板(支持板が傾いた状態でホルダーを炉内に設置
可能な支持部兼ウェハの外周部を当接させる受部とな
る。)に当接させるようにウェハを設置するとよい。縦
型炉用のホルダーの場合には支持板を水平よりも僅かに
(例えば、数度〜10度程度)傾けて形成する。望まし
くは、前記傾いた支持板の低所側に設けるホルダーの側
板(支持板が傾いた状態でホルダーを炉内に設置可能な
支持部兼ウェハの外周部を当接させる受部となる。)
に、ウェハのフラット部を当接させるようにウェハを設
置するとよい。
Further, as a wafer support used in the heat treatment method for a compound semiconductor single crystal wafer according to the present invention,
A wafer support having the following structure is proposed. That is, a support plate made of a flat plate having a shape similar to or larger than that of a wafer to be heat-treated, a support portion for installing the support plate at a predetermined tilt angle with respect to the horizontal or vertical direction, And a receiving portion that abuts the outer peripheral portion of the wafer on the low side. The low side of the tilted support plate usually means that the wafer support is installed according to its intended use, that is, the wafer support is installed so that the force due to the wafer load is applied to the tilted support plate. In this state, when the wafer moves while sliding on the surface of the inclined support plate due to gravity, it means the moving side (direction).
Further, the inclination angle of the support plate determines the load of the wafer according to the surface state (roughness) of the back surface of the wafer and the surface of the support plate that contacts the wafer, and further according to the size (thickness and area) of the wafer. It is chosen to be dispersible in the support plate. Specifically, a wafer holder (wafer holder) is provided with a plurality of flat plate-shaped parallel support plates that come into contact with the back surface of the wafer, and the support plates are pyrolytic boron nitride, graphite, molybdenum, tungsten, tantalum, or silicon. Formed by.
In the case of a holder for a horizontal furnace, the support plate is formed with a slight inclination (for example, about several degrees to 10 degrees) from the vertical. In this case, it is preferable that the oriental flat (hereinafter simply referred to as "flat") portion of the wafer be a bottom plate of the holder (a supporting portion capable of installing the holder in the furnace with the supporting plate inclined) and an outer peripheral portion of the wafer. The wafer may be placed so as to come into contact with the receiving part to be brought into contact. In the case of a holder for a vertical furnace, the support plate is formed with a slight inclination (for example, about several degrees to 10 degrees) from the horizontal. Desirably, a side plate of a holder provided on the lower side of the inclined support plate (a support part capable of installing the holder in the furnace in a state where the support plate is inclined and a receiving part for abutting the outer peripheral part of the wafer).
Then, the wafer may be installed so that the flat portion of the wafer is brought into contact with the wafer.

【0007】[0007]

【作用】上記した手段によれば、ウェハの外周部及び裏
面に加わる歪力が臨界剪断応力以下の大きさになるよう
にウェハの荷重を分散可能な支持板にウェハをその裏面
を当接させて支持させるため、従来のホルダーを使用し
た場合にホルダーと接触する3点又は4点に集中してい
たウェハ自身の重量による機械的圧縮応力が分散し、結
晶欠陥の発生が防止される。特に、ウェハを立たせた状
態にする時には、支持板によるウェハ重量の分散効果が
減少するので、フラット部をホルダーの底板に当接させ
るとよく、それによりウェハ重量を支持板及びフラット
部全体に分散させることができる。ウェハを寝かせた状
態にする時も、支持板が傾いているためにホルダーに当
接するウェハ外周部に圧縮応力が加わるので、フラット
部をホルダーの側板(受部)に当接させることにより、
その圧縮応力を分散させることができる。また、支持板
を熱分解窒化ホウ素、グラファイト、モリブデン、タン
グステン、タンタル、又はシリコンにより形成すると、
前記の材料は熱処理温度において化学的に安定であり、
充分な機械的強度も持ち、さらに支持板の熱伝導率の大
きさがウェハの熱伝導率と同程度かそれよりも大きいた
め、例えば急激な昇降温時にウェハの外周部と中心部と
の間に生じ得る温度差を緩和することができ、ウェハ内
に生じ得る熱応力に起因する結晶欠陥の発生が防止され
る。加えて、用いるウェハホルダーを上記の構造とする
と、その支持板の形状はウェハと同様もしくはそれより
も大きな形状の平板であるので、ウェハ裏面と当接する
面積を充分広くでき、ウェハ自身の重量を分散すること
が容易になる。同時に、充分広い面積でウェハ裏面と当
接するので、有効にウェハと支持板との熱伝導を行わせ
ることができ、上記の温度差の緩和が効果的に行われ
る。上記支持板の傾斜角が10゜を大きく超えると、横
型炉の場合にはウェハを略垂直に立たせ、或いは縦型炉
の場合にはウェハを略水平に寝かせ配置するというウェ
ハホルダーの機能的な特徴が損なわれることになる。ま
た、ウェハを立たせる場合、支持板の傾斜角を零とする
と、ウェハ自身の重量による機械的圧縮応力を支持板に
より分散することができない。一方、ウェハを略水平に
寝かせる場合、少なくとも数度以上傾斜させることで、
フラット部をホルダーの側板乃至は底板に当接するよう
にウェハを配置することが容易になる。更に、フラット
部をウェハホルダーの底板乃至は側板に当接させること
により、略円形のウェハが回転して変位するのを防止で
き、所望のウェハ配置、即ちウェハ裏面の全面と支持板
とが当接する配置に保つことができる。
According to the above means, the back surface of the wafer is brought into contact with the supporting plate capable of dispersing the load of the wafer so that the strain force applied to the outer peripheral portion and the back surface of the wafer becomes equal to or less than the critical shear stress. Since the conventional holder is used, the mechanical compressive stress due to the weight of the wafer, which is concentrated at the three or four points where the holder is in contact with the conventional holder, is dispersed, and the occurrence of crystal defects is prevented. In particular, when the wafer is set upright, the effect of dispersing the wafer weight by the support plate is reduced, so it is advisable to bring the flat portion into contact with the bottom plate of the holder, and thereby distribute the wafer weight over the support plate and the flat portion. Can be made. Even when the wafer is laid down, a compressive stress is applied to the outer peripheral portion of the wafer that comes into contact with the holder because the support plate is inclined, so by bringing the flat portion into contact with the side plate (receiving portion) of the holder,
The compressive stress can be dispersed. When the support plate is formed of pyrolytic boron nitride, graphite, molybdenum, tungsten, tantalum, or silicon,
The above materials are chemically stable at heat treatment temperatures,
It also has sufficient mechanical strength, and the thermal conductivity of the support plate is similar to or greater than the thermal conductivity of the wafer. The temperature difference that may occur in the wafer can be relaxed, and the generation of crystal defects due to the thermal stress that can occur in the wafer can be prevented. In addition, if the wafer holder to be used has the above structure, the shape of the supporting plate is a flat plate having a shape similar to or larger than that of the wafer, so that the area in contact with the back surface of the wafer can be made sufficiently wide and the weight of the wafer itself can be increased. It becomes easy to disperse. At the same time, since the back surface of the wafer is in contact with a sufficiently large area, heat can be effectively conducted between the wafer and the support plate, and the above-mentioned temperature difference can be effectively mitigated. If the inclination angle of the support plate greatly exceeds 10 °, the wafer holder has a function of vertically arranging the wafer in the case of a horizontal furnace or laying the wafer substantially horizontally in the case of a vertical furnace. The characteristics will be impaired. Further, when the wafer is erected, if the inclination angle of the supporting plate is set to zero, the mechanical compressive stress due to the weight of the wafer itself cannot be dispersed by the supporting plate. On the other hand, when the wafer is laid almost horizontally, tilting it at least several degrees
It becomes easy to arrange the wafer so that the flat portion contacts the side plate or the bottom plate of the holder. Further, by bringing the flat portion into contact with the bottom plate or the side plate of the wafer holder, it is possible to prevent the substantially circular wafer from rotating and displacing, and the desired wafer arrangement, that is, the entire back surface of the wafer and the supporting plate are in contact with each other. Can be kept in contact arrangement.

【0008】[0008]

【実施例】以下に、実施例及び比較例を挙げて本発明の
特徴とするところを明かとする。本発明の実施に使用さ
れる横型炉用のウェハホルダーの一例を図1に示し、説
明する。同図に示すように、このウェハホルダー10
は、平板状の底板11に支持板12を垂直に対して数度
〜10度程度(ここでは、5度)傾けた状態で立てたも
ので、例えば、支持板12をウェハ20(二点鎖線で示
す。)と同様な形状をなすpBN(熱分解窒化ホウ素)
製の平板により形成した。底板11は、炉内において支
持板12が上記のように垂直に対して傾くようにホルダ
ー10を設置させる支持部であるとともに、ウェハ20
のフラット部を均一に当接させる受部を兼ねている。底
板11は例えばpBNや石英からなり、pBN製の場合
には底板11と支持板12は例えば一体成型され、また
石英製など支持板12と異なる材質の場合には底板11
に設けたスリット(図示せず。)に支持板12を差し込
むなどして両者は結合されている。
EXAMPLES The features of the present invention will be clarified below with reference to Examples and Comparative Examples. An example of a wafer holder for a horizontal furnace used for carrying out the present invention is shown in FIG. 1 and described. As shown in FIG.
Is a state in which the support plate 12 is erected on the flat plate-like bottom plate 11 in a state of being tilted by several degrees to 10 degrees (here, 5 degrees) with respect to the vertical direction. PBN (pyrolytic boron nitride) having the same shape as
It was formed of a flat plate. The bottom plate 11 is a support part for mounting the holder 10 in the furnace so that the support plate 12 is inclined with respect to the vertical as described above, and also the wafer 20
It also serves as a receiving portion for uniformly abutting the flat portion of. The bottom plate 11 is made of, for example, pBN or quartz. In the case of pBN, the bottom plate 11 and the support plate 12 are, for example, integrally molded, and when the support plate 12 is made of a different material such as quartz, the bottom plate 11 is made.
The support plate 12 is inserted into a slit (not shown) provided in the above, and the two are joined.

【0009】また、本発明の実施に使用される縦型炉用
のウェハホルダーの一例を図2に示す。同図に示すよう
に、ウェハホルダー30は平板状の側板31と平板状の
支持板32とからなり、支持板32を側板31に向かっ
て低くなるように水平に対して数度〜10度程度傾けて
形成した。そして、例えば支持板32をグラファイトに
よりウェハ40(二点鎖線で示す。)と同様な形状に形
成し、ウェハ40の裏面全部に当接するようにした。こ
こで、側板31はウェハ40の外周部(特に限定しない
がフラット部が望ましい。)を当接させる受部となって
いる。また、側板31の下端には、支持板32が上記の
ように水平に対して傾くようにホルダー30を設置させ
る支持部33が設けられている。それら側板31、支持
板32及び支持部33は、上述したホルダー10におけ
る底板11と支持板12のように一体成型或いはスリッ
トなどにより結合されている。
FIG. 2 shows an example of a wafer holder for a vertical furnace used for carrying out the present invention. As shown in the figure, the wafer holder 30 comprises a flat side plate 31 and a flat support plate 32, and the support plate 32 is lowered from the side plate 31 by several degrees to 10 degrees with respect to the horizontal. Formed at an angle. Then, for example, the support plate 32 is formed of graphite in the same shape as the wafer 40 (shown by the chain double-dashed line), and is brought into contact with the entire back surface of the wafer 40. Here, the side plate 31 is a receiving portion for contacting the outer peripheral portion of the wafer 40 (a flat portion is preferable although not particularly limited). Further, at the lower end of the side plate 31, there is provided a support portion 33 for installing the holder 30 so that the support plate 32 is inclined with respect to the horizontal as described above. The side plate 31, the support plate 32, and the support portion 33 are integrally molded or connected by a slit or the like like the bottom plate 11 and the support plate 12 in the holder 10 described above.

【0010】(実施例1)LEC(液体封止チョクラル
スキー)法により育成したGaAs単結晶から650μ
mの厚さで切り出した後、水酸化ナトリウム(NaO
H)系のエッチャントで表面を約30μm除去した2イ
ンチ径のウェハ20を図1のウェハホルダー10に立た
せた状態で設置した。この際、ウェハ20に形成された
〈110〉方向のフラット部をウェハホルダー10の底
板11に均一に当接させた。
(Example 1) 650 μ from a GaAs single crystal grown by the LEC (Liquid Sealed Czochralski) method.
After cutting to a thickness of m, sodium hydroxide (NaO
A wafer 20 having a diameter of 2 inches, the surface of which was removed by about 30 μm with an H) type etchant, was set up in a state of standing on the wafer holder 10 of FIG. At this time, the flat portion in the <110> direction formed on the wafer 20 was brought into uniform contact with the bottom plate 11 of the wafer holder 10.

【0011】そして、図3に示すように、それらを石英
製のアンプル25中に真空封入し、1100℃で5時間
の熱処理を行った。処理後、室温まで自然冷却し、アン
プル25から取り出したウェハ20の表面をラッピング
及び硫酸系のエッチャントにより約60μm除去して鏡
面状態にした。さらにその表面を400℃の水酸化カリ
ウム(KOH)融液によりエッチング処理した後、転位
等の欠陥に対応して生じるピットを観察して、欠陥の発
生の有無を調べた。この場合には、ウェハ20にピット
は確認されず、熱処理中に結晶欠陥が発生しなかったこ
とがわかった。
Then, as shown in FIG. 3, they were vacuum-sealed in a quartz ampoule 25 and heat-treated at 1100 ° C. for 5 hours. After the treatment, the wafer 20 was naturally cooled to room temperature, and the surface of the wafer 20 taken out from the ampoule 25 was removed by lapping and a sulfuric acid-based etchant to a depth of about 60 μm to obtain a mirror surface state. Further, after the surface thereof was subjected to etching treatment with a potassium hydroxide (KOH) melt at 400 ° C., pits generated corresponding to defects such as dislocations were observed to examine the presence or absence of defects. In this case, no pit was confirmed on the wafer 20, and it was found that crystal defects did not occur during the heat treatment.

【0012】なお、ウェハ20の熱分解を防ぐために、
アンプル25内を過剰なヒ素圧となるようにしたのはい
うまでもない。また、フラット部の長さを18mmとし
て、フラット部端面の面積に対するウェハの重量比率を
500g/cm2以下に抑えた。この値は、不純物を添加し
ていないGaAsの1100℃における臨界剪断応力よ
りも十分小さい値であった。なお、図3において、符号
26,27で示したものは、夫々炉芯管及び電気炉であ
る。
In order to prevent thermal decomposition of the wafer 20,
Needless to say, the arsenic pressure in the ampoule 25 is set to be excessive. Further, the length of the flat portion was set to 18 mm, and the weight ratio of the wafer to the area of the end face of the flat portion was suppressed to 500 g / cm 2 or less. This value was sufficiently smaller than the critical shear stress at 1100 ° C. of GaAs to which impurities were not added. In FIG. 3, reference numerals 26 and 27 denote a furnace core tube and an electric furnace, respectively.

【0013】(実施例2)図4に示すような縦型炉にお
いて、上記実施例1と同じようにして作製されたウェハ
40を図2のウェハホルダー30に寝かせた状態で同じ
処理条件で熱処理し、ピットの有無を観察した。この場
合、フラット部を側板31に当接させるか否かに拘ら
ず、ウェハ40にピットは確認されず、熱処理中に結晶
欠陥が発生しなかったことがわかった。なお、図4にお
いて、符号45,46,47で示したものは、夫々石英
製のアンプル、炉芯管及び電気炉である。
(Embodiment 2) In a vertical furnace as shown in FIG. 4, a wafer 40 manufactured in the same manner as in Embodiment 1 is laid on a wafer holder 30 shown in FIG. Then, the presence or absence of pits was observed. In this case, pits were not confirmed on the wafer 40 regardless of whether or not the flat portion was brought into contact with the side plate 31, and it was found that crystal defects did not occur during the heat treatment. In FIG. 4, reference numerals 45, 46, and 47 respectively denote a quartz ampoule, a furnace core tube, and an electric furnace.

【0014】(実施例3)図1のウェハホルダー10に
4インチ径のGaAsウェハを立たせて、図3に示す横
型炉において、上記実施例1と同様に1100℃で5時
間の熱処理を行い、ピットの有無を観察した。この実施
例においては、支持板12を熱伝導性に優れたpBN積
層材又はグラファイトで形成し、垂直に対して約10度
傾けた。何れの場合も、ウェハにピットは確認されず、
熱処理中に、温度差によりウェハ内に生じ得る熱応力に
起因して発生するスリップライン、即ち結晶欠陥が発生
しなかったことがわかった。なお、GaAs単結晶(L
EC法により育成)から800μmの厚さで切り出し、
表面を約30μm除去したウェハを用いた。また、昇温
速度は、室温から1000℃までは平均12℃/分、そ
の後1100℃で温度が安定するまでは平均4℃/分で
あった。
(Embodiment 3) A GaAs wafer having a diameter of 4 inches is erected on the wafer holder 10 shown in FIG. 1 and heat-treated at 1100 ° C. for 5 hours in the horizontal furnace shown in FIG. The presence or absence of pits was observed. In this example, the support plate 12 was made of pBN laminated material or graphite having excellent thermal conductivity, and was tilted about 10 degrees with respect to the vertical. In any case, no pits were confirmed on the wafer,
It was found that during the heat treatment, a slip line, that is, a crystal defect generated due to a thermal stress that can occur in the wafer due to a temperature difference was not generated. In addition, GaAs single crystal (L
Cut out with a thickness of 800 μm from (grown by EC method),
A wafer whose surface was removed by about 30 μm was used. The rate of temperature increase was 12 ° C./min on average from room temperature to 1000 ° C., and then 4 ° C./min on average until the temperature stabilized at 1100 ° C.

【0015】(実施例4)図2のウェハホルダー30に
4インチ径のGaAsウェハを寝かせて、図4に示す縦
型炉において、上記実施例3と同様に熱処理を行い、ピ
ットの有無を観察した。なお、支持板32をpBN積層
材又はグラファイトで形成した。何れの場合も、ウェハ
にピットは確認されず、熱処理中にスリップラインが発
生しなかったことがわかった。
(Embodiment 4) A GaAs wafer having a diameter of 4 inches is laid on the wafer holder 30 shown in FIG. 2 and heat-treated in the vertical furnace shown in FIG. did. The support plate 32 was made of pBN laminated material or graphite. In each case, no pits were confirmed on the wafer, indicating that slip lines did not occur during the heat treatment.

【0016】(比較例)図2のウェハホルダー30の支
持板32を熱伝導率の小さい石英で作製し、上記実施例
4と同様に熱処理を行った結果、図5に示すように、ウ
ェハにはピットが確認され、熱処理中にウェハの外周か
ら中央部に達する程度のスリップラインが多数発生した
ことがわかった。昇降温速度が5℃/分程度の比較的遅
い場合にも同様にスリップラインの発生が認められるこ
とがあった。
(Comparative Example) The support plate 32 of the wafer holder 30 shown in FIG. 2 was made of quartz having a small thermal conductivity, and heat treatment was performed in the same manner as in Example 4 above. As a result, as shown in FIG. The pits were confirmed, and it was found that a large number of slip lines were formed during the heat treatment from the outer periphery of the wafer to the central portion. Occurrence of a slip line may be similarly observed even when the temperature raising / lowering rate is relatively slow at about 5 ° C./minute.

【0017】以上説明した実施例1及び2によれば、ウ
ェハの重量を支持板12,32に分散させ、加えてウェ
ハを立たせる場合にはフラット部をホルダー10の底板
11に当接させてウェハ重量をさらに分散させることに
より、熱処理時に結晶欠陥が発生するのを防ぐことがで
きた。また、実施例3及び4によれば、支持板12,3
2が熱伝導性に優れていることにより、ウェハ内に生じ
得る温度差を小さくすることができ、従って、熱応力の
発生を抑え、熱処理時に結晶欠陥が発生するのを防ぐこ
とができた。
According to the first and second embodiments described above, the weight of the wafer is dispersed on the support plates 12 and 32, and in addition, when the wafer is erected, the flat portion is brought into contact with the bottom plate 11 of the holder 10. By further dispersing the wafer weight, it was possible to prevent the occurrence of crystal defects during heat treatment. Further, according to the third and fourth embodiments, the support plates 12, 3
Since No. 2 has excellent thermal conductivity, it is possible to reduce the temperature difference that can occur in the wafer, and thus suppress the generation of thermal stress and prevent the generation of crystal defects during heat treatment.

【0018】なお、支持板12,32の材質は上記実施
例に記載したものに限らず、熱伝導率が高く、酸化され
難く、V族元素との化合物を形成し難い化学的に安定な
ものなら如何なるものでもよく、例えばモリブデン、タ
ングステン、タンタルなどの高融点金属や高純度シリコ
ンなどが挙げられる。シリコンの場合には、予めその表
面に熱酸化膜(SiO2)を形成しておく。これらの材
質よりなる支持板を用いても上記実施例1乃至4と同様
の効果が得られる。また、GaAsに限らず他のIII−V
族やII−VI族化合物半導体単結晶ウェハの熱処理に付い
ても、支持板の材質をウェハの材質(組成)に応じて適
宜決めることにより、本発明を適用することができるの
はいうまでもない。
The materials of the supporting plates 12 and 32 are not limited to those described in the above embodiment, but they have high thermal conductivity, are hard to be oxidized, and are chemically stable to form a compound with a group V element. Any material may be used, and examples thereof include refractory metals such as molybdenum, tungsten, and tantalum, and high-purity silicon. In the case of silicon, a thermal oxide film (SiO 2 ) is formed on its surface in advance. Even if the supporting plate made of these materials is used, the same effects as those of the above-described first to fourth embodiments can be obtained. In addition to GaAs, other III-V
Needless to say, the present invention can be applied to the heat treatment of the group-II or II-VI group compound semiconductor single crystal wafer by appropriately determining the material of the supporting plate according to the material (composition) of the wafer. Absent.

【0019】[0019]

【発明の効果】本発明に係るウェハ支持具を用いて熱処
理を行うことによって、ウェハ自身の重量による機械的
圧縮応力を狭い領域に集中させずに分散させることがで
きるだけでなく、ウェハ内の温度差による熱応力を低減
させることができ、熱処理中に結晶欠陥が発生するのを
防止することができる。従って、単結晶ウェハの製造歩
留りが向上し、その経済的効果は極めて大である。ま
た、例えば4インチ以上の大口径のGaAs単結晶ウェ
ハの製造に本発明を適用することにより、機械的応力や
熱応力による残留応力を低減させることができ、電気的
特性のバラツキを改善することができる。さらに、熱処
理中に温度を変える二段階アニールの場合に特に有効で
ある。
By carrying out the heat treatment using the wafer support according to the present invention, not only the mechanical compressive stress due to the weight of the wafer itself can be dispersed without concentrating in a narrow region, but also the temperature inside the wafer can be dispersed. The thermal stress due to the difference can be reduced, and the occurrence of crystal defects during the heat treatment can be prevented. Therefore, the manufacturing yield of the single crystal wafer is improved, and its economic effect is extremely large. Further, by applying the present invention to the manufacture of a GaAs single crystal wafer having a large diameter of 4 inches or more, for example, residual stress due to mechanical stress or thermal stress can be reduced, and variation in electrical characteristics can be improved. You can Further, it is particularly effective in the case of two-step annealing in which the temperature is changed during the heat treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る熱処理方法に用いられる横型炉用
のウェハホルダーの一例を示す図である。
FIG. 1 is a view showing an example of a wafer holder for a horizontal furnace used in a heat treatment method according to the present invention.

【図2】本発明に係る熱処理方法に用いられる縦型炉用
のウェハホルダーの一例を示す図である。
FIG. 2 is a diagram showing an example of a wafer holder for a vertical furnace used in the heat treatment method according to the present invention.

【図3】図1のウェハホルダーを横型炉に設置した状態
を示す概略図である。
FIG. 3 is a schematic view showing a state in which the wafer holder of FIG. 1 is installed in a horizontal furnace.

【図4】図2のウェハホルダーを縦型炉に設置した状態
を示す概略図である。
FIG. 4 is a schematic view showing a state where the wafer holder of FIG. 2 is installed in a vertical furnace.

【図5】比較例において熱処理した後のウェハの表面状
態を示す模式図で、熱応力によるスリップラインが生じ
ている状態が示されている。
FIG. 5 is a schematic diagram showing a surface state of a wafer after heat treatment in a comparative example, showing a state in which a slip line due to thermal stress is generated.

【図6】従来のウェハホルダーによるウェハの支持状態
の模式図である。
FIG. 6 is a schematic view of a wafer supported by a conventional wafer holder.

【図7】従来のウェハホルダーによるウェハの支持状態
の模式図である。
FIG. 7 is a schematic view of a wafer supported by a conventional wafer holder.

【図8】図6のウェハホルダーを用いて熱処理したウェ
ハの表面状態を示す模式図で、結晶欠陥が生じている状
態が示されている。
FIG. 8 is a schematic diagram showing a surface state of a wafer heat-treated using the wafer holder shown in FIG. 6, showing a state in which crystal defects are generated.

【図9】図7のウェハホルダーを用いて熱処理したウェ
ハの表面状態を示す模式図で、結晶欠陥が生じている状
態が示されている。
9 is a schematic diagram showing a surface state of a wafer that has been heat-treated using the wafer holder shown in FIG. 7, and shows a state where crystal defects are generated.

【符号の説明】[Explanation of symbols]

11 底板(支持部、受部) 12,32 支持板 33 支持部 20,40 ウェハ 31 側板(受部) 11 Bottom plate (supporting part, receiving part) 12,32 Supporting plate 33 Supporting part 20,40 Wafer 31 Side plate (receiving part)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 化合物半導体の熱伝導率と同程度又はそ
れよりも大きな熱伝導率を有し、且つウェハに加わる歪
力が熱処理温度における化合物半導体の臨界剪断応力以
下の大きさになるようにウェハの荷重を分散可能な支持
板に、ウェハの裏面を均一に支持させて熱処理を行うこ
とを特徴とする化合物半導体単結晶ウェハの熱処理方
法。
1. The thermal conductivity of the compound semiconductor is the same as or higher than that of the compound semiconductor, and the strain force applied to the wafer is set to be equal to or lower than the critical shear stress of the compound semiconductor at the heat treatment temperature. A heat treatment method for a compound semiconductor single crystal wafer, wherein a heat treatment is performed by uniformly supporting the back surface of the wafer on a support plate capable of dispersing the load of the wafer.
【請求項2】 上記請求項1に記載の熱処理方法に用い
るウェハ支持具であって、ウェハと同様もしくはそれよ
りも大きな形状の平板からなる支持板と、その支持板を
水平または垂直に対して所定の傾斜角傾けた状態に設置
させる支持部と、前記傾いた支持板の低所側にてウェハ
の外周部を当接させる受部とを備えていることを特徴と
する化合物半導体単結晶ウェハの熱処理方法に用いるウ
ェハ支持具。
2. A wafer support used in the heat treatment method according to claim 1, wherein the support plate is a flat plate having a shape similar to or larger than a wafer, and the support plate is horizontal or vertical. A compound semiconductor single crystal wafer, comprising: a support part that is installed at a predetermined tilt angle and a receiving part that abuts the outer peripheral part of the wafer on the lower side of the tilted support plate. Wafer support used in the heat treatment method of.
【請求項3】 前記支持板は、熱分解窒化ホウ素、グラ
ファイト、モリブデン、タングステン、タンタル、又は
シリコンにより形成されていることを特徴とする請求項
2記載の化合物半導体単結晶ウェハの熱処理方法に用い
るウェハ支持具。
3. The heat treatment method for a compound semiconductor single crystal wafer according to claim 2, wherein the support plate is formed of pyrolytic boron nitride, graphite, molybdenum, tungsten, tantalum, or silicon. Wafer support.
JP8622293A 1993-04-13 1993-04-13 Method for heat treating compound semiconductor single crystal wafer and wafer support used therefor Pending JPH06302532A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8622293A JPH06302532A (en) 1993-04-13 1993-04-13 Method for heat treating compound semiconductor single crystal wafer and wafer support used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8622293A JPH06302532A (en) 1993-04-13 1993-04-13 Method for heat treating compound semiconductor single crystal wafer and wafer support used therefor

Publications (1)

Publication Number Publication Date
JPH06302532A true JPH06302532A (en) 1994-10-28

Family

ID=13880763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8622293A Pending JPH06302532A (en) 1993-04-13 1993-04-13 Method for heat treating compound semiconductor single crystal wafer and wafer support used therefor

Country Status (1)

Country Link
JP (1) JPH06302532A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122570A (en) * 1993-10-28 1995-05-12 New Japan Radio Co Ltd Heat treating method for compound semiconductor
JPH08213337A (en) * 1994-11-30 1996-08-20 New Japan Radio Co Ltd Heat treatment of semiconductor substrate
US6074479A (en) * 1996-06-28 2000-06-13 Sumitomo Metal Industries Ltd. Silicon single crystal wafer annealing method and equipment, and silicon single crystal wafer and manufacturing method related thereto
WO2001059826A1 (en) * 2000-02-10 2001-08-16 Shin-Etsu Handotai Co., Ltd. Silicon boat with protective film, method of manufacture thereof, and silicon wafer heat-treated using silicon boat
WO2004095545A3 (en) * 2003-03-28 2005-05-12 Saint Gobain Ceramics Wafer carrier having improved processing characteristics
US8025729B2 (en) 2005-07-01 2011-09-27 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122570A (en) * 1993-10-28 1995-05-12 New Japan Radio Co Ltd Heat treating method for compound semiconductor
JPH08213337A (en) * 1994-11-30 1996-08-20 New Japan Radio Co Ltd Heat treatment of semiconductor substrate
US6074479A (en) * 1996-06-28 2000-06-13 Sumitomo Metal Industries Ltd. Silicon single crystal wafer annealing method and equipment, and silicon single crystal wafer and manufacturing method related thereto
WO2001059826A1 (en) * 2000-02-10 2001-08-16 Shin-Etsu Handotai Co., Ltd. Silicon boat with protective film, method of manufacture thereof, and silicon wafer heat-treated using silicon boat
KR100749145B1 (en) * 2000-02-10 2007-08-14 신에쯔 한도타이 가부시키가이샤 Silicon boat with a protective film and manufacturing method thereof, silicon wafer heat-treated using the same
WO2004095545A3 (en) * 2003-03-28 2005-05-12 Saint Gobain Ceramics Wafer carrier having improved processing characteristics
US8025729B2 (en) 2005-07-01 2011-09-27 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer
US9181633B2 (en) 2005-07-01 2015-11-10 Freiberger Compound Materials Gmbh Device and process for heating III-V wafers, and annealed III-V semiconductor single crystal wafer

Similar Documents

Publication Publication Date Title
US6958092B2 (en) Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
US20060211218A1 (en) Baffle wafers and randomly oriented polycrystalline silicon used therefor
KR20030009481A (en) Epitaxal silicon wafer free from autodoping and backside halo
KR100637915B1 (en) Silicon electrode plate
KR101313462B1 (en) Method for heat treating silicon wafer
KR20020010708A (en) A method for the preparation of an epitaxial silicon wafer with intrinsic gettering
KR20030019471A (en) Method and apparatus for forming a silicon wafer with a denuded zone
JPH04215439A (en) Manufacture of gaas single crystal substrate
JPH06302532A (en) Method for heat treating compound semiconductor single crystal wafer and wafer support used therefor
JPH10150048A (en) Semiconductor substrate
JP4003906B2 (en) Silicon single crystal semiconductor wafer heat treatment jig and silicon single crystal semiconductor wafer heat treatment apparatus using the same
JPH10284429A (en) Wafer support device
JP2000012482A (en) Method for manufacturing silicon carbide semiconductor device
KR20030019472A (en) Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
KR101524913B1 (en) Silicon wafer
US3998667A (en) Barium aluminoborosilicate glass-ceramics for semiconductor doping
KR20030021185A (en) Method and apparatus for forming a silicon wafer with a denuded zone
JP5495920B2 (en) Heat treatment method for silicon wafer
JP5583053B2 (en) Heat treatment method for silicon wafer
CN115135816A (en) Method for manufacturing semiconductor silicon wafer
JP6845020B2 (en) Heat treatment method for silicon wafer
KR102748192B1 (en) Silicone single crystal ingot and method for manufacturing the same
JP2012033846A (en) Silicon wafer heat treatment method
JP2021090067A (en) Silicon wafer
JP3867509B2 (en) Horizontal heat treatment furnace boat and heat treatment method