[go: up one dir, main page]

TR201914968A1 - Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması. - Google Patents

Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması.

Info

Publication number
TR201914968A1
TR201914968A1 TR2019/14968A TR201914968A TR201914968A1 TR 201914968 A1 TR201914968 A1 TR 201914968A1 TR 2019/14968 A TR2019/14968 A TR 2019/14968A TR 201914968 A TR201914968 A TR 201914968A TR 201914968 A1 TR201914968 A1 TR 201914968A1
Authority
TR
Turkey
Prior art keywords
gradient array
array system
pulse width
width modulation
fluctuations
Prior art date
Application number
TR2019/14968A
Other languages
English (en)
Inventor
Koray Ertan Ni̇yazi̇
Taraghi̇ni̇a Süheyl
Atalar Ergi̇n
Original Assignee
Ihsan Dogramaci Bilkent Ueniversitesi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihsan Dogramaci Bilkent Ueniversitesi filed Critical Ihsan Dogramaci Bilkent Ueniversitesi
Publication of TR201914968A1 publication Critical patent/TR201914968A1/tr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56572Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of a gradient magnetic field, e.g. non-linearity of a gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3852Gradient amplifiers; means for controlling the application of a gradient magnetic field to the sample, e.g. a gradient signal synthesizer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0035Calibration of single magnetic sensors, e.g. integrated calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • G01R33/072Constructional adaptation of the sensor to specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4625Processing of acquired signals, e.g. elimination of phase errors, baseline fitting, chemometric analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/46NMR spectroscopy
    • G01R33/4633Sequences for multi-dimensional NMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nonlinear Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

Mevcut buluş, manyetik rezonans görüntüleme (MRG) sistemlerinde kullanım için mevcut gradyan dizisi sistemlerinde bulunan eksikliklerin giderilmesine ilişkindir. Gradyan dizisi sistemleri, birden çok sayıda bobinleri ve karşılık gelen H?köprüsü anahtarlamalı amplifikatörleri içermektedir. Söz konusu olan bu bileşenlerin yapısı gereği, çıkış akımlarında dalgalanmalar mevcut olmaktadır. Yapaylıklara neden olan, görüntü kalitesini düşüren ve birbirine komşu olan iletkenlerde anaforlu akım meydana getiren dalgalanmalara ilişkin problemler, gradyan dizisi sisteminde bulunan bobinler arasındaki bağlantıdan faydalanılması suretiyle, LF filtresinin ardından dalgalanma akımına ait dominant harmoniğin azaltılması için dijital bir yöntemin kullanılmasıyla çözülmektedir. Mevcut buluş sayesinde, dalgalanmaların, gradyan dizisi sistemini hantal ve maliyetli hâle getiren çok aşamalı LC filtrelerinin kullanılmasıyla giderilmesi problemi de aşılmıştır. Bir Darbe Genişlik Modülasyonu (DGM) tekli ve grup konfigürasyondaki anahtarlamalı H köprüsü amplifikatörlerinin tahriklenmesi için bir yöntemdir. Bu yöntemin karşılıklı bağlanmış yükler ile kullanılması ile çıkış dalgalanmaları azaltılmaktadır. Bunlara ek olarak, manyetik rezonans görüntüleme (MRG) sisteminin kullanılmasıyla, dokuya ait bölgesel görüntü, bobinlerin akım döngülerine bölünmesi suretiyle elde edilmektedir.
TR2019/14968A 2017-04-06 2018-04-06 Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması. TR201914968A1 (tr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762482464P 2017-04-06 2017-04-06
PCT/TR2018/050148 WO2018186815A1 (en) 2017-04-06 2018-04-06 Minimization of current ripples in a gradient array system by applying an optimum-phase shift pulse width modulation pattern

Publications (1)

Publication Number Publication Date
TR201914968A1 true TR201914968A1 (tr) 2022-02-21

Family

ID=62047013

Family Applications (1)

Application Number Title Priority Date Filing Date
TR2019/14968A TR201914968A1 (tr) 2017-04-06 2018-04-06 Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması.

Country Status (3)

Country Link
US (1) US10641858B2 (tr)
TR (1) TR201914968A1 (tr)
WO (1) WO2018186815A1 (tr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016182407A1 (ko) 2015-05-14 2016-11-17 아탈라에르긴 자기 공명 영상 스캐너
US10571537B2 (en) 2015-05-21 2020-02-25 Bilkent University Multi-purpose gradient array for magnetic resonance imaging
WO2016195281A1 (ko) 2015-05-21 2016-12-08 아탈라에르긴 경사자장을 발생시키기 위해 복수의 코일을 이용하는 경사자장 발생 모듈
DE102017207904A1 (de) * 2017-05-10 2018-11-15 Siemens Healthcare Gmbh Verfahren zur Aufnahme eines Magnetresonanzdatensatzes, Steuerungseinrichtung sowie Datenverarbeitungsprogramm
US20220111201A1 (en) * 2020-10-08 2022-04-14 Inspire Medical Systems, Inc. Identifying a presence-absence state of a magnetic resonance imaging system
EP4095538A1 (en) 2021-05-26 2022-11-30 Skope Magnetic Resonance Technologies AG A magnetic resonance (mr) assembly comprising probes for measuring magnetic field, a method of operating the same, an mri apparatus comprising the same and a method of operating the mri apparatus
EP4105671A1 (de) * 2021-06-16 2022-12-21 Siemens Healthcare GmbH Verfahren zur ermittlung eines magnetfeldes zumindest einer magnetspuleneinheit einer magnetresonanzvorrichtung, magnetresonanzvorrichtung und computerprogrammprodukt

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1445063A (en) * 1974-02-22 1976-08-04 Foerster F Magnetic gradient detector
DE3824642A1 (de) 1988-07-20 1990-02-01 Vogt Electronic Ag Duo-spule z. b. als treiber- und vertikalablenkungsintegrationsspule fuer den ost-west-diodenmodulator in bildsichtgeraeten
US5278504A (en) 1989-06-16 1994-01-11 Picker International, Inc. Gradient coil with off center sweet spot for magnetic resonance imaging
JP2983256B2 (ja) * 1990-06-19 1999-11-29 株式会社東芝 Mri装置
US5382904A (en) 1992-04-15 1995-01-17 Houston Advanced Research Center Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same
US6016439A (en) 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
DE19913124C1 (de) 1999-03-23 2000-10-26 Siemens Ag Schaltbare longitudinale Gradientenspule
US7202734B1 (en) 1999-07-06 2007-04-10 Frederick Herbert Raab Electronically tuned power amplifier
DE19955117C2 (de) 1999-11-16 2001-09-27 Siemens Ag Verfahren zum Betrieb eines Magnetresonanztomographiegeräts
JP2003517911A (ja) 1999-12-20 2003-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 自由に傾斜制御可能なmri装置
US6448773B1 (en) 2000-02-24 2002-09-10 Toshiba America Mri, Inc. Method and system for measuring and compensating for eddy currents induced during NMR imaging operations
US6900638B1 (en) 2000-03-31 2005-05-31 Ge Medical Technology Services, Inc. Switching device to linearly conduct a current between a gradient amplifier and a gradient coil assembly of an MRI system
US6437999B1 (en) 2001-05-12 2002-08-20 Technical Witts, Inc. Power electronic circuits with ripple current cancellation
US6563315B1 (en) 2001-06-06 2003-05-13 Ge Medical Systems Global Technology Co., Llc Gradient coil apparatus and method of micro-imaging
US6472872B1 (en) 2001-06-29 2002-10-29 Mayo Foundation For Medical Education And Research Real-time shimming of polarizing field in magnetic resonance system
US20040162477A1 (en) * 2002-10-04 2004-08-19 Olympus Corporation Apparatus for detecting magnetic fluid identifying sentinel-lymph node
WO2005124381A2 (en) 2004-06-17 2005-12-29 Koninklijke Philips Electronics, N.V. Magnetic resonance imaging system with iron-assisted magnetic field gradient system
CN1977180A (zh) 2004-06-29 2007-06-06 皇家飞利浦电子股份有限公司 磁共振成像设备以及用于操作磁共振成像设备的方法
JP2007167143A (ja) 2005-12-19 2007-07-05 Hitachi Medical Corp 磁気共鳴イメージング装置
US7800368B2 (en) 2006-02-17 2010-09-21 Regents Of The University Of Minnesota High field magnetic resonance
US7382128B2 (en) 2006-02-24 2008-06-03 Kenergy, Inc. Magnetic resonance imaging system with a Class-E radio frequency amplifier
US20120053239A1 (en) 2006-12-07 2012-03-01 Eli Ehrenpreis Treatment for intestinal gas, bloating, microscopic colitis, inflammatory bowel disease and traveler's diarrhea using colloidal bismuth subcitrate
US8483798B2 (en) 2007-01-15 2013-07-09 General Electric Company System and method for metabolic MR imaging of a hyperpolarized agent
JP5032189B2 (ja) 2007-04-18 2012-09-26 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Mri装置およびrfパルス生成回路
KR100900862B1 (ko) 2007-11-22 2009-06-04 가천의과학대학교 산학협력단 자기공명영상 시스템용 rf 코일 어셈블리
JP5638393B2 (ja) * 2008-10-20 2014-12-10 株式会社日立メディコ 磁気共鳴イメージング装置及び方法
US20110254551A1 (en) 2008-12-31 2011-10-20 Koninklijke Philips Electronics N.V. Gradient coil assembly for mri with integrated rf transmit amplifiers
JP2012040362A (ja) * 2010-07-23 2012-03-01 Toshiba Corp 磁気共鳴イメージング方法、磁気共鳴イメージング装置およびその制御装置
US9018955B2 (en) 2011-06-17 2015-04-28 General Electric Company System and method for receiving magnetic resonance (MR) signals with an FET electrically between preamplifier terminals
MX2014006380A (es) 2011-12-02 2014-07-09 Koninkl Philips Nv Configuracion de bobina para formacion de imagen de particula magnetica (mpi).
DE102012205587B4 (de) 2012-04-04 2013-12-24 Siemens Aktiengesellschaft Schichtspezifische Phasenkorrektur bei Schicht-Multiplexing
CN103767705B (zh) 2012-10-23 2017-12-22 三星电子株式会社 磁共振成像系统和磁共振成像方法
KR101503494B1 (ko) 2013-09-05 2015-03-16 삼성전자주식회사 Rf 코일부를 포함하는 자기공명영상 시스템
DE102013219239A1 (de) * 2013-09-25 2015-03-26 Robert Bosch Gmbh Verfahren, Vorrichtung und System zum Ermitteln einer Position eines Fahrzeugs
WO2015120550A1 (en) * 2014-02-11 2015-08-20 Pure Technologies Ltd. Method and system for non-destructive rail inspection
EP2952224A1 (de) * 2014-06-05 2015-12-09 BIOTRONIK SE & Co. KG Detektor für elektromagnetische felder
KR102638385B1 (ko) 2014-12-19 2024-02-21 메사추세츠 인스티튜트 오브 테크놀로지 위상 스위치 소자를 갖는 튜너블 매칭 네트워크
US10247795B2 (en) * 2014-12-30 2019-04-02 General Electric Company Method and apparatus for non-invasive assessment of ripple cancellation filter
WO2016182407A1 (ko) 2015-05-14 2016-11-17 아탈라에르긴 자기 공명 영상 스캐너
WO2016195281A1 (ko) 2015-05-21 2016-12-08 아탈라에르긴 경사자장을 발생시키기 위해 복수의 코일을 이용하는 경사자장 발생 모듈
US10571537B2 (en) 2015-05-21 2020-02-25 Bilkent University Multi-purpose gradient array for magnetic resonance imaging
TWI540330B (zh) * 2015-09-30 2016-07-01 國立臺灣大學 偵測動態磁場變化之方法與裝置
KR101771220B1 (ko) * 2016-05-02 2017-08-24 가천대학교 산학협력단 자기공명영상 시스템

Also Published As

Publication number Publication date
US10641858B2 (en) 2020-05-05
US20180292502A1 (en) 2018-10-11
WO2018186815A1 (en) 2018-10-11

Similar Documents

Publication Publication Date Title
TR201914968A1 (tr) Optimum faz kayması darbe genişlik modülasyonu modelinin uygulanması vasıtasıyla gradyan dizisi sisteminde minimum akım dalgalanmasının algoritması ve uygulanması.
US8964432B2 (en) Apparatus and method for controlling circulating current in an inverter system
CN102508183B (zh) 一种负载自适应控制的数字可变频pwm梯度放大器
DE102016203044B4 (de) Verfahren und vorrichtung zur rippelspannungsreduktion in einem fahrzeugbordnetz
MX2018007256A (es) Metodo para remover artefactos desbloqueadores.
WO2016168249A8 (en) Magnetic coil power methods and apparatus
US20130285664A1 (en) State space feedback controller in the digital domain for an mri gradient coil power supply
MY153844A (en) Method and apparatus for performing interpolation based on transform and inverse transform
JP2015512737A5 (tr)
DE102013113703A1 (de) Steuersystem für eine dreiphasige drehende Maschine
EP3290939B1 (en) Gradient amplifier
GB2552611A (en) System and method for delta relaxation enhanced magnetic resonance imaging
US20160036344A1 (en) Three-phase buck rectifier for power supplies
JP6309217B2 (ja) 磁気共鳴イメージング装置
CN203275625U (zh) 一种高压大电流小纹波梯度放大器
KR20120111614A (ko) 고압 인버터 시스템
EP3607340A4 (en) IMPROVED SPIN ECHO-BASED MAGNETIC RESONANCE IMAGING SYSTEM AND METHOD
EP4245215A4 (en) SUPERCONDUCTING MAGNETIC RESONANCE IMAGING SYSTEM FOR MEMBER
CN104142483A (zh) 一种高压大电流小纹波梯度放大器
US9223010B2 (en) Receiver compensation by adjusting receiver sensitivity
CN104950273A (zh) 一种应用耦合电感输出滤波的梯度放大器
GB201307083D0 (en) Method for magnetic resonance imaging with optimized background phase distribution
WO2015111137A1 (ja) 半導体電力変換装置および出力電流制御方法
CN104865545A (zh) 平面回波成像方法及装置
EP3175252A1 (en) Gradient amplifier system for driving a gradient coil and configuration method