SI9420005A - Flight device - Google Patents
Flight device Download PDFInfo
- Publication number
- SI9420005A SI9420005A SI9420005A SI9420005A SI9420005A SI 9420005 A SI9420005 A SI 9420005A SI 9420005 A SI9420005 A SI 9420005A SI 9420005 A SI9420005 A SI 9420005A SI 9420005 A SI9420005 A SI 9420005A
- Authority
- SI
- Slovenia
- Prior art keywords
- aircraft
- propeller
- load
- compressor
- flight
- Prior art date
Links
- 239000000446 fuel Substances 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 17
- 238000002485 combustion reaction Methods 0.000 claims description 12
- 239000000945 filler Substances 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 9
- 239000007858 starting material Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 239000006096 absorbing agent Substances 0.000 claims description 4
- 239000000835 fiber Substances 0.000 claims description 2
- 239000004035 construction material Substances 0.000 claims 1
- 238000000605 extraction Methods 0.000 claims 1
- 239000003570 air Substances 0.000 description 35
- 239000007789 gas Substances 0.000 description 20
- 229920000049 Carbon (fiber) Polymers 0.000 description 5
- 239000004917 carbon fiber Substances 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 239000002828 fuel tank Substances 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000010006 flight Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/026—Aircraft not otherwise provided for characterised by special use for use as personal propulsion unit
Landscapes
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Toys (AREA)
- Seal Device For Vehicle (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Vending Machines For Individual Products (AREA)
- Die Bonding (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Supercharger (AREA)
- Radio Relay Systems (AREA)
- Fluid-Pressure Circuits (AREA)
- Details Of Aerials (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Jet Pumps And Other Pumps (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)
- Rear-View Mirror Devices That Are Mounted On The Exterior Of The Vehicle (AREA)
- Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)
- Beans For Foods Or Fodder (AREA)
- Massaging Devices (AREA)
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Surgical Instruments (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Catching Or Destruction (AREA)
Abstract
Description
BIL-INNOVATIONS-STIFTUNGBIL-INNOVATIONS-STIFTUNG
LETALNA NAPRAVAAIRPLANE
Izum se nanaša na letalno napravo, namestljivo in pritrdljivo na breme, po uvodnem deluThe invention relates to an aeronautical device which is adjustable and load-bearing, after the introductory part
1. patentnega zahtevka, pri čemer je breme primemo za opravljanje krmilnih funkcij in se ga da s pomočjo letalne naprave avtonomno dvigniti od tal ter v lebdenju nad tlemi gibati ali držati stacionarno. Breme je pri tem v bistvu pokončen pilot ali daljinsko upravljana krmilna priprava.Claim 1, wherein the load is gripped to perform steering functions and can be autonomously lifted from the ground by a flying device and moved or held stationary in hovering above the ground. The burden is essentially an upright pilot or remote control device.
Znane so tovrstne letalne naprave, katerih pogonski agregat pa je zasnovan kot z gorivom gnani raketni motor ali z gorivom gnani turbinski motor z v bistvu navzdol usmerjenimi šobami, tako da so njih vroči izpušni plini nevarni. Nastali potisni curek je vroč in predstavlja nevarnost zgoretja za pilota in nastanka požara za okolje.Aircraft of this type are known, whose propulsion engine is designed as a fuel-driven rocket engine or a fuel-driven turbine engine with essentially downstream nozzles so that their hot exhaust gases are dangerous. The resultant thrust jet is hot and poses a risk of combustion to the pilot and the occurrence of an environmental fire.
Poleg tega visoka temperatura teh izpušnih plinov omejuje izbiro materialov, uporabljivih za izgradnjo letalne naprave, za gradnike, ki so izpostavljeni vročim izpušnim plinom, se ne da uporabiti npr. umetne snovi in v danem primeru niti aluminija.In addition, the high temperature of these exhaust gases limits the choice of materials used in the construction of the aircraft, for building blocks exposed to hot exhaust gases cannot be used e.g. plastic, and optionally aluminum.
V spisu US-A-3 023 980 je prikazana tovrstna letalna naprava, gnana s plinsko turbino. Letalna naprava obsega nosilno pripravo, s katero se jo da pripeti na hrbet pilota. Kot gorivo za plinsko turbino se uporablja npr. bencin. Plinska turbina pri tem preko neposredno povezane, vodoravno uležajeno vrteče se pogonske gredi z enako vrtilno hitrostjo poganja propelerski kompresor, ki posesa okoliški zrak in ga kot tak zopet dovaja plinski turbini. Preko dveh potisnih cevi, ki peljeta od plinske turbine k ob strani poleg pilota razporejenima izstopnima šobama, se iztiska ustvarjeni vroči plinski tok z izstopno temperaturo okoli 700° C (1200° F), s čimer se ustvarja potrebno vzgonsko silo. ZaUS-A-3 023 980 discloses this type of gas turbine driven airplane. The flying device comprises a carrier device that can be attached to the back of the pilot. It is used as a gas turbine fuel, for example. gasoline. The gas turbine is then driven by a propeller compressor through a directly connected, horizontally mounted rotating drive shaft at the same rotational speed, which sucks the surrounding air and, as such, again supplies it to the gas turbine. Two hot tubes leading from the gas turbine to the outlet nozzles arranged side by side with the pilot exhale the generated gas stream with an outlet temperature of about 700 ° C (1200 ° F), creating the required buoyancy force. For
-:---.- 2..-...krmiljenje letalne naprave se da izstopajoči vroči plinski tok s pomočjo krmilne ročice in vrtljive odprtine izstopne šobe preusmeriti in orientirati glede na okoliško atmosfero. Pomanjkljivosti te letalne naprave leže v visoki izstopni temperaturi iztiskanega plinskega toka in zaradi velike porabe goriva v ekstremno kratkem naj večjem trajanju poleta.-: ---.- 2 ..-... the control of the airplane can be diverted and oriented with respect to the surrounding atmosphere by the hot gas flow through the control lever and the rotating orifice of the outlet nozzle. The disadvantages of this flying device lie in the high exhaust gas outlet temperature and, due to the high fuel consumption, the extremely short flight times.
V spisu US-A-4 795 111 je prikazana daljinsko upravljana leteča ploščad, pri kateri batni zgorevalni motor neposredno poganja oplaščen propeler. Napravo se največ uporablja kot vojaško ali civilno opazovalno ploščad z daljinskim upravljanjem. Možnost, da bi se z njo v lebdeče stanje preneslo tudi pilota, je sicer omenjena, ni pa opisana. Problema vročih izpušnih plinov tu sicer ni. Odprto ploščad se ne da pritrditi na hrbet pilota. Oplaščenje propelerja prehaja v potosno cev, ki pa se ne razcepi, ni kratka in ravna ter ni zavihtljiva. Zlasti že pri uporabi dveh potisnih cevi bi postala ploščad preveč neformalna in pretežka, da bi se jo lahko pritrdilo na hrbet pilota.US-A-4 795 111 discloses a remote-controlled flying platform where the piston combustion engine is directly driven by a coiled propeller. The device is mostly used as a military or civilian observation platform with remote control. The possibility of a pilot being brought into a hovering state is mentioned but not described. The problem of hot exhaust is not here. The open platform cannot be attached to the back of the pilot. The propeller jacket passes into the sink pipe, but it does not split, is not short and straight, and is not twistable. Especially when using two thrust tubes, the rig would become too informal and too heavy to attach to the back of the pilot.
Zato obstaja potreba po letalni napravi uvodoma navedene vrste, katere izpušni plini obsegajo tako nizko temperaturo, da so v bistvu nenevarni in poleg tega dovoljujejo optimalno izbiro za gradnjo letalne naprave uporabljenih lahkih gradbenih materialov. Nadalje je zaželeno ustvariti letalno napravo, ki omogoča daljši zadrževalni čas v zraku.Therefore, there is a need for an aircraft of the type mentioned above, whose exhaust gases have such a low temperature that they are essentially non-hazardous and in addition allow optimum choice for the construction of the aircraft construction of lightweight building materials used. Furthermore, it is desirable to create an aircraft that allows longer dwell time in the air.
Naloga izuma je pokriti to potrebo. Za rešitev te naloge je opisana letalna naprava uvodoma navedene vrste, katere značilnosti so podane s kombinacijo lastnosti, podanimi v 1. patentnem zahtevku. Prednostne nadaljnje izvedbe letalne naprave po izumu so definirane v odvisnih zahtevkih.It is an object of the invention to cover this need. To accomplish this task, a flying device of the type described above is described, the characteristics of which are given by a combination of the properties given in claim 1. Preferred further embodiments of the flight apparatus of the invention are defined in the dependent claims.
Predloženi izum omogoča bremenu, ki je sposobno opravljati krmilne funkcije za upravljanje letalne naprave, prednostno pilotu, da je letalna naprava po izumu s pomočjo steznika oz. nosilne priprave pripeta na njegov hrbet, da se od tal dvigne v navpični smeri in prosto lebdi ali leti tekom daljšega razdobja (do ene ure in več) oz. na daljši progi. Pogon za letalno napravo dobavlja npr. z gorivom gnani batni motor vrste Otto, ki preko pogonske gredi poganja zgoraj razporejen propelerski kompresor, ki s svojim propelerjem sesa zrak in ga zbija ter pospešuje, s čimer se ga z višjo hitrostjo vodi preko dveh ali več potisnih cevi v navpični smeri, kjer izteka skozi ustrezne šobe. Kot pogonski agregat se prav tako lahko uporabi npr. zgorevalne motorje vrste Diesel ali Wankel. Kot pogonski .:-.- .- 3- -agregat se lahko uporabi tudi druge vrste zgorevalnih motorjev, npr. vodikove eksplozijske motorje. Na izstopnih koncih potisnih cevi povzročijo šobe zožitev in s tem pospešitev izstopajočega zračnega toka.The present invention allows a load capable of performing the control functions for controlling an aircraft device, preferably for the pilot, that the aircraft device of the invention is by means of a corset or an aircraft. mounting devices attached to its back to rise from the ground in a vertical direction and freely float or fly over a long period (up to one hour or more) or. on a longer route. The drive for the aircraft device is supplied e.g. fuel-driven Otto reciprocating piston engine, which drives a propeller compressor above the propeller shaft, which, with its propeller, sucks in and compresses and accelerates, leading it at higher speeds through two or more thrust pipes in the vertical direction where it expires through the proper nozzles. It can also be used, for example, as a drive unit. Diesel or Wankel combustion engines. As a propulsion.: -.- .- 3- The unit can be used with other types of combustion engines, e.g. hydrogen explosion engines. At the outlet ends of the thrust pipes, they cause the nozzles to narrow and thus accelerate the outgoing air flow.
Z možnostjo prilagajanja geometrije kompresorja pogonskemu motorju odpade potreba po predležju za multipliciranje ali reduciranje med ojnico batnega motorja in propelerskim kompresorjem. Neposredni pogon s pogonsko gredjo med pogonsko pripravo in propelerjem pomeni bistveno poenostavitev, povezano z bistvenim prihrankom pri teži.With the possibility of adjusting the geometry of the compressor to the drive motor, there is no need for a slot to multiply or reduce between the piston engine pin and the propeller compressor. Direct drive with the drive shaft between the drive gear and the propeller means a significant simplification associated with substantial weight savings.
Kljub uporabi pogonske priprave z vrtečimi se deli odpade pri letalni napravi po izumu, v nasprotju s helikopterjem, potreba po izravnavi vrtilnega momenta motorja s posebnim propelerjem. Zahtevani vrtilni moment se da doseči z odklonom pogonskega zračnega toka od navpične smeri curka..In spite of the use of the propulsion device with rotating parts, in the aircraft according to the invention, unlike the helicopter, the need for balancing the engine torque with a special propeller is eliminated. The required torque can be achieved by deviating the drive air flow from the vertical direction of the jet.
Izum pokriva obstoječo potrebo po majhni, lahki, po funcionalnem principu enostavni letalni napravi, ki bremenu, sposobnemu opravljanja krmilnih funkcij, npr. osebi daje letalne sposobnosti. Z letalno napravo po izumu se da zlahka manevrirati, da se jo enostavno transportirati, montirati in tudi nositi na tleh, startati in upravljati. Z njo se da izvajati tudi takšne letalne manevre, ki se jih z drugimi znanimi letalnimi napravami kot npr. ploskovno intenzivnimi letali, ultra lahkimi letali, letalnimi zmaji, motoriziranimi drsnimi padali, obesnimi jadralnimi letali ipd. Poleg tega se da doseči vsako področje ali cilj, ki s helikopterjem ni ali je le težko dostopno, npr. v ozkih gorskih soteskah. Letalna naprava po izumu zaradi odprave nevarnosti nastanka požara omogoča poleg tega polet po pogozdenih območjih kot tudi med ozkimi vrstami hiš in neposredno ob fasadah hiš.The invention covers the existing need for a small, lightweight, functionally simple flying device that has a load capable of performing steering functions, e.g. gives a person flying skills. The aircraft according to the invention can be easily maneuvered, easily transported, mounted and also carried on the ground, started and operated. It can also perform such flight maneuvers, which with other known aviation devices such as. plane-intensive aircraft, ultra-light aircraft, kites, motorized gliders, hang gliders, and the like. In addition, any area or destination that is not or difficult to reach by helicopter can be reached, e.g. in narrow mountain gorges. In addition to eliminating the risk of fire, the flight apparatus according to the invention also enables flight through wooded areas as well as between narrow types of houses and directly along the facades of houses.
Ena od najbolj odločilnih prednosti izuma, kot tudi bistvena razlika v primerjavi z že znanimi letalnimi napravami, je uporaba zgorevalnega oz. batnega motorja. Le-ta je v primerjavi z drugimi pogonskimi možnostmi, kot plinskimi turbinami, kemičnimi pogoni, npr. z vodikovim peroksidom itd., veliko učinkovitejši in gospodarnejši kot tudi tehnično enostavnejši, kar omogoča bistveno daljše trajanje poleta. Nadaljnja prednost batnega motorja leži v enostavnem, robustnem rokovanju z njim, kot tudi v nižjih začetnih in obratovalnih stroških. Tudi nega in vzdrževanje sta bistveno cenejša kot je to v primeru plinskih turbin. Kot gorivo se da uporabiti običajna goriva za batne motorje, tako da že . 4 obstoječa infrastruktura brez težav omogoča oskrbo z gorivom.One of the most decisive advantages of the invention, as well as a significant difference from the already known aeronautical devices, is the use of combustion and / or combustion. piston engine. It is compared to other propulsion options such as gas turbines, chemical propulsion, e.g. with hydrogen peroxide, etc., much more efficient and economical as well as technically simpler, allowing significantly longer flight times. A further advantage of the piston engine is its simple, robust handling, as well as lower start-up and operating costs. Care and maintenance are also significantly less expensive than gas turbines. Conventional piston engine fuels can be used as fuel, so already. 4 The existing infrastructure can easily supply fuel.
Zahvaljujoč nižji temperaturi zračnega toka, ki ga ustvarja propelerski kompresor in ga iztiska skozi potisni cevi, se da pomembne sestavne dele stroja, npr. potisni cevi in/ali propelerski kompresor, s prednostjo zgraditi iz lahkih materialov povezanih z vlakni. Ta prednost se izkaže zlasti tedaj, ko se izpušne pline batnega motorja primeša iztisnjenemu zračnemu toku.Due to the lower air flow temperature generated by the propeller compressor and forced out through the thrust pipes, important machine components, e.g. thrust tubes and / or propeller compressors, preferably constructed from lightweight materials associated with fibers. This advantage is especially evident when the exhaust gas of the piston engine is mixed with the expelled air stream.
Ugodna raba letalne naprave po izumu je njena uporabnost kot transportno sredstvo za prvo pomoč pri reševalnih posegih v težko dostopnih področjih ali urbanih središčih velikih mest, kjer se zaradi prometa ali drugih ovir poškodovanih oseb ne da pravočasno doseči z običajnimi transportnimi sredstvi. Ugodna raba letalne naprave po izumu je njena uporabnost pri velikih požarih na nebotičnikih, da se omogoči dovoz reševalnih sistemov za ogrožene osebe oz. le-te s podobno letalno napravo odpeljati. To je smiselno zlasti tedaj, ko običajna sredstva, kot reševalne lestve ali helikopterji, niso uporabljivi ali niso smotrni.The advantageous use of the aircraft device according to the invention is its usefulness as a first aid transport vehicle for ambulance operations in hard-to-reach areas or urban centers of large cities, where traffic or other obstacles to injured persons cannot be reached in a timely manner by conventional means of transport. The advantageous use of the aircraft device according to the invention is its utility in large-scale fires on skyscrapers, to enable access to rescue systems for persons at risk or take them with a similar aircraft device. This is especially useful when conventional means, such as ladders or helicopters, are either unusable or not useful.
Nadalje predstavlja letalna naprava po izumu zlasti lahko, majhno in cenovno ugodno zračno transportno sredstvo, za kar zadostujejo vzletne in pristajalne površine na manjšem prostoru. Glede pristajalnega oz. vzletnega okolja je bistveno manj občutljiva kot npr. s olinskimi turbinami gnane letalne naprave, pri katerih obstaja v bližini tal nevarnost, da recirkulacija izpušnih plinov zmanjša potisk ali da se nečistoče, kot prah, listje, kamenčke itd., posesa v potisni agregat, s čimer se ga poškoduje.Furthermore, the aircraft device according to the invention is particularly light, small and affordable air transport vehicle, which is sufficient for take-off and landing areas in a smaller space. Regarding the landing or. take-off environment is significantly less sensitive than e.g. propulsion airplane driven turbines where there is a risk of exhaust gas recirculation near the ground or impurities such as dust, leaves, pebbles, etc., may be sucked into the propulsion unit, thereby damaging it.
Letalna naprav po izumu je s tem na cenovno ugoden in hiter način primerna za dosego težko dostopnih območij, npr. za opravljanje kontrolnih in nadzornih nalog. Z letalno napravo po izumu se da enostavno manevrirati in omogoča pilotu letenje po pogozdenem območju in izkoriščanje zelo majhnih skrivališč. Tudi letenje preko daljših razdalj v bližini tal je vseskozi mogoče. Vrsta uporabnih možnosti obstaja torej pri vojaški uporabi, pri čemer sta pri tem odločilna dokaj šen akcijski radij letalne naprave kot tudi njena kompaktna izgradnja in dajeta zelo široke možnosti uporabe. Toda tudi pri splošnem zračno-športnem udejstvovanju je uporabnost letalne naprave po izumu široka in zanimiva.The flight apparatus of the invention is thus, in an inexpensive and quick manner, suitable for reaching difficult-to-reach areas, e.g. to perform control and control tasks. The aircraft according to the invention is easy to maneuver and allows the pilot to fly through the afforested area and exploit very small hiding places. Also, flying over longer distances near the ground is always possible. Therefore, a number of useful options exist in military use, with the decisive factor in the relative radius of the aircraft as well as its compact construction and the very wide potential for use. However, even with general aeronautical activities, the usefulness of the aircraft device of the invention is broad and interesting.
S prednostnim, novim in zlasti enostavnim načinom pogona, ki sestoji iz kombinacijeWith a preferred, new, and especially easy-to-drive combination mode
5..-...zgorevalnega motorja, oplaščenega propelerja in dvojne potisne cevi, je po eni strani postalo mogoče doseči optimalno vodenje zračnih tokov in s tem z visokim izkoristkom pretvoriti pogonsko energijo motorja. Z neposredno sklopitvijo vrtilnih osi zgorevalnega motorja in propelerskega kompresorja, kot tudi optimalno uskladitvijo območja števila vrtljajev zgorevalnega motorja z aerodinamično obliko propelerskega kompresorja se doseže, da se zračni tok iztisne skozi vse potisne cevi s podzvočno hitrostjo, s čimer se nadalje zviša izkoristek vzgonske priprave, tj. vzgonske priprave s propelerskim kompresorjem, glede na letalno napravo, gnano s plinsko turbino, katere plinski tok se iztisne z mnogo višjim območjem hitrosti. Letalna naprava po izumu ima zato manjšo porabo goriva in posledično dovoljuje izvajanje dalj trajajočih poletov.5 ..-... combustion engine, coated propeller and double thrust pipe, on the one hand, it became possible to achieve optimum air flow control, thereby converting engine power to high efficiency. By direct coupling of the rotation axes of the combustion engine and the propeller compressor, as well as the optimum alignment of the combustion engine speed range with the aerodynamic shape of the propeller compressor, air flow is expelled through all the thrust pipes at subsonic speed, further increasing the efficiency of the buoyancy device, ie. propeller compressor buoyancy devices with respect to a gas turbine driven airplane whose gas flow is displaced at a much higher velocity range. The aircraft device according to the invention therefore has a lower fuel consumption and consequently permits longer flights.
V nadaljevanju so s pomočjo skic pobliže predstavljeni izvedbeni primeri letalne naprave po izumu, pri čemer so na različnih slikah isti deli označeni z enakimi sklicevalnimi oznakami. Pri tem kaže sl. la, lb, lc in ld izvedbeni primer letalne naprave po izumu, ki je pritrjena na hrbet pilota, vsakokrat v shematskem pogledu od strani, od spredaj z delnim prerezom, od spredaj in od zgoraj;In the following, the exemplary embodiments of the flight apparatus according to the invention are presented in more detail in the drawings, with the same parts bearing the same reference marks in different figures. In this respect, FIG. 1a, 1b, 1c and 1d is an exemplary embodiment of an airplane according to the invention, which is attached to the back of the pilot, in each schematic view from the side, from the front with a partial cross-section, from the front and from above;
sl. le, lf vodni hladilnik na sesalnem lijaku kompresorja za hlajenje batnega motorja; sl. Ig s pogonsko gredjo gnan hladilni rotor in vodni hladilni del za hlajenje batnega motorja;FIG. le, lf water cooler on suction hopper of compressor for piston engine cooling; FIG. Ig with driven shaft driven cooling rotor and water cooled piston engine cooling part;
sl. Ih vodne hladilne elemente na koncih potisnih cevi za hlajenje batnega motorja kot tudi daljinsko upravljano krmilno pripravo namesto pilota;FIG. Their water cooling elements at the ends of the pistons for cooling the piston engine, as well as the remote-controlled steering instead of the pilot;
sl. Ii obvodna povezava za povečanje motorske moči batnega motorja;FIG. Ii bypass connection to increase the engine power of the piston engine;
sl. lj kot zagonsko jermenico zasnovano priključno prirobnico;FIG. lj as a starting pulley designed connection flange;
sl. 2 zasnovo kardanskega zgiba v območju propelerskega kompresorja;FIG. 2 shows a design of a universal joint in the area of a propeller compressor;
sl. 3 del letalne naprave po izumu s sl. la, lb, lc in ld, v shematskem pogledu od zgoraj, za ponazoritev možnosti kompenzacije vrtilnega momenta;FIG. 3 is a portion of the aircraft device of the invention of FIG. la, lb, lc and ld, in schematic top view, to illustrate the torque compensation options;
sl. 4a, 4b, 4c in 4d del letalne naprave s sl. la, lb, lc in ld, vsakokrat v shematskem pogledu od strani, za ponazoritev možnosti nastavitve smeri izstopajočega zračnega toka;FIG. 4a, 4b, 4c and 4d of the flight apparatus of FIG. la, lb, lc and ld, each in schematic side view, to illustrate the possibility of adjusting the direction of the outgoing air flow;
sl. 5 shematski način delovanja reševalnega sistema letalne naprave po izumu s sl. la, lb, lc in ld.FIG. 5 is a schematic diagram of the flight system rescue system of the invention of FIG. la, lb, lc and ld.
'.· ~ 6 'z'. · ~ 6' z
Kot je zlasti razvidno s sl. la je letalna naprava nameščena na hrbtu pilota P. Steznik je zasnovan kot vsebnik 10 goriva in tvori stično ploskev s hrbtom pilota P. S sistemom 16 oprtnic, ki je zasnovan kot sedež, se s pritrdiščem 17 konca oprtnice doseže silosklepno zvezo med pilotom in letalno napravo. Sočasno je to namenjeno tudi nošenju naprave s strani pilota P pred in po poletu. Skupna težiščnica X letalne naprave in pilota oz. bremena poteka v normalnem letalnem položaju letalne naprave med pogonsko pripravo 100 in pilotom P v bistvu skozi sredino izstopnih šob 304, 305, ki sta prednostno razporejeni nad skupnim težiščem letalne naprave in pilota P. Moč batnega motorja, ki tvori pogonsko pripravo 100 in ki se ga da vžgati s pomočjo ročnega zaganjalnika 105, regulira pilot P z ročajem 310 za plin na eni od dveh krmilnih rok 309. Pogonsko pripravo 100 se preko običajnega sistema za tvorbo zmesi oskrbuje z gorivom iz vsebnika 10 goriva. Vsebnik lo goriva je pri tem lahko predeljen v več delov, predvidenih pa je lahko tudi več vsebnikov goriva.As shown in FIG. la is an aircraft device mounted on the back of Pilot P. The corset is designed as a container of 10 fuel and forms a contact surface with the back of Pilot P. With a system of 16 harnesses that is designed as a seat, a silo coupling between the pilot and the aircraft is achieved by securing the 17 end of the harness. device. At the same time, this is also intended to be carried by the pilot P before and after flight. Common center of gravity X of the flying device and the pilot or the load is carried out in the normal flight position of the flight device between the propulsion device 100 and pilot P essentially through the center of the outlet nozzles 304, 305, which are preferably disposed over the common center of gravity of the aircraft device and pilot P. The power of the piston engine forming the propulsion device 100 and which it can be ignited by a manual starter 105, regulates pilot P with a gas handle 310 at one of the two control arms 309. The propulsion device 100 is supplied with fuel from the fuel container 10 via a conventional mixture formation system. The fuel tank can be converted into several parts, and several fuel tanks can be provided.
Na letalni napravi je razporejen propelerski kompresor 200 s krili 203 iz ogljikovih vlaken, katerega jeklena propelerska gred 208 je preko pogonske gredi 108, ki pri normalni letalni legi letalne naprave stoji navpično, sklopljena z ojnico 107 pogonske priprave 100.A carbon-fiber propeller compressor 200 is arranged on the aircraft device, the steel propeller shaft 208 of which is vertically coupled to the crankshaft 107 of the propulsion device 100 via the propeller shaft 108, which stands vertically at the normal flying position of the aircraft device.
Propelerska gred 208 se konča v pestu 204 kompresorja, sestoječem iz aluminija, v katerega so vgrajena krila 203 kompresorja. Pri tem je propelerska gred 208 prednostno opremljena s samomazalnimi ležaji. Propelerski kompresor 200 sesa preko sesalnega lijaka 202 kompresorja, ki sestoji iz ogljikovih vlaken in ki se pri normalni letalni legi letalne naprave nahaja v vodoravni legi nad pilotom, zrak iz okolice in ga z visoko hitrostjo potiska navzdol ven skozi iz ogljikovih vlaken sestoječ stator 205, ki je namenjen uravnavanju zračnega toka, in to navpično kot tudi enakomerno porazdeljeno na dve potisni cevi 300, sestoječi iz ogljikovih vlaken. Ob strani poleg pilota P na izstopnih koncih za zrak potisnih cevi 300 razporejeni izstopni šobi 304, 305 izvajata vzgonski potisk, da se pilota in letalno napravo dvigne od tal in drži v lebdenju.The propeller shaft 208 ends in the hub 204 of the compressor, consisting of aluminum, into which the wings 203 of the compressor are installed. The propeller shaft 208 is preferably equipped with self-lubricating bearings. The propeller compressor 200 sucks over a carbon fiber suction hopper 202 of the compressor, which, in the normal flight position of the aircraft, is horizontal above the pilot, ambient air and, at high speed, pushes it down through the carbon fiber stator 205, designed to regulate air flow, both vertically as well as evenly distributed into two carbon fiber thrust tubes 300. On the side next to Pilot P, the outlet nozzles 304, 305 located at the outlet ends of the air in the thrust tubes 300 carry out a buoyancy push to lift the pilot and the aircraft from the ground and keep it in hover.
Zvišanje moči pogonske priprave 100 ima za posledico zvišanje števila vrtljajev propelerskega kompresorja 200. Dviganje moči kril 203 kompresorja ima za posledico zvišanje izstopne hitrosti zraka iz izstopnih šob 304, 305 in s tem povečanje vzgonskega potiska.An increase in the power of the propulsion device 100 results in an increase in the speed of the propeller compressor 200. An increase in the power of the compressor wings 203 results in an increase in the outlet air velocity from the outlet nozzles 304, 305 and thereby an increase in the buoyancy thrust.
Z izravnavo izstopne vrtilne količine kompresorja s pomočjo geometriji kompresorja prirejenih, iz ogljikovih vlaken sestoječih statorskih lopat nastane zelo učinkovita pretvorba motorske moči pogonske priprave 100 v tokovno energijo, ki se jo dovaja potisnima cevema 300. To je znatna izboljšava v primerjavi z običajnimi helikopterskimi kot tudi propelerskimi pogoni. Torzijska tulka 106 je na svojem zgornjem koncu zvijačena s propelerjem 205’ statorja, na svojem spodnjem koncu pa z veznim rebrom 9. Slednje je na obeh svojih koncih togo povezano z okvirom 1, ki nosi pogonsko pripravo 100, vsebnik 10 goriva in propelerski kompresor 200. S tem se ojača nosilno konstrukcijo in zmanjša zvijanje okvira 1 zaradi vrtilnega momenta, ki ga ustvarja pogonska priprava 100.By balancing the compressor output with the help of a compressor geometry, the carbon fiber-mounted stator blades produce a very efficient conversion of the motor power of the propulsion device 100 into the current energy supplied by the thrust tubes 300. This is a significant improvement over conventional helicopters as well as propeller drives. The torsion sleeve 106 is screwed at its upper end by a stator propeller 205 'and at its lower end by a connecting rib 9. The latter is rigidly connected at both ends to a frame 1 carrying a propulsion device 100, a fuel container 10 and a propeller compressor 200 This strengthens the load-bearing structure and reduces the twisting of the frame 1 due to the torque generated by the drive device 100.
Preko krmilnih rok 309, ki sta s pomočjo vijačne zveze 319 togo povezani s potisnima cevema 300, in kardanskega zgiba 2 (glej zlasti sl. lc, Id in sl. 2), ki povezuje potisni cevi 300 s statorjem 205 propelerskega kompresorja 200, se da obe potisni cevi 300 kot tudi izstopni šobi 304, 305, nahajajoči se na izstopnih koncih zraka, premakniti v vsako smer za kot okoli ±10° (glej črtkano prikazan odklonski položaj na sl. Ib). To krmilno gibanje omogoča pilotu tako spremeniti rezultirajočo silo skozi potisni cevi 300 iztisnjenega zračnega toka, da sovpada s težiščnico X celotne letalne naprave vključno s pilotom, s čimer omogoča lebdenje. Z majhnimi odstopanji od te nastavitve se dodatno povzroči letalno gibanje v vodoravni smeri. Ta možnost nastavljanja mora biti na razpolago tudi zato, da bi se upoštevalo različne teže pilotov.Through the control arms 309, which are rigidly connected to the thrust tubes 300 by means of a screw connection 319, and the PTO joint 2 (see in particular FIG. 1c, Id and FIG. 2) connecting the thrust tubes 300 to the stator 205 of the propeller compressor 200, to move both thrust pipes 300 as well as the outlet nozzles 304, 305 located at the outlet ends of the air in each direction by an angle of about ± 10 ° (see dashed position in Fig. Ib). This steering motion allows the pilot to vary the resultant force through the displacement pipe 300 of the expelled airflow to coincide with the center of gravity X of the entire aircraft including the pilot, thereby allowing it to hover. With slight deviations from this setting, the horizontal movement of the aircraft is additionally caused. This adjustment option must also be available to take account of the different weights of the pilots.
Najučinkovitejša metoda izravnave vrtilnega momenta pogonske priprave 100 in propelerskega kompresorja 200 z nasprotnim vrtilnim momentom obstoji v odklanjanju 306, 307 (glej zlasti sl. la in ld) obeh potisnih cevi 300, tako da njih izstopni šobi 304, 305 odklonita potisni curek na način, ki poveča vrtilni moment. Fina nastavitev kompenzacije vrtilnega momenta lahko pri tem sledi s pomočjo trimerjev 302, ki sta razporejena v območju izstopnih šob 304, 305.The most efficient method of balancing the torque of the propulsion device 100 and the propeller compressor 200 with the opposite torque exists in the deflection 306, 307 (see in particular Figs. 1a and 1d) of both thrust tubes 300 such that their outlet nozzles 304, 305 deflect the thrust jet in a manner which increases the torque. The fine adjustment of the torque compensation can then be followed by trimmers 302 arranged in the area of the outlet nozzles 304, 305.
Nadaljnja možnost izravnave vrtilnega momenta, ustvarjenega s pogonsko pripravo 100 in propelerskim kompresorjem 200, z nasprotnim vrtilnim momentom je razvidna s sl. 3 in sestoji v tem, da se od ustvarjenega zračnega toka preusmeri majhno količino. To se doseže z odklonskima šobama 209, ki na odmiku od težiščnice X odklonita preusmerjena zračna tokova v tangencialni smeri z 90° odklonom in izpihata. S pomočjo ročaja 311 za vrtenje, razporejenega na eni od krmilnih rok 309, sta dušilni loputi 210 prestavljivi, da se krmili iz odklonskih šob 209 izpihana zračna tokova in s tem upravlja nasprotni vrtilni moment.A further possibility of offsetting the torque created by the drive unit 100 and the propeller compressor 200 with the counter torque can be seen in FIG. 3 and consists in diverting a small amount from the created air stream. This is achieved by deflection nozzles 209 which, at a distance from the center of gravity X, deflect diverted air flows in a tangential direction with a 90 ° deflection and deflate. By means of the rotation handle 311 disposed on one of the control arms 309, the damping flaps 210 are adjustable to control the deflected air flows from the deflection nozzles 209 and thereby control the counter torque.
Odklon potisnih cevi 300 se izvede s kardanskim zgibom 2, obsegajočim kardanski obroč 2’ za obešenje potisnih cevi 300 na okvir 1 s pomočjo locnaste zveze 3 (glej zlasti sl. Ib). Da bi se zatesnilo prosti gibalni prostor, nastali med plaščem 201 kompresorja, pritrjenim nasproti okvira 1, in potisnima cevema 300, se usmerjevalni kompenzator 301, ki obsega meh z enim ali več valovi in je sočasno namenjen razdeljevanju zračnega toka, s pomočjo priteznih obročev pritrdi ali neposredno vlaminira oz. odvisno od materiala (pri različnih možnostih materialov) ustrezno poveže. Na ta način se da za stabilizacijo poleta nastali potisni curek z majhnimi izgubami odkloniti v zahtevano območje. Ustrezno tesnilo se namesti pri prehodu pogonske gredi 108. Plašč 201, ki obdaja propelerski kompresor 200, je preko sprejemnika 207 okvira togo povezan z okvirom 1 kot tudi pogonsko pripravo 100 in vsebnikom 10 goriva.The deflection of the thrust tubes 300 is made by means of a PTO joint 2 comprising a PTO ring 2 'for hanging the thrust tubes 300 onto the frame 1 by means of an arch connection 3 (see in particular Fig. Ib). In order to seal the free space created between the compressor jacket 201 fixed opposite the frame 1 and the thrust tubes 300, a rectifier compensator 301 comprising one or more waves and simultaneously intended to distribute air flow by means of clamping rings or directly tampering with or. depending on the material (under different material options) it is properly bonded. In this way, the resulting thrust jet with low losses can be deflected into the required area. A suitable seal is installed at the passage of the drive shaft 108. The housing 201 surrounding the propeller compressor 200 is rigidly connected to the frame 1 via the frame receiver 207 as well as the drive assembly 100 and the fuel container 10.
Nadaljnje možne rešitve za preusmerjanje in odklanjanje potisnega curka oz. krmiljenje letalne naprave in stabiliziranje ravnotežja so predstavljene na sl. 4a, 4b, 4c in 4d.Further possible solutions for diverting and deflecting the thrust jet or control of the flying device and stabilizing the balance are presented in Figs. 4a, 4b, 4c and 4d.
S sl. 4a je razvidno, da pogonska priprava 100 tvori z okvirom 1 kot tudi vsebnikom 10 goriva in na njem nameščeno nosilno pripravo prvo enoto, da celota potisnih cevi 300 s propelerskim kompresorjem 200 tvori drugo enoto, in da je pogonska priprava 100 preko kardanske gredi 110 povezana s propelerskim kompresorjem 200. Ta kardanska gred 110 obsega npr. kot je predstavljeno dva homokinetična kardanska zgiba. Upravljanje se doseže s pomočjo premaknitve navpične težiščnice X skozi kardanski zgib 2 med prvo in drugo enoto v območju plašča 201 kompresorja.FIG. 4a it is shown that the propulsion device 100 forms with the frame 1 as well as the fuel container 10 and the supporting unit mounted thereon a first unit, that the whole of the thrust tubes 300 with the propeller compressor 200 forms a second unit, and that the propulsion device 100 is connected via a PTO shaft 110 with a propeller compressor 200. This PTO shaft 110 comprises e.g. as presented by two homokinetic cardan joints. Management is achieved by moving the vertical center of gravity X through the PTO joint 2 between the first and second units in the area of the compressor jacket 201.
S sl. 4b je razvidno, da pogonska priprava 100, okvir 1, propelerski kompresor 200 in celota potisnih cevi 300 tvorijo prvo enoto, in da vsebnik 10 goriva z na njem nameščeno nosilno pripravo za pilota P tvori drugo enoto, pri čemer sta v območju nosilne priprave obe enoti medsebojno povezani z obračalnim in nagibnim zgibom 6. Z usmerjanjem vugonske sile se da letalno napravo krmiliti.FIG. 4b it is shown that the propulsion device 100, frame 1, the propeller compressor 200 and the whole of the thrust tubes 300 form the first unit, and that the fuel container 10 with the carrier carrier mounted thereon for the pilot P forms the second unit, with both being in the area of the bearing device the units are interconnected with the tilting and tilting joints 6. By directing the drag force, the aircraft can be controlled.
S sl. 4c je razvidno, da sta za krmiljenje in stabiliziranje letalne naprave križno razporejeni krmilni krili 315, 316 vzdolžno in prečno pritrjeni na votli gredi 314, gibljivi okoli lastne osi, s čimer se da iztisnjeni zračni tok odkloniti v poljubno smer. V votli gredi 314 je voden kabelski vlek 303, s pomočjo katerega se preko vrtilnih osi 317 z vrtljivo ročico 311 premika krmilno krilo 316. Z votlo gredjo 314 je togo povezano krmilno krilo 315. Le-to se okoli lastne osi premika preko krmilnega locna 318 z vrtenjem krmilne roke 309 v vrtilnem zgibu 313. S pomočjo tega, na izstopnih koncih zraka potisnih cevi 300 razporejenega odklonilnika potisnega curka, se da doseči stabiliziranje in upravljanje letalne naprave.FIG. 4c shows that the rudder wings 315, 316 are longitudinally and transversely mounted on the hollow shaft 314 movable about their own axis to control and stabilize the flying device, thereby deflecting the expelled air flow in any direction. The hollow shaft 314 is guided by cable traction 303, through which the steering wing 316 is moved via the rotary axes 317 with the rotary lever 311. The steering shaft 314 is rigidly connected to the hollow shaft 315. It moves about its own axis via the steering link 318. by rotating the control arm 309 in the pivot joint 313. This helps to stabilize and control the flying device at the outlet air ends of the thrust tubes 300 of the displaced thrust deflector.
S sl. 4d je razvidno, da so za krmiljenje in stabiliziranje letalne naprave na koncu potisne cevi 300 s pomočjo nadaljnjega kardanskega obroča 320 kot tudi nadaljnjega veznega locna gibljivo pritrjene krmilne šobe 312. Pri tem sta krmilni roki 309 togo povezani z gibljivimi krmilnimi šobami 312. Prosti gibalni prostor med krmilnimi šobami 312 in potisnima cevema 300 se zatesni s pomočjo nadaljnjega usmerjevalnega kompenzarorja 322. Z odklonom potisnega curka se doseže stabilno ravnotežno lego oz. se da letalno napravo krmiliti. Pri uporabi nadaljnjih kardanskih obročev 320 za krmiljenje in stabiliziranje letalne naprave lahko kardanski zgib 2 seveda odpade.FIG. 4d shows that for controlling and stabilizing the flying device at the end of the thrust tube 300 by means of a further PTO ring 320 as well as a further tie rod, the steering nozzles 312 are attached. The steering arms 309 are rigidly connected to the moving steering nozzles 312. the space between the control nozzles 312 and the thrust tubes 300 is sealed by means of a further directing compensator 322. With a thrust jet deflection, a stable equilibrium position or an equilibrium position is achieved. the aircraft can be controlled. When using further PTO rings 320 to control and stabilize the aircraft, PTO 2 may naturally fall off.
Da bi se pri lebdenju omogočilo vrtenje okoli lastne osi oz. letelo po tesnih krivuljah, se preko kabelskega vleka 303 s pomočjo vrtljive ročice 311 premika trimerski krili 302 (glej sl. Ib, lc), ki zračni tok glede na njih nastavitev odklanjata bodisi naprej ali nazaj. Ta odklon poleg pomoči pri krmiljenju dodatno še deloma izravnava vrtilni moment propelerskega kompresorja 200 in pogonske priprave 100. Pomemben vidik glede na motorsko moč pri pogonski pripravi z zgorevalnim motorjem oz. batnim motorjem tvori na pogonski pripravi 100 razporejen izpušni sistem 101. Končne cevi izpušnega sistema 101 so v splošni smeri oddajanja obrnjene navzdol in z motorskimi izpušnimi plini dajejo dodaten vzgon. Vodni hladilnik 103 za hlajenje glave valja batnega motorja je razporejen tako, da ga okoliški zrak karseda dobro obteka. To obtekanje se da doseči oz. pospešiti s pomočjo ustreznih vodilnih lopat za zrak 109 v zračnem toku izstopnih šob 304, 305.In order to allow the hover to rotate about its own axis or. Flying along tight curves, the trimmer wings 302 (see Fig. Ib, 1c) are moved via cable traction 303 by means of the rotary arm 311, which deflects the air flow according to their setting either forward or backward. In addition to steering assistance, this deviation also partially compensates for the torque of the propeller compressor 200 and the drive gear 100. An important aspect with regard to motor power in propulsion preparation with a combustion engine or. The piston engines are 100 arranged on the drive train 100. The exhaust tailpipes 101 are downwardly directed in the general direction of delivery and give the engine exhaust additional buoyancy. The water cooler 103 for cooling the cylinder head of the piston engine is arranged in such a way that the surrounding air flows as well as possible. This flow can be achieved or. accelerate by means of suitable air guide blades 109 in the air stream of the outlet nozzles 304, 305.
Pogonska priprava 100 je s pomočjo motorskega obešenja 4 z glavnimi pritrdilnimi vijaki pritrjena na dušilnikih vibracij 104 na okviru 1. Dodatno obstaja možnost, da se batni motor pri glavi valja preko vijakov za zvijačenje le-te s pomočjo obešenja 5 glave valjaThe drive device 100 is attached to the vibration dampers 104 on the frame 1 by means of a motor suspension 4 with the main fixing screws. Additionally, there is a possibility that the piston engine can be rolled through the screws by screwing on the cylinder head by hanging the 5 cylinder head.
J. J 10 .J. J 10.
vibracijsko dušilno pritrdi na okvir 1. Nihanja dušeča priključna prirobnica 102 z zvezdastim gumijastim uležajenjem motorske gredi ali ojnice 107 povezuje slednjo vibracijsko dušilno z nihanja dušečo pogonsko gredjo 108 iz ogljikovih vlaken. Vsebnik 10 goriva z na njem nameščeno nosilno pripravo se uležajeno preko gume privijači neposredno na okvir 1. Na zgornji strani vsebnika 10 goriva se nahaja nastavek 13 za polnjenje rezervoarja, odzračevalnik 12 rezervoarja vsebnika 10 goriva kot tudi električna merilna enota 11 za merjenje vsebine vsebnika goriva. Priključek 14 za gorivo se nahaja na najbolj spodnjem lijakasto zoženem koncu vsebnika 10 goriva. Zavorne stene 15 ali penasto polnilo vsebnika 10 preprečuje pljuskanje v njem nahajajočega goriva. Instrumenti 308 za prikaz vsebine vsebnika 10 goriva, števila vrtljajev pogonske priprave 100 in temperature pogonske priprave 100 se nahajajo na krmilni roki 309. Stojalo 8 oz. nosilna noga letalne naprave je z okvirom 1 povezana prestavljivo po višini in dovoljuje, da se letalno napravo odloži tako, da stoji sama. Stojalo 8 se da med poletom uvleči oz. potegniti navzgor in obsega blažilnik udarcev, ki pri udarcu letalne naprave ob tla služi kot absorber 408 udarca. Stojalo 8 je lahko zasnovano tudi tako, da obsega vrtilno os ali da med poletom služi kot stojišče za pilota (neprikazano). Oboj 206 pesta 204 propelerskega kompresorja 200 izboljša aerodinamično dovajanje vsesanega zraka.attaches the vibration damping to frame 1. The oscillating damping flange 102 with a star rubber bearing of the crankshaft or the crank 107 connects the latter vibration damping with the oscillations of the damping drive shaft 108 of carbon fibers. The fuel container 10 with the support device mounted thereon is screwed directly to the frame 1 through the rubber. On the upper side of the fuel container 10 there is a fuel filler cap 13, a fuel tank reservoir 12, as well as an electrical measuring unit 11 for measuring the contents of the fuel container. . The fuel connector 14 is located at the lower funnel-narrowed end of the fuel container 10. The brake walls 15 or the foam filler of the container 10 prevents the fuel contained therein from splashing. Instruments 308 for displaying the contents of the fuel container 10, the speed of the drive unit 100 and the temperature of the drive unit 100 are located on the control arm 309. The stand 8 or. the flight leg of the aircraft is linked height-adjustably to frame 1 and allows the aircraft to be disposed of so that it stands alone. Stand 8 can be pulled in or out during flight. pull up and comprises a shock absorber, which, when struck by the aircraft against the ground, serves as a shock absorber 408. Stand 8 may also be designed to comprise a rotary axis or to serve as a pilot's stand (not shown) during flight. Both the 206 hubs 204 of the propeller compressor 200 improve aerodynamic air intake.
Nadaljnja varianta hlajenja batnega motorja je predstavljena na sl. le in lf. Obročasti vodni hladilnik 111 (sl. le) ali obročasti vodni hladilnik 112 z vodilnim obročem za zrak (sl. lf) sta zasnovano krožno in se brezšivno zaključujeta na sesalnem lijaku 202 propelerskega kompresorja 200, ki v obratovanju del dotekajočega zraka vsesa skozi obročasta vodna hladilnika 111, 112. S prikazano optimalno razporeditvijo obročastega vodnega hladilnika na robu sesalnega lijaka 202 kompresorja oz. z razporeditvijo obroča za vodenje zraka za izboljšanje dovoda zraka k obročastemu vodnemu hladilniku se z višjo hitrostjo vsesanega zraka ne moti, temveč pospeši.A further variant of piston engine cooling is presented in FIG. le and lf. The annular water cooler 111 (Fig. 1 only) or the annular water cooler 112 with the guide air ring (Fig. 1f) is circularly designed and ends seamlessly on the intake hopper 202 of the propeller compressor 200, which sucks through the annular water coolers during operation. 111, 112. By showing the optimum arrangement of the annular water cooler at the edge of the suction hopper 202 of the compressor or. the arrangement of the air guide ring to improve the air supply to the ring water cooler does not interfere with the intake air speed but accelerates it.
Še ena nadaljnja varianta za hlajenje batnega motorja oz. pogonske priprave 100 je predstavljena na sl. Ig. S pomočjo pritrdilnega okvira 114 je hladilni rotor 115 nameščen pod pogonsko pripravo 100. Pogon hladilnega rotorja 115 sledi preko zobatega jermena 117 in na spodnjem koncu ojnice 107 pritrjene jermenice 116. S hladilnim rotorjem 115 ustvarjeni zračni tok se po kanalu 118 za vodenje zraka dovaja pod njim ležečemu ploskemu hladilniku 119, skozi katerega teče. Z uporabo jermenic 116 z različnimi premeri se da spremeniti število vrtljajev hladilnega rotorja 115.Another further variant for cooling the piston engine or. drive arrangement 100 is presented in FIG. Ig. With the help of the mounting frame 114, the cooling rotor 115 is mounted under the drive device 100. The drive of the cooling rotor 115 is traced through the timing belt 117 and the lower pulley 107 attached to the lower link 107. the flat cooler 119 through which it flows. By using pulleys 116 of different diameters, the speed of the cooling rotor 115 can be changed.
Še nadaljnja varianta za hlajenje batnega motorja je predstavljena na sl. Ih. Na tej sliki je poleg tega prikazana mogoča zamenjava pilota P z daljinsko upravljano krmilno pripravo 409. Za hlajenje batnega motorja se s pomočjo kanalov 120 za vodenje zraka na potisni cevi zrak odkloni od glavnega toka v potisnih ceveh 300 in vodi k vodnim hladilnim elementom 121, razporejenim na koncih potisnih cevi. Z zamenjavo pilota P z daljinsko upravljano krmilno pripravo 409 se lahko letalno napravo uporabi tudi brez posadke. Daljinsko upravljana krmilna priprava 409 prevzame pri tem odklanjanje potisnih cevi 300 za krmiljenje oz. upravljanje ravnotežja. Z bistveno izboljšanim izkoristkom propelerskega kompresorja v primerjavi s helikopterjem enakega težinskega razreda je daljinsko upravljana tovrstna letalna naprava primerna za transport materiala kot tudi nadzorovalne naloge.A further variant for cooling the piston engine is presented in FIG. Them. This picture also shows the possible replacement of Pilot P with a remote control 409. For cooling the piston engine, the air is diverted from the main flow in the thrust pipes 300 through the ducts 120 to guide the water coolers 121, arranged at the ends of the thrust tubes. By replacing Pilot P with a remote control 409, the unmanned aerial vehicle can be used. The remotely controlled steering apparatus 409 thereby assumes a deflection of the thrust tubes 300 for steering or. balance management. By significantly improving the efficiency of the propeller compressor compared to a helicopter of the same weight class, this remote control aircraft is suitable for material transport as well as control tasks.
Na sl. lije prikazana obvodna povezava 113 za povečanje motorske moči batnega motorja. Obvodna povezava 113 je razporejena pod statorskim obročem 205 propelerskega kompresorja 200 in neposredno povezana s sesalnimi lijaki motorskega uplinjača.In FIG. The bypass connection 113 is shown to increase the engine power of the piston engine. Bypass connection 113 is arranged under the stator ring 205 of the propeller compressor 200 and directly connected to the intake hoppers of the carburetor.
Po sl. lj je priključna prirobnica 102 z motorske strani lahko zasnovana kot priključna prirobnica z zaganjalno jermenico 122, tako da se da motor vžgati s pomočjo na zaganjalni jermenici 122 navite pletene vrvi, ki se jo da potegniti z roko. Vezne napere 123 priključne prirobnice z zaganjalno jermenico 122 so krilasto zapognjene, tako da pri vrtenju skrbe za kroženje zraka, ki hladi zgoraj oz. spodaj razporejene dele.According to FIG. lj the motor connection side flange 102 may be designed as a connecting flange with a starter pulley 122 so that the motor can be ignited by means of an arm-twisted braided rope 122. The connecting spokes 123 of the flange with the starter pulley 122 are wing-bent, so that when rotating the air circulating supply that cools above or above. the sections below.
Kot se vidi s sl. 5 sestoji reševalni sistem 400 iz padala 401, izstreljivega s pomočjo pogonskega polnila, katerega mehanizem se sprosti z delovanjem traku 407 rešilnega padala ali samodejno. Z zelo nizko letalno višino, na kateri se letalno napravo največ uporablja, obstaja potreba po izredno hitrem odpiranju padala 401 po izpadu vzgonskega potiska. Ker letalna naprava ne obsega nikakršne velike rotorske ali krilne razporeditve, se da padalo 401 z zelo kratkimi vrvicami izstreliti navpično navzgor.As can be seen from FIG. 5 consists of a rescue system 400 of a parachute 401 fired by a propulsion filler, the mechanism of which is released by the operation of the parachute tape 407 or automatically. With the very low altitude at which the aircraft is most used, there is a need to open the parachute 401 very quickly after the buoyancy thrust has failed. Since the flying device does not include any large rotor or wing arrangement, 401 with very short strings can be fired vertically upwards.
V predstavitvi, označeni s stopnjo 1, se padalo 401 v zapakiranem stanju nahaja v tulki 402 padala s pogonskimi polnili 403. Pogonska polnila 403 za pospešitev odpiranja padala 401 še niso aktivirana. V padalu 401 se prav tako zapakirano nahaja ekspanzijska patrona 404 s primernim eksplozivnim polnilom, ki z ekspanzijo povzroči, da se volumen padala 401 hitreje napolni. Pri predstavitvi, označeni s stopnjo 2, vleče srednje pogonsko polnilo 403 padalo 401 iz tulke 402 do popolne raztegnitve vrvic 405 reševalnega padala. Te aktivirajo, kot se vidi iz stopnje 3, pomožni pogonski polnili 403a, 403 b, ki hitreje odpreta padalo 401. K hitrejšemu odpiranju padala 401 prav tako pripomorejo tokovni žepi 406. Sočasno s pomožnima pogonskima polniloma 403a, 403b se aktivira na spodnji strani padala 401 nahajajoča se ekspanzijska patrona 404. S pomočjo slednje se padalo 401 odpre v najkrajšem času. V fazi, označeni s stopnjo 4, se padalo 401 nahaja v odprtem stanju.In the step 1 representation, the parachute 401 in its packed state is located in the sleeve 402 of the parachute with propellers 403. The actuators 403 to accelerate the parachute 401 are not yet activated. An expansion cartridge 404 is also packaged in the parachute 401 with a suitable explosive charge, which, by expansion, causes the parachute volume 401 to fill more quickly. In the step 2 presentation, the medium propulsion pad 403 pulls the parachute 401 from the sleeve 402 until the strings 405 of the parachute are fully stretched. As shown in Level 3, the auxiliary propellant fillers 403a, 403 b, which open the parachute 401 faster, are also assisted by the pockets 406 more quickly opening the parachute 401. 401 located expansion cartridge 404. With the help of the latter, the parachute 401 opens in the shortest possible time. In stage 4, the parachute 401 is in the open state.
BIL-INNOVATIONS-STIFTUNGBIL-INNOVATIONS-STIFTUNG
... 13... 13
Seznam sklicevalnih številk:List of reference numbers:
P pilotP pilot
X težiščnica okvir kardanski zgibX center of gravity frame cardan joint
2’ kardanski obroč locnasta zveza motorsko obešenje obešenje glave valja obračalni in nagibni zgib glavni pritrdilni vijaki motorja stojalo vezno rebro vsebnik goriva merilnik vsebine rezervoarja odzračevalnik rezervoarja nastavek za polnjenje rezervoarja priključek za gorivo zavorne stene sistem oprtnic pritrdišče konca oprtnice2 'universal joint coupler coupling motor suspension suspension of cylinder head swivel and tilting joint main engine mounting bolts rack rib container fuel tank gauge reservoir tank fuel filler brake walls brake system anchorage end of harness
100 pogonska priprava100 propulsion preparation
101 izpušni sistem101 exhaust system
102 priključna prirobnica102 connecting flange
103 vodni hladilnik103 water cooler
104 dušilnik vibracij104 vibration damper
105 ročni zaganjalnik105 manual starter
106 torzijska tulka106 torsion sleeve
107 ojnica107 connecting rods
108 pogonska gred . . ’ - ’-· 14- -109 vodilne lopate za zrak108 drive shaft. . '-' - · 14- -109 Guide Blades for Air
110 kardanska gred110 PTO shaft
111 obročasti vodni hladilnik111 ring water cooler
112 obročasti vodni hladilnik z vodilnim obročem za zrak112 ring water cooler with guide ring for air
113 obvodna povezava113 bypass connection
114 pritrdilni okvir114 mounting frame
115 hladilni rotor115 cooling rotor
116 jermenica116 pulleys
117 zobati jermen117 toothed belt
118 kanal za vodenje zraka118 air conduit
119 ploski hladilnik119 flat refrigerator
120 kanal za vodenje zraka na potisni cevi120 duct air duct
121 vodni hladilni element121 water cooler
122 zaganjalna jermenica122 starter pulley
123 vezne napere123 connecting spokes
200 propelerski kompresor200 propeller compressor
200’ propeler200 'propeller
201 plašč kompresorja201 compressor jacket
202 sesalni lijak kompresorja202 compressor suction hopper
203 krila kompresorja203 compressor wings
204 pesto kompresorja204 compressor hub
205 stator205 stator
205’ propeler statorja205 'stator propeller
206 oboj206 both
207 sprejemnik okvira207 frame receiver
208 propelerska gred208 Propeller Shaft
209 odklonska šoba209 deflector nozzle
210 dušilna loputa210 throttle damper
300 potisna cev300 thrust tube
301 usmerjevalni kompenzator301 directional compensator
302 trimer302 trimmer
Claims (21)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH284293 | 1993-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
SI9420005A true SI9420005A (en) | 1995-12-31 |
Family
ID=4242818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI9420005A SI9420005A (en) | 1993-09-21 | 1994-09-20 | Flight device |
Country Status (26)
Country | Link |
---|---|
EP (1) | EP0668829B1 (en) |
JP (1) | JPH08503673A (en) |
CN (1) | CN1050333C (en) |
AT (1) | ATE159219T1 (en) |
AU (1) | AU683930B2 (en) |
BG (1) | BG61837B1 (en) |
BR (1) | BR9405609A (en) |
CA (1) | CA2149759A1 (en) |
CZ (1) | CZ287460B6 (en) |
DE (1) | DE59404344D1 (en) |
DK (1) | DK0668829T3 (en) |
ES (1) | ES2107858T3 (en) |
FI (1) | FI952442A0 (en) |
GR (1) | GR3025589T3 (en) |
HU (1) | HU217059B (en) |
LT (1) | LT3902B (en) |
LV (1) | LV11451B (en) |
NO (1) | NO307041B1 (en) |
NZ (1) | NZ273272A (en) |
PL (1) | PL175216B1 (en) |
RO (1) | RO115514B1 (en) |
RU (1) | RU2126344C1 (en) |
SI (1) | SI9420005A (en) |
SK (1) | SK80895A3 (en) |
TW (1) | TW262445B (en) |
WO (1) | WO1995008472A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10250809B4 (en) * | 2002-10-31 | 2008-09-25 | Daniil Cotenescu | Light aircraft for vertical take-off and method of operation |
JP4114510B2 (en) * | 2003-03-05 | 2008-07-09 | トヨタ自動車株式会社 | Small flight equipment |
US7258301B2 (en) | 2004-03-26 | 2007-08-21 | Raymond Li | Personal propulsion device |
TWI467087B (en) * | 2008-03-25 | 2015-01-01 | Amicable Inv S Llc | Equipment that interacts with air or gas and its injection engine |
WO2009137957A1 (en) | 2008-05-16 | 2009-11-19 | Yang Shitong | Exact spot welder for resistance welding |
NZ569454A (en) * | 2008-06-27 | 2009-10-30 | Martin Aircraft Company Ltd | Propulsion device including control system |
NZ569455A (en) | 2008-06-27 | 2009-10-30 | Martin Aircraft Company Ltd | Propulsion device incorporating radiator cooling passage |
JP6037100B2 (en) * | 2012-03-14 | 2016-11-30 | 株式会社Ihi | Vertical take-off and landing aircraft |
JP6540357B2 (en) * | 2015-08-11 | 2019-07-10 | 三菱日立パワーシステムズ株式会社 | Static vane and gas turbine equipped with the same |
CN105730689A (en) * | 2016-04-14 | 2016-07-06 | 天津京东智联科技发展有限公司 | Double-rotor high-rise escape aircraft |
CN106275435B (en) * | 2016-09-06 | 2018-12-04 | 康研机器人(重庆)有限公司 | A kind of jet-propelled manned vehicle |
ES1172708Y (en) * | 2016-12-01 | 2017-03-14 | Salvador Francisco Manuel Oron | Individual transport device |
CN107344616B (en) * | 2017-08-18 | 2020-01-24 | 雍江 | Wearable multipurpose thrust device |
WO2019216723A1 (en) * | 2018-05-11 | 2019-11-14 | Lee Jeong Yong | Aircraft including harness |
WO2020096477A1 (en) * | 2018-11-09 | 2020-05-14 | Дмитрий Вячеславович ФЕДОТОВ | Thermodynamic test bench for simulating aerodynamic heating |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3023980A (en) * | 1958-10-13 | 1962-03-06 | Thompson Ramo Wooldridge Inc | Turbo-fan lift device |
US3443775A (en) * | 1965-06-23 | 1969-05-13 | Williams Res Corp | Flight belt |
US4795111A (en) * | 1987-02-17 | 1989-01-03 | Moller International, Inc. | Robotic or remotely controlled flying platform |
-
1994
- 1994-09-20 HU HU9501387A patent/HU217059B/en not_active IP Right Cessation
- 1994-09-20 WO PCT/CH1994/000185 patent/WO1995008472A1/en not_active Application Discontinuation
- 1994-09-20 SK SK808-95A patent/SK80895A3/en unknown
- 1994-09-20 RU RU95113098A patent/RU2126344C1/en active
- 1994-09-20 CN CN94190712A patent/CN1050333C/en not_active Expired - Fee Related
- 1994-09-20 CA CA002149759A patent/CA2149759A1/en not_active Abandoned
- 1994-09-20 ES ES94926759T patent/ES2107858T3/en not_active Expired - Lifetime
- 1994-09-20 RO RO95-00934A patent/RO115514B1/en unknown
- 1994-09-20 SI SI9420005A patent/SI9420005A/en unknown
- 1994-09-20 DE DE59404344T patent/DE59404344D1/en not_active Expired - Fee Related
- 1994-09-20 CZ CZ19951304A patent/CZ287460B6/en not_active IP Right Cessation
- 1994-09-20 AT AT94926759T patent/ATE159219T1/en not_active IP Right Cessation
- 1994-09-20 EP EP94926759A patent/EP0668829B1/en not_active Expired - Lifetime
- 1994-09-20 AU AU76505/94A patent/AU683930B2/en not_active Ceased
- 1994-09-20 DK DK94926759.5T patent/DK0668829T3/en active
- 1994-09-20 NZ NZ273272A patent/NZ273272A/en unknown
- 1994-09-20 JP JP7509472A patent/JPH08503673A/en active Pending
- 1994-09-20 BR BR9405609-9A patent/BR9405609A/en not_active IP Right Cessation
-
1995
- 1995-03-18 TW TW084102687A patent/TW262445B/zh active
- 1995-05-19 FI FI952442A patent/FI952442A0/en unknown
- 1995-05-19 NO NO951998A patent/NO307041B1/en not_active IP Right Cessation
- 1995-05-22 BG BG99658A patent/BG61837B1/en unknown
- 1995-05-22 PL PL94308911A patent/PL175216B1/en unknown
- 1995-06-07 LT LT95-062A patent/LT3902B/en not_active IP Right Cessation
- 1995-06-15 LV LVP-95-169A patent/LV11451B/en unknown
-
1997
- 1997-12-03 GR GR970403241T patent/GR3025589T3/en unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5779188A (en) | Flight device | |
SI9420005A (en) | Flight device | |
US6616094B2 (en) | Lifting platform | |
EP0661206B1 (en) | An unmanned vertical take-off and landing, horizontal cruise, air vehicle | |
US7523892B2 (en) | Centripetal reflex method of space launch | |
US6464459B2 (en) | Lifting platform with energy recovery | |
AU677506B2 (en) | Propulsion system for a lighter-than-air vehicle | |
US6142414A (en) | Rotor--aerostat composite aircraft | |
RU2538737C2 (en) | Rotor "air wheel", gyrostabilised aircraft and wind-driven electric plant using rotor "air wheel", surface/deck devices for their start-up | |
RU2126341C1 (en) | Propulsion system for lighter-than-air flying vehicle | |
JP6426165B2 (en) | Hybrid VTOL machine | |
US20080087762A1 (en) | System, method, and apparatus for hybrid dynamic shape buoyant, dynamic lift-assisted air vehicle, employing aquatic-like propulsion | |
US20200023970A1 (en) | Electric JetPack Device | |
CN107000835A (en) | "Wheel" rotors, gyro-stabilized aircraft and wind energy devices using "wheel" rotors, and ground or ship-borne devices for propelling them | |
CN101878153A (en) | Aviation device | |
EP3774532B1 (en) | Aircraft propulsion and torque mitigation technologies | |
CA2117186A1 (en) | Multipurpose airborne vehicle | |
US12006029B2 (en) | Vertical take-off and landing cocoon-type flying vehicle | |
JPH05201390A (en) | Airship | |
RU2826746C1 (en) | Method of rotating cylinders acting as wings on aircraft, and unmanned aerial vehicle for its implementation | |
RU2169104C1 (en) | Multi-functional flying vehicle | |
RU2196914C2 (en) | Flying vehicle power plant | |
RU2196913C2 (en) | Flying vehicle power plant |