SK283426B6 - A method of controlled combustion - Google Patents
A method of controlled combustion Download PDFInfo
- Publication number
- SK283426B6 SK283426B6 SK3673-92A SK367392A SK283426B6 SK 283426 B6 SK283426 B6 SK 283426B6 SK 367392 A SK367392 A SK 367392A SK 283426 B6 SK283426 B6 SK 283426B6
- Authority
- SK
- Slovakia
- Prior art keywords
- flue gas
- furnace
- industrial furnace
- oxygen
- carbon monoxide
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims abstract description 93
- 239000003546 flue gas Substances 0.000 claims abstract description 67
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 30
- 239000001301 oxygen Substances 0.000 claims abstract description 30
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 30
- 239000000446 fuel Substances 0.000 claims description 9
- 229910001018 Cast iron Inorganic materials 0.000 claims description 7
- 239000007789 gas Substances 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 4
- 239000007800 oxidant agent Substances 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 33
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 239000003921 oil Substances 0.000 description 3
- 238000005275 alloying Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0006—Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
- F27D2019/0018—Monitoring the temperature of the atmosphere of the kiln
- F27D2019/0021—Monitoring the temperature of the exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D19/00—Arrangements of controlling devices
- F27D2019/0028—Regulation
- F27D2019/0034—Regulation through control of a heating quantity such as fuel, oxidant or intensity of current
- F27D2019/004—Fuel quantity
- F27D2019/0043—Amount of air or O2 to the burner
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Muffle Furnaces And Rotary Kilns (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
- Treatment Of Sludge (AREA)
- Furnace Details (AREA)
- Control Of Heat Treatment Processes (AREA)
Abstract
Opisuje sa spôsob riadeného spaľovania v priemyselnej peci (1), ktorej spaliny sa spaľujú v potrubí (10) na odvod spalín. Podľa vynálezu sa plynule meria teplota spalín a pri prekročení vopred zadanej požadovanej hodnoty meranej teploty spalín sa zvyšuje obsah kyslíka v atmosfére priemyselnej pece (1).ŕThe method of controlled combustion in an industrial furnace (1) is described, the flue gas of which is burned in a pipe (10) for the discharge of flue gas. According to the invention, the flue gas temperature is continuously measured, and when the pre-set desired value of the measured flue gas temperature is exceeded, the oxygen content in the atmosphere of the industrial furnace increases (1).à
Description
Oblasť technikyTechnical field
Vynález sa týka spôsobu prevádzky priemyselnej pece, ktorej spaliny sa spaľujú v potrubí na odvod spalín.The invention relates to a method of operating an industrial furnace, the flue gas of which is combusted in a flue gas duct.
Doterajší stav technikyBACKGROUND OF THE INVENTION
V zlievarňach a zariadeniach na pretavby liatiny, medi, olova, hliníka a iných kovov sa veľmi často používajú taviace pece vykurované horákmi. Ak sa taví napríklad v rotačnej bubnovej peci liatina, ohrieva sa vsádzka s hmotnosťou od 2 do 10 ton olejovými alebo plynovými horákmi vo vodorovne uloženom, žiaruvzdorné vymurovanom, pomaly sa okolo pozdĺžnej osi otáčajúcom bubne na teplotu odpichu asi 1500 °C. Vykurovanie rotačných bubnových pecí sa najčastejšie vykonáva horákmi, ktoré sú usporiadané na čelnej strane pece a ktorých plameň siaha dovnútra pece. Otvorom usporiadaným najčastejšie na protiľahlej strane pece unikajú spaliny z pece potrubím do komína.In foundries and facilities for cast iron, copper, lead, aluminum and other metals melting furnaces heated by burners are very often used. If, for example, cast iron is melted in a rotary drum furnace, a charge of 2 to 10 tonnes is heated by oil or gas burners in a horizontally mounted, refractory lining, slowly rotating around the longitudinal axis of the rotating drum to a tapping temperature of about 1500 ° C. Heating of rotary drum furnaces is most often performed by burners which are arranged on the front side of the furnace and whose flame extends inside the furnace. Through the opening arranged most often on the opposite side of the furnace, the flue gases escape from the furnace through a pipe to the chimney.
Pri prevádzke takýchto priemyselných pecí sú v spalinách veľké množstvá oxidu uhoľnatého, pričom množstvo uvoľneného oxidu uhoľnatého závisí od obsahu kyslíka v peci, od teploty pece, od vsádzky, ktorá je tavená, od otáčavého pohybu pece a prípadne od pridávaných prostriedkov na riadenie obsahu uhlíka. V nepatrnom podiele je v spalinách vystupujúcich z pece okrem oxidu uhoľnatého taktiež obsiahnutý vodík, ktorý na svoje spálenie potrebuje kyslík. Vodík pochádza zo spaľovacích reakcii, z paliva a z plastických hmôt a olejov, ktoré často uľpievajú na vsádzke.In the operation of such industrial furnaces, large amounts of carbon monoxide are present in the flue gas, the amount of carbon monoxide released being dependent on the oxygen content of the furnace, the temperature of the furnace, the batch being melted, the rotary motion of the furnace, and the carbon control means added. In addition to carbon monoxide, hydrogen is also present in a small proportion of the flue gases exiting the furnace, which also needs oxygen to burn it. Hydrogen comes from combustion reactions, from fuel and from plastics and oils, which often stick to the charge.
Dosiaľ bol oxid uhoľnatý a vodík obsiahnutý v spalinách priemyselných pecí spaľovaný v potrubiach na odvod spalín. Vyvíjanie plameňov v potrubiach na odvod spalín vedie k silnému tepelnému zaťaženiu ďalej zapojených filtrov. Tkanivové filtre sa prehrejú alebo sa filtračné zariadenie odpoja.So far, carbon monoxide and hydrogen contained in the flue gases of industrial furnaces have been combusted in flue gas ducts. The development of flames in the flue gas ducts leads to a strong thermal load on the downstream filters. The tissue filters overheat or the filter device is disconnected.
Okrem toho je spaľovanie oxidu uhoľnatého v potrubiach na odvod spalín energeticky nepriaznivé na prevádzku priemyselnej pece. Významná by bola snaha o spaľovanie oxidu uhoľnatého vo vnútornom priestore pece. Takto uvoľnená energia by mohla potom viesť k úsporám paliva.In addition, the combustion of carbon monoxide in flue gas ducts is energetically unfavorable for the operation of an industrial furnace. Efforts to burn carbon monoxide in the furnace interior would be significant. The energy released in this way could then lead to fuel savings.
Následkom silne kolísajúceho množstva oxidu uhoľnatého v peci nebolo dosiaľ možné riadené spaľovanie oxidu uhoľnatého. Prívod kyslíka do pccc by totiž musel byť stále korelovaný s uvoľneným množstvom oxidu uhoľnatého. To isté platí pre vodík uvoľnený v podstatne menšom množstve. Pri trvalom prebytku kyslíka dochádza naproti tomu ku spaľovaniu legovacích prvkov, napríklad pri tavbe liatiny. Trvalé nasadenie analyzátorov plynov, ktoré merajú príslušný obsah oxidu uhoľnatého v atmosfére pece, je nemožné z dôvodov vyvíjania prachu a sadzí, pretože sa usadzujú častice na vodou chladených snímačoch, meracích zariadeniach a analyzátoroch.Due to the strongly fluctuating amount of carbon monoxide in the furnace, the controlled combustion of carbon monoxide has not yet been possible. Indeed, the oxygen supply to the pccc would still have to be correlated with the amount of carbon monoxide released. The same is true for hydrogen released in substantially smaller amounts. On the other hand, a sustained excess of oxygen causes combustion of the alloying elements, for example in the case of cast iron. Permanent deployment of gas analyzers that measure the appropriate carbon monoxide content in the furnace atmosphere is impossible for dust and soot formation, as particles are deposited on the water-cooled sensors, measuring devices and analyzers.
Úlohou predloženého vynálezu je teda vytvoriť zlepšený spôsob prevádzky priemyselných pecí, ktorých spaliny sa spaľujú v potrubí na odvod spalín, ktorým by boli odstránené uvedené nedostatky doterajšieho stavu techniky a bola by umožnená predovšetkým energeticky výhodnejšia prevádzka pecí, ako i znížené tepelné zaťaženie filtrov.SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an improved method of operating industrial furnaces whose flue gases are burned in a flue gas duct, which overcomes the aforementioned shortcomings of the prior art and allows more energy efficient furnace operation and reduced filter loading.
Podstata vynálezuSUMMARY OF THE INVENTION
Vynález rieši úlohu tým, že vytvára spôsob prevádzky priemyselnej pece, ktorej spaliny sa spaľujú v potrubí na odvod spalín, ktorého podstata spočíva v tom, že sa plynulé meria teplota spalín a pri prekročení vopred zadanej požadovanej hodnoty meranej teploty spalín sa zvyšuje obsah kyslíka v atmosfére priemyselnej pece.The invention solves the problem by providing a method of operating an industrial furnace in which the flue gas is burned in a flue gas duct, the principle of which is to measure the flue gas temperature continuously and to increase the oxygen content in the atmosphere when the pre-set desired flue gas temperature is exceeded. industrial furnace.
Merania obsahu oxidu uhoľnatého v dymovom plyne na strane odvodu spalín z pece a merania teploty v potrubí na odvod spalín do komína ukazujú, že obe hodnoty majú priamu súvislosť.Measurements of the carbon monoxide content of the flue gas on the flue gas discharge side of the furnace and the temperature measurements in the flue gas duct to the chimney show that both values are directly related.
Táto súvislosť bude ďalej vysvetlená pre prípad, v ktorom oxid uhoľnatý obsiahnutý v spalinách, ako i vodík, sa spaľuje vzduchom, ktorý môže do potrubia na odvod spalín vnikať otvormi. Pri nízkom obsahu oxidu uhoľnatého v dymovom plyne sa tento prevažne ochladí vzduchom vnikajúcim do potrubia na odvod spalín, čím taktiež teplota spalín zostáva nízka. Pri vysokom obsahu oxidu uhoľnatého v dymovom plyne sa oxid uhoľnatý prevažne spáli kyslíkom privádzaného vzduchu, takže nenastáva žiadne ochladenie spalín. Teplota spalín môže byť potom pri zmienenej tavbe liatiny vyššia ako 600 °C. Uvedené skutočnosti platia rovnako pre prípad, že na spaľovanie spalín v potrubí na odvod spalín sa použije iný oxidačný prostriedok ako vzduch.This connection will be explained below in the case in which the carbon monoxide contained in the flue gas as well as hydrogen is combusted by air which can enter the flue gas duct through the orifices. At a low carbon monoxide content in the flue gas, it is predominantly cooled by the air entering the flue gas duct, whereby the flue gas temperature also remains low. At a high carbon monoxide content in the flue gas, the carbon monoxide is predominantly burned by the oxygen supplied air, so that there is no cooling of the flue gas. The flue gas temperature can then be higher than 600 ° C at the above-mentioned cast iron melting. The same applies if an oxidizing agent other than air is used to burn the flue gas in the flue gas duct.
Podľa vynálezu tak môže byť meraná teplota spalín na jednom mieste potrubia ku komínu porovnaná s pomerným obsahom oxidu uhoľnatého v atmosfére pece pri zanedbaní obsahu vodíka. Tým je vytvorený jednoduchý a pozorovanie nevyžadujúci spôsob plynulého zisťovania obsahu oxidu uhoľnatého vnútri pece.Thus, according to the invention, the measured flue gas temperature at one point of the pipe to the chimney can be compared with the relative content of carbon monoxide in the furnace atmosphere, neglecting the hydrogen content. This provides a simple and observation-free method of continuously detecting the carbon monoxide content within the furnace.
Nasadenie zariadenia na meranie množstva plynu na určenie obsahu oxidu uhoľnatého vnútri pece, pričom tieto zariadenia sú poruchové a značne nákladné na údržbu, sa použitím spôsobu podľa vynálezu stane úplne zbytočným.The use of a device for measuring the amount of gas to determine the carbon monoxide content within the furnace, which are malfunctioning and considerably expensive to maintain, becomes completely useless using the method of the invention.
Vynález umožňuje výhodnú možnosť riadeného spaľovania oxidu uhoľnatého uvoľneného v atmosfére priemyselných pecí. Pritom sú uvažované všetky procesy, pri ktorých v atmosférach pecí vzniká oxid uhoľnatý a vodík, ktoré sú následne v spalinách spaľované. Na riadené spaľovanie oxidu uhoľnatého a vodíka sa pri prekročení vopred danej požadovanej hodnoty meranej teploty spalín zvýši obsah kyslíka v atmosfére priemyselnej pece.The invention provides a convenient possibility for the controlled combustion of carbon monoxide released in the atmosphere of industrial furnaces. All processes which produce carbon monoxide and hydrogen in the furnace atmosphere and are then burnt in the flue gas are considered. For the controlled combustion of carbon monoxide and hydrogen, the oxygen content of the industrial furnace atmosphere is increased when the predetermined setpoint temperature of the flue gas is exceeded.
Podiel kyslíka v atmosfére pece môže byť dovnútra pece privádzaný priamym vháňaním kyslíka dýzami na zvýšenie obsahu kyslíka v peci. Možno použiť i nejaký plyn obsahujúci kyslík. Pri priemyselných peciach vykurovaných horákmi na kyslík a palivo môže byť kyslík výhodne privádzaný dovnútra pece cez horák. Ak prekročí meraná teplota spalín vopred zadanú požadovanú hodnotu, zavádza sa dovnútra pece zodpovedajúcou riadiacou dráhou prídavný kyslík tak dlho, až teplota spalín opäť klesne pod žiadanú hodnotu.The proportion of oxygen in the furnace atmosphere may be introduced into the furnace by direct injecting oxygen through the nozzles to increase the oxygen content of the furnace. Some oxygen-containing gas may also be used. In industrial furnaces heated by oxygen and fuel burners, oxygen can advantageously be supplied to the interior of the furnace via the burner. If the measured flue gas temperature exceeds a predetermined setpoint, additional oxygen is introduced into the furnace via the corresponding control path until the flue gas temperature again falls below the setpoint.
Oxid uhoľnatý' a vodík, ktoré sú spaľované vnútri pece, uvoľňujú energiu a zvyšujú tak teplotu v priemyselnej peci. To vedie ku skráteným časom procesov, ako i k úspore energie. Navyše sa zníži podiel oxidu uhoľnatého v spalinách, čím klesne teplota spalín a ďalej zapojené filtre spalín už nemôžu byť tepelne preťažené.Carbon monoxide and hydrogen, which are burned inside the furnace, release energy and raise the temperature in the industrial furnace. This leads to reduced process times as well as energy savings. In addition, the proportion of carbon monoxide in the flue gas is reduced, thereby lowering the temperature of the flue gas and the further connected flue gas filters can no longer be overloaded thermally.
Inak môže byť výhodne pri prekročení vopred zadanej požadovanej hodnoty meranej teploty spalín znížené množstvo paliva, ktoré sa privádza do horákov, a to pri stálom množstve privádzaného kyslíka. Tým vzniká priama úspora paliva pri vykurovaní priemyselnej pece.Otherwise, the amount of fuel supplied to the burners may be reduced at a constant amount of oxygen supplied if the predetermined setpoint value of the flue gas temperature is exceeded. This produces direct fuel savings when heating an industrial furnace.
Vhodná žiadaná hodnota teploty sa správne určí pri prvom spustení priemyselnej pece pokusom. Na tento účel sa môže vstavať termočlánok napríklad za posledný otvor na prívod vzduchu alebo iného oxidačného prostriedku v potrubí na odvod spalín. Potom sa určí teplota spalín spaľovaných vzduchom, prípadne oxidačným prostriedkom. Táto teplota zodpovedá pomernému obsahu oxidu uhoľnatého a vodíka vnútri pece. Podľa spôsobu prevádzky priemyselnej pece sa zvolí požadovaná hodnota v rozsahu od 150 °C do 650 °C. Pri tavení liatiny je táto teplota s ohľadom na maximálnu teplotu pre ďalej zapojené filtračné zariadenia a podľa dĺžky potrubia na odvod spalín za termočlánkom v rozsahu asi od 150 °C do 650 °C.The appropriate temperature setpoint is correctly determined when the industrial furnace is first started by experiment. For this purpose, a thermocouple may be installed, for example, after the last opening for the supply of air or other oxidizing agent in the flue gas duct. The temperature of the flue gases burned by the air or the oxidizing agent is then determined. This temperature corresponds to the relative content of carbon monoxide and hydrogen inside the furnace. Depending on the operating mode of the industrial furnace, the desired value is selected in the range from 150 ° C to 650 ° C. When cast iron is melted, this temperature is in the range of about 150 ° C to 650 ° C, depending on the maximum temperature for the downstream filtering equipment and the length of the flue gas duct after the thermocouple.
Prehľad obrázkov na výkresochBRIEF DESCRIPTION OF THE DRAWINGS
Na jedinom obrázku je schematicky znázornené zariadenie na uskutočňovanie spôsobu prevádzky priemyselných pecí podľa vynálezu.In a single figure, there is a schematic representation of an apparatus for carrying out a method of operating an industrial furnace according to the invention.
Príklady uskutočnenia vynálezuDETAILED DESCRIPTION OF THE INVENTION
Na jedinom obrázku je znázornená priemyselná pec 1, predovšetkým vytvorená ako rotačná bubnová pec, vykurovaná horákom 2, ktorý je pripojený k prívodnému potrubiu 3 kyslíka a k prívodnému potrubiu 4 paliva. Priemyselná pec 1 je pripojená na potrubie 10 na odvod spalín, ktoré má medzery 6 a 7 na vzduch. Za druhou medzerou 7 na vzduch je vnútri potrubia 10 na odvod spalín umiestnený termočlánok 8 spojený s prijímačom 9 meraných hodnôt.In the single figure, an industrial furnace 1, in particular designed as a rotary drum furnace, is heated by a burner 2, which is connected to the oxygen supply line 3 and to the fuel supply line 4. The industrial furnace 1 is connected to a flue gas duct 10 having gaps 6 and 7 for air. Downstream of the second air gap 7, a thermocouple 8 is connected to the measured value receiver 9 inside the flue gas duct 10.
Pri tavení liatiny v priemyselnej peci 1 táto obsahuje vsádzku 5 s hmotnosťou 3 tony, ktorá sa ohrieva horákom 2 na olej a kyslík asi za 2,5 hod. na teplotu asi 1500 °C na odpich.When melting cast iron in an industrial furnace 1, it contains a batch 5 with a weight of 3 tons, which is heated by an oil and oxygen burner 2 in about 2.5 hours. at a temperature of about 1500 ° C per tap.
Uhlík obsiahnutý vo vsádzke 5 sa počas tavby oxiduje kyslíkom atmosféry priemyselnej pece 1 čiastočne na oxid uhoľnatý a oxid uhličitý, takže na vyrovnanie straty uhlíka musí byť do vsádzky pridaný prostriedok na zvýšenie obsahu uhlíka. Merania obsahu oxidu uhoľnatého v suchom dymovom plyne dávajú v tomto príklade uskutočnenia maximálne hodnoty 35 % oxidu uhoľnatého v spalinách priamo na čelnej strane priemyselnej pece 1.During the melting process, the carbon contained in the batch 5 is oxidized by the oxygen of the atmosphere of the industrial furnace 1 to carbon monoxide and carbon dioxide, so that a means of increasing the carbon content must be added to the batch to compensate for the loss of carbon. Measurements of the carbon monoxide content of the dry flue gas in this exemplary embodiment give a maximum value of 35% of the carbon monoxide in the flue gas directly on the front side of the industrial furnace 1.
Najprv sa termočlánkom 8 a prijímačom 9 meraných hodnôt meria po určitý čas teplota spalín spálených vzduchom v potrubí 10 na odvod spalín. V závislosti od dĺžky potrubia 10 na odvod spalín za termočlánkom 8 sa ukazujú ako vhodné požadované hodnoty teploty od 150 °C do 250 °C. V tomto prípade sa na neznázomenom regulátore nastaví žiadaná hodnota teploty 230 °C. Tento regulátor je spojený s regulačným ventilom zaradeným v prívodnom potrubí 3 kyslíka k horáku 2.First, the temperature of the flue gas burned by air in the flue gas discharge pipe 10 is measured over a period of time by the thermocouple 8 and the measured value receiver 9. Depending on the length of the flue gas duct 10 downstream of the thermocouple 8, temperatures of 150 ° C to 250 ° C are suitable. In this case, a setpoint of 230 ° C is set on a controller (not shown). This regulator is connected to a control valve in the oxygen supply line 3 to the burner 2.
Ak prekročí teraz meraná teplota vopred zadanú požadovanú hodnotu teploty, zvýši sa podľa vynálezu podiel kyslíka v atmosfére priemyselnej pece 1. To sa dosiahne nadstechiometrickým spaľovaním zmesi paliva a kyslíka v priemyselnej peci 1. V tomto príklade taktiež vždy, keď podiel oxidu uhoľnatého a vodíka vnútri pece prekročí určitú hornú hranicu, zvýši sa prívod kyslíka do horáku 2, takže oxid uhoľnatý môže byť zoxidovaný úplne na oxid uhličitý a vodík je spálený. Energia dosiaľ uvoľnená v potrubí 10 na odvod spalín sa pri spôsobe podľa vynálezu uvoľní už v priemyselnej peci 1. Tým klesne teplota spalín a regulačný okruh opäť zníži prívod kyslíka do horáku 2.If the measured temperature now exceeds a predetermined setpoint temperature, according to the invention the proportion of oxygen in the atmosphere of industrial furnace 1 is increased. the furnace exceeds a certain upper limit, the oxygen supply to the burner 2 is increased, so that the carbon monoxide can be completely oxidized to carbon dioxide and the hydrogen is burned. The energy released so far in the flue gas discharge line 10 is already released in the industrial furnace 1 in the process according to the invention. Thus, the flue gas temperature drops and the control circuit again reduces the oxygen supply to the burner 2.
Spaľovanie oxidu uhoľnatého v priemyselnej peci 1, predovšetkým v rotačnej bubnovej peci riadenej spôsobom podľa vynálezu, niekoľko výhod.The combustion of carbon monoxide in an industrial furnace 1, in particular in a rotary drum furnace controlled by the method of the invention, has several advantages.
Uvoľnená energia oxidu uhoľnatého môže byť využitá ešte v priemyselnej peci 1. S klesajúcim obsahom oxidu uhoľnatého v priemyselnej peci 1 sa obmedzuje privádzané množstvo kyslíka, takže sa zamedzí spaľovaniu legovacich prvkov. Teplota spalín je počas celej prevádzky priemyselnej pece 1 nižšia, takže fdtre už nie sú tepelne preťažené.The released carbon monoxide energy can still be utilized in the industrial furnace 1. As the carbon monoxide content of the industrial furnace 1 decreases, the amount of oxygen supplied is reduced so that the alloying elements are not burned. The temperature of the flue gas is lower during the entire operation of the industrial furnace 1, so that the heat sinks are no longer thermally overloaded.
Objem spalín sa zmenší, pretože oxid uhoľnatý je spaľovaný v priemyselnej peci 1 kyslíkom na miesto v potrubí 10 na odvod spalín vzduchom. Konečne spôsob podľa vynálezu používa jednoduché meranie teploty na určenie pomerného obsahu oxidu uhoľnatého v priemyselnej peci 1 namiesto techniky ťažko zvládnuteľnej analýzy plynov a atmosfére priemyselnej pece.The volume of the flue gas is reduced because the carbon monoxide is combusted in the industrial furnace 1 by oxygen instead of in the flue gas duct 10 through the air. Finally, the method of the invention uses a simple temperature measurement to determine the relative carbon monoxide content of an industrial furnace 1 instead of a difficult-to-handle gas analysis and industrial furnace atmosphere.
Claims (7)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4202827A DE4202827A1 (en) | 1992-01-31 | 1992-01-31 | REGULATED OPERATION OF INDUSTRIAL OVENS |
Publications (2)
Publication Number | Publication Date |
---|---|
SK367392A3 SK367392A3 (en) | 1994-05-11 |
SK283426B6 true SK283426B6 (en) | 2003-07-01 |
Family
ID=6450725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SK3673-92A SK283426B6 (en) | 1992-01-31 | 1992-12-15 | A method of controlled combustion |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP0553632B1 (en) |
AT (1) | ATE145723T1 (en) |
CZ (1) | CZ289075B6 (en) |
DE (2) | DE4202827A1 (en) |
ES (1) | ES2094384T3 (en) |
HU (1) | HU216008B (en) |
SK (1) | SK283426B6 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2114388B1 (en) * | 1994-06-16 | 1998-12-16 | Del Oxigeno S A Soc Esp | PROCEDURE FOR METAL MELTING IN ROTARY FURNACES AND ROTARY FUSING FURNACE FOR THE APPLICATION OF THIS PROCEDURE. |
ES2130974B1 (en) * | 1997-01-29 | 1999-12-16 | Fundacion Inasmet | SYSTEM FOR ENERGY IMPROVEMENT IN A ROTARY FUSION OVEN BY OXICOMBUSTION FOR THE MANUFACTURE OF IRON CASTING. |
FR2777075B1 (en) * | 1998-04-02 | 2000-05-19 | Air Liquide | METHOD FOR OPERATING AN OVEN AND DEVICE FOR IMPLEMENTING THE METHOD |
DE10114179A1 (en) * | 2001-03-23 | 2002-09-26 | Linde Ag | Device for melting aluminum scrap |
DE202008001480U1 (en) * | 2008-01-09 | 2008-05-15 | Sug Schmelz- Und Giessanlagen Gmbh & Co. Kg | Rotary drum furnace for the smelting of heavy metals |
EP2159525A1 (en) * | 2008-08-29 | 2010-03-03 | Air Liquide Deutschland GmbH | Method for operating an oven and device for carrying out the method |
FR2959298B1 (en) | 2010-04-23 | 2012-09-21 | Air Liquide | FLAME OVEN AND METHOD FOR CONTROLLING COMBUSTION IN A FLAME OVEN |
PL2664884T3 (en) | 2012-05-18 | 2020-02-28 | Air Products And Chemicals, Inc. | Method and apparatus for heating metals |
EP4033149A1 (en) * | 2021-01-22 | 2022-07-27 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Monitoring combustible matter in a gaseous stream |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1375179A (en) * | 1962-10-04 | 1964-10-16 | Huettenwerk Oberhausen Ag | Method and device for measuring the co content of combustion gases in the wind refining of steel, in particular for monitoring the progress of decarburization |
US3653650A (en) * | 1968-12-27 | 1972-04-04 | Yawata Iron & Steel Co | Method of controlling the exhaust gas flow volume in an oxygen top-blowing converter |
DE4026414A1 (en) * | 1990-08-21 | 1992-02-27 | Linde Ag | METHOD FOR REDUCING POLLUTANTS IN THE EXHAUST GASES OF BURN-FIRED MELTING STOVES |
-
1992
- 1992-01-31 DE DE4202827A patent/DE4202827A1/en not_active Withdrawn
- 1992-12-15 CZ CS19923673A patent/CZ289075B6/en not_active IP Right Cessation
- 1992-12-15 SK SK3673-92A patent/SK283426B6/en unknown
-
1993
- 1993-01-12 DE DE59304559T patent/DE59304559D1/en not_active Expired - Fee Related
- 1993-01-12 AT AT93100347T patent/ATE145723T1/en not_active IP Right Cessation
- 1993-01-12 EP EP93100347A patent/EP0553632B1/en not_active Expired - Lifetime
- 1993-01-12 ES ES93100347T patent/ES2094384T3/en not_active Expired - Lifetime
- 1993-01-27 HU HUP9300215A patent/HU216008B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
CZ367392A3 (en) | 1993-08-11 |
EP0553632B1 (en) | 1996-11-27 |
SK367392A3 (en) | 1994-05-11 |
HUT68734A (en) | 1995-07-28 |
DE4202827A1 (en) | 1993-08-05 |
ES2094384T3 (en) | 1997-01-16 |
ATE145723T1 (en) | 1996-12-15 |
HU216008B (en) | 1999-04-28 |
HU9300215D0 (en) | 1993-04-28 |
CZ289075B6 (en) | 2001-10-17 |
EP0553632A2 (en) | 1993-08-04 |
DE59304559D1 (en) | 1997-01-09 |
EP0553632A3 (en) | 1994-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2734933C (en) | Method for operating a furnace and device for carrying out the method | |
JP5330372B2 (en) | Furnace | |
EP0884545B1 (en) | Electric ARC melting furnace | |
EP1148295B1 (en) | Gasification melting furnace for wastes and gasification melting method | |
JP2013530366A (en) | Fuel combustion furnace and method for controlling combustion in a fuel combustion furnace | |
SK283426B6 (en) | A method of controlled combustion | |
JP4474429B2 (en) | Waste incinerator and incineration method | |
JPH09316562A (en) | Dry type smelting method of copper | |
EP0793071A2 (en) | Furnace waste gas combustion control | |
JP4234727B2 (en) | In-furnace condition monitoring / control method and apparatus for melting furnace | |
KR20110048557A (en) | Method for controling basicity of slag in gasification melting furnace and controling apparatus thereof | |
JP7102535B2 (en) | Flame image analysis for furnace combustion control | |
JP3944389B2 (en) | Combustion air volume control system in pyrolysis gasification melting furnace | |
JP4009151B2 (en) | Combustion control method and apparatus for gasification melting furnace | |
JP4096509B2 (en) | Gasification and melting apparatus and method | |
JP2753839B2 (en) | Method for monitoring and controlling combustion state | |
JP4092169B2 (en) | Method for producing molten slag with low lead content in surface melting apparatus | |
JP3075504B2 (en) | Waste melting furnace and its operation method | |
KR20000045561A (en) | Plasma melting method and device | |
RU95122501A (en) | DEVICE AND METHOD FOR CARBOTHERMAL REDUCTION OF ALUMINUM OXIDES IN A HIGH-TEMPERATURE BLAST FURNACE | |
JPH11264533A (en) | Control method for waste melting furnace and control device therefor | |
JP3555011B2 (en) | Waste gasification and melting apparatus and its control method | |
RU2086850C1 (en) | Method of reworking domestic and industrial solid wastes and devices for realization the same | |
RU95122530A (en) | HIGH-TEMPERATURE LOW-INERTAIN BLAST FURNACE - MOVIE TOVALOVIKA (PV) | |
JP2001272013A (en) | Melting furnace for waste |