TR201914968A1 - Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması. - Google Patents
Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması.Info
- Publication number
- TR201914968A1 TR201914968A1 TR2019/14968A TR201914968A TR201914968A1 TR 201914968 A1 TR201914968 A1 TR 201914968A1 TR 2019/14968 A TR2019/14968 A TR 2019/14968A TR 201914968 A TR201914968 A TR 201914968A TR 201914968 A1 TR201914968 A1 TR 201914968A1
- Authority
- TR
- Turkey
- Prior art keywords
- gradient array
- array system
- pulse width
- width modulation
- fluctuations
- Prior art date
Links
- 230000010363 phase shift Effects 0.000 title 1
- 238000000034 method Methods 0.000 abstract 3
- 238000002595 magnetic resonance imaging Methods 0.000 abstract 2
- 239000004020 conductor Substances 0.000 abstract 1
- 230000008878 coupling Effects 0.000 abstract 1
- 238000010168 coupling process Methods 0.000 abstract 1
- 238000005859 coupling reaction Methods 0.000 abstract 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56572—Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of a gradient magnetic field, e.g. non-linearity of a gradient magnetic field
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/385—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
- G01R33/3852—Gradient amplifiers; means for controlling the application of a gradient magnetic field to the sample, e.g. a gradient signal synthesizer
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/0023—Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
- G01R33/0035—Calibration of single magnetic sensors, e.g. integrated calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/06—Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
- G01R33/07—Hall effect devices
- G01R33/072—Constructional adaptation of the sensor to specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4625—Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/46—NMR spectroscopy
- G01R33/4633—Sequences for multi-dimensional NMR
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Signal Processing (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Nonlinear Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Mevcut buluş, manyetik rezonans görüntüleme (MRG) sistemlerinde kullanım için mevcut gradyan dizisi sistemlerinde bulunan eksikliklerin giderilmesine ilişkindir. Gradyan dizisi sistemleri, birden çok sayıda bobinleri ve karşılık gelen H?köprüsü anahtarlamalı amplifikatörleri içermektedir. Söz konusu olan bu bileşenlerin yapısı gereği, çıkış akımlarında dalgalanmalar mevcut olmaktadır. Yapaylıklara neden olan, görüntü kalitesini düşüren ve birbirine komşu olan iletkenlerde anaforlu akım meydana getiren dalgalanmalara ilişkin problemler, gradyan dizisi sisteminde bulunan bobinler arasındaki bağlantıdan faydalanılması suretiyle, LF filtresinin ardından dalgalanma akımına ait dominant harmoniğin azaltılması için dijital bir yöntemin kullanılmasıyla çözülmektedir. Mevcut buluş sayesinde, dalgalanmaların, gradyan dizisi sistemini hantal ve maliyetli hâle getiren çok aşamalı LC filtrelerinin kullanılmasıyla giderilmesi problemi de aşılmıştır. Bir Darbe Genişlik Modülasyonu (DGM) tekli ve grup konfigürasyondaki anahtarlamalı H köprüsü amplifikatörlerinin tahriklenmesi için bir yöntemdir. Bu yöntemin karşılıklı bağlanmış yükler ile kullanılması ile çıkış dalgalanmaları azaltılmaktadır. Bunlara ek olarak, manyetik rezonans görüntüleme (MRG) sisteminin kullanılmasıyla, dokuya ait bölgesel görüntü, bobinlerin akım döngülerine bölünmesi suretiyle elde edilmektedir.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762482464P | 2017-04-06 | 2017-04-06 | |
PCT/TR2018/050148 WO2018186815A1 (en) | 2017-04-06 | 2018-04-06 | Minimization of current ripples in a gradient array system by applying an optimum-phase shift pulse width modulation pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
TR201914968A1 true TR201914968A1 (tr) | 2022-02-21 |
Family
ID=62047013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TR2019/14968A TR201914968A1 (tr) | 2017-04-06 | 2018-04-06 | Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması. |
Country Status (3)
Country | Link |
---|---|
US (1) | US10641858B2 (tr) |
TR (1) | TR201914968A1 (tr) |
WO (1) | WO2018186815A1 (tr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016182407A1 (ko) | 2015-05-14 | 2016-11-17 | 아탈라에르긴 | 자기 공명 영상 스캐너 |
US10571537B2 (en) | 2015-05-21 | 2020-02-25 | Bilkent University | Multi-purpose gradient array for magnetic resonance imaging |
WO2016195281A1 (ko) | 2015-05-21 | 2016-12-08 | 아탈라에르긴 | 경사자장을 발생시키기 위해 복수의 코일을 이용하는 경사자장 발생 모듈 |
DE102017207904A1 (de) * | 2017-05-10 | 2018-11-15 | Siemens Healthcare Gmbh | Verfahren zur Aufnahme eines Magnetresonanzdatensatzes, Steuerungseinrichtung sowie Datenverarbeitungsprogramm |
US20220111201A1 (en) * | 2020-10-08 | 2022-04-14 | Inspire Medical Systems, Inc. | Identifying a presence-absence state of a magnetic resonance imaging system |
EP4095538A1 (en) | 2021-05-26 | 2022-11-30 | Skope Magnetic Resonance Technologies AG | A magnetic resonance (mr) assembly comprising probes for measuring magnetic field, a method of operating the same, an mri apparatus comprising the same and a method of operating the mri apparatus |
EP4105671A1 (de) * | 2021-06-16 | 2022-12-21 | Siemens Healthcare GmbH | Verfahren zur ermittlung eines magnetfeldes zumindest einer magnetspuleneinheit einer magnetresonanzvorrichtung, magnetresonanzvorrichtung und computerprogrammprodukt |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1445063A (en) * | 1974-02-22 | 1976-08-04 | Foerster F | Magnetic gradient detector |
DE3824642A1 (de) | 1988-07-20 | 1990-02-01 | Vogt Electronic Ag | Duo-spule z. b. als treiber- und vertikalablenkungsintegrationsspule fuer den ost-west-diodenmodulator in bildsichtgeraeten |
US5278504A (en) | 1989-06-16 | 1994-01-11 | Picker International, Inc. | Gradient coil with off center sweet spot for magnetic resonance imaging |
JP2983256B2 (ja) * | 1990-06-19 | 1999-11-29 | 株式会社東芝 | Mri装置 |
US5382904A (en) | 1992-04-15 | 1995-01-17 | Houston Advanced Research Center | Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same |
US6016439A (en) | 1996-10-15 | 2000-01-18 | Biosense, Inc. | Method and apparatus for synthetic viewpoint imaging |
DE19913124C1 (de) | 1999-03-23 | 2000-10-26 | Siemens Ag | Schaltbare longitudinale Gradientenspule |
US7202734B1 (en) | 1999-07-06 | 2007-04-10 | Frederick Herbert Raab | Electronically tuned power amplifier |
DE19955117C2 (de) | 1999-11-16 | 2001-09-27 | Siemens Ag | Verfahren zum Betrieb eines Magnetresonanztomographiegeräts |
JP2003517911A (ja) | 1999-12-20 | 2003-06-03 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 自由に傾斜制御可能なmri装置 |
US6448773B1 (en) | 2000-02-24 | 2002-09-10 | Toshiba America Mri, Inc. | Method and system for measuring and compensating for eddy currents induced during NMR imaging operations |
US6900638B1 (en) | 2000-03-31 | 2005-05-31 | Ge Medical Technology Services, Inc. | Switching device to linearly conduct a current between a gradient amplifier and a gradient coil assembly of an MRI system |
US6437999B1 (en) | 2001-05-12 | 2002-08-20 | Technical Witts, Inc. | Power electronic circuits with ripple current cancellation |
US6563315B1 (en) | 2001-06-06 | 2003-05-13 | Ge Medical Systems Global Technology Co., Llc | Gradient coil apparatus and method of micro-imaging |
US6472872B1 (en) | 2001-06-29 | 2002-10-29 | Mayo Foundation For Medical Education And Research | Real-time shimming of polarizing field in magnetic resonance system |
US20040162477A1 (en) * | 2002-10-04 | 2004-08-19 | Olympus Corporation | Apparatus for detecting magnetic fluid identifying sentinel-lymph node |
WO2005124381A2 (en) | 2004-06-17 | 2005-12-29 | Koninklijke Philips Electronics, N.V. | Magnetic resonance imaging system with iron-assisted magnetic field gradient system |
CN1977180A (zh) | 2004-06-29 | 2007-06-06 | 皇家飞利浦电子股份有限公司 | 磁共振成像设备以及用于操作磁共振成像设备的方法 |
JP2007167143A (ja) | 2005-12-19 | 2007-07-05 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
US7800368B2 (en) | 2006-02-17 | 2010-09-21 | Regents Of The University Of Minnesota | High field magnetic resonance |
US7382128B2 (en) | 2006-02-24 | 2008-06-03 | Kenergy, Inc. | Magnetic resonance imaging system with a Class-E radio frequency amplifier |
US20120053239A1 (en) | 2006-12-07 | 2012-03-01 | Eli Ehrenpreis | Treatment for intestinal gas, bloating, microscopic colitis, inflammatory bowel disease and traveler's diarrhea using colloidal bismuth subcitrate |
US8483798B2 (en) | 2007-01-15 | 2013-07-09 | General Electric Company | System and method for metabolic MR imaging of a hyperpolarized agent |
JP5032189B2 (ja) | 2007-04-18 | 2012-09-26 | ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー | Mri装置およびrfパルス生成回路 |
KR100900862B1 (ko) | 2007-11-22 | 2009-06-04 | 가천의과학대학교 산학협력단 | 자기공명영상 시스템용 rf 코일 어셈블리 |
JP5638393B2 (ja) * | 2008-10-20 | 2014-12-10 | 株式会社日立メディコ | 磁気共鳴イメージング装置及び方法 |
US20110254551A1 (en) | 2008-12-31 | 2011-10-20 | Koninklijke Philips Electronics N.V. | Gradient coil assembly for mri with integrated rf transmit amplifiers |
JP2012040362A (ja) * | 2010-07-23 | 2012-03-01 | Toshiba Corp | 磁気共鳴イメージング方法、磁気共鳴イメージング装置およびその制御装置 |
US9018955B2 (en) | 2011-06-17 | 2015-04-28 | General Electric Company | System and method for receiving magnetic resonance (MR) signals with an FET electrically between preamplifier terminals |
MX2014006380A (es) | 2011-12-02 | 2014-07-09 | Koninkl Philips Nv | Configuracion de bobina para formacion de imagen de particula magnetica (mpi). |
DE102012205587B4 (de) | 2012-04-04 | 2013-12-24 | Siemens Aktiengesellschaft | Schichtspezifische Phasenkorrektur bei Schicht-Multiplexing |
CN103767705B (zh) | 2012-10-23 | 2017-12-22 | 三星电子株式会社 | 磁共振成像系统和磁共振成像方法 |
KR101503494B1 (ko) | 2013-09-05 | 2015-03-16 | 삼성전자주식회사 | Rf 코일부를 포함하는 자기공명영상 시스템 |
DE102013219239A1 (de) * | 2013-09-25 | 2015-03-26 | Robert Bosch Gmbh | Verfahren, Vorrichtung und System zum Ermitteln einer Position eines Fahrzeugs |
WO2015120550A1 (en) * | 2014-02-11 | 2015-08-20 | Pure Technologies Ltd. | Method and system for non-destructive rail inspection |
EP2952224A1 (de) * | 2014-06-05 | 2015-12-09 | BIOTRONIK SE & Co. KG | Detektor für elektromagnetische felder |
KR102638385B1 (ko) | 2014-12-19 | 2024-02-21 | 메사추세츠 인스티튜트 오브 테크놀로지 | 위상 스위치 소자를 갖는 튜너블 매칭 네트워크 |
US10247795B2 (en) * | 2014-12-30 | 2019-04-02 | General Electric Company | Method and apparatus for non-invasive assessment of ripple cancellation filter |
WO2016182407A1 (ko) | 2015-05-14 | 2016-11-17 | 아탈라에르긴 | 자기 공명 영상 스캐너 |
WO2016195281A1 (ko) | 2015-05-21 | 2016-12-08 | 아탈라에르긴 | 경사자장을 발생시키기 위해 복수의 코일을 이용하는 경사자장 발생 모듈 |
US10571537B2 (en) | 2015-05-21 | 2020-02-25 | Bilkent University | Multi-purpose gradient array for magnetic resonance imaging |
TWI540330B (zh) * | 2015-09-30 | 2016-07-01 | 國立臺灣大學 | 偵測動態磁場變化之方法與裝置 |
KR101771220B1 (ko) * | 2016-05-02 | 2017-08-24 | 가천대학교 산학협력단 | 자기공명영상 시스템 |
-
2018
- 2018-04-06 TR TR2019/14968A patent/TR201914968A1/tr unknown
- 2018-04-06 WO PCT/TR2018/050148 patent/WO2018186815A1/en active Application Filing
- 2018-04-06 US US15/947,160 patent/US10641858B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US10641858B2 (en) | 2020-05-05 |
US20180292502A1 (en) | 2018-10-11 |
WO2018186815A1 (en) | 2018-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TR201914968A1 (tr) | Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması. | |
US8964432B2 (en) | Apparatus and method for controlling circulating current in an inverter system | |
CN102508183B (zh) | 一种负载自适应控制的数字可变频pwm梯度放大器 | |
DE102016203044B4 (de) | Verfahren und vorrichtung zur rippelspannungsreduktion in einem fahrzeugbordnetz | |
MX2018007256A (es) | Metodo para remover artefactos desbloqueadores. | |
WO2016168249A8 (en) | Magnetic coil power methods and apparatus | |
US20130285664A1 (en) | State space feedback controller in the digital domain for an mri gradient coil power supply | |
MY153844A (en) | Method and apparatus for performing interpolation based on transform and inverse transform | |
JP2015512737A5 (tr) | ||
DE102013113703A1 (de) | Steuersystem für eine dreiphasige drehende Maschine | |
EP3290939B1 (en) | Gradient amplifier | |
GB2552611A (en) | System and method for delta relaxation enhanced magnetic resonance imaging | |
US20160036344A1 (en) | Three-phase buck rectifier for power supplies | |
JP6309217B2 (ja) | 磁気共鳴イメージング装置 | |
CN203275625U (zh) | 一种高压大电流小纹波梯度放大器 | |
KR20120111614A (ko) | 고압 인버터 시스템 | |
EP3607340A4 (en) | IMPROVED SPIN ECHO-BASED MAGNETIC RESONANCE IMAGING SYSTEM AND METHOD | |
EP4245215A4 (en) | SUPERCONDUCTING MAGNETIC RESONANCE IMAGING SYSTEM FOR MEMBER | |
CN104142483A (zh) | 一种高压大电流小纹波梯度放大器 | |
US9223010B2 (en) | Receiver compensation by adjusting receiver sensitivity | |
CN104950273A (zh) | 一种应用耦合电感输出滤波的梯度放大器 | |
GB201307083D0 (en) | Method for magnetic resonance imaging with optimized background phase distribution | |
WO2015111137A1 (ja) | 半導体電力変換装置および出力電流制御方法 | |
CN104865545A (zh) | 平面回波成像方法及装置 | |
EP3175252A1 (en) | Gradient amplifier system for driving a gradient coil and configuration method |