SE9901579A0 - Method and apparatus for reconditioning and recharging of rechargeable batteries - Google Patents
Method and apparatus for reconditioning and recharging of rechargeable batteriesInfo
- Publication number
- SE9901579A0 SE9901579A0 SE9901579A SE9901579A SE9901579A0 SE 9901579 A0 SE9901579 A0 SE 9901579A0 SE 9901579 A SE9901579 A SE 9901579A SE 9901579 A SE9901579 A SE 9901579A SE 9901579 A0 SE9901579 A0 SE 9901579A0
- Authority
- SE
- Sweden
- Prior art keywords
- current
- charging
- battery
- pulse
- pulses
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 238000007600 charging Methods 0.000 claims description 48
- 238000010278 pulse charging Methods 0.000 claims description 18
- 238000010280 constant potential charging Methods 0.000 claims description 11
- 229910000859 α-Fe Inorganic materials 0.000 claims description 6
- 239000002253 acid Substances 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- YADSGOSSYOOKMP-UHFFFAOYSA-N dioxolead Chemical compound O=[Pb]=O YADSGOSSYOOKMP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- KEQXNNJHMWSZHK-UHFFFAOYSA-L 1,3,2,4$l^{2}-dioxathiaplumbetane 2,2-dioxide Chemical compound [Pb+2].[O-]S([O-])(=O)=O KEQXNNJHMWSZHK-UHFFFAOYSA-L 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 239000006093 Sitall Substances 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 210000004124 hock Anatomy 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/448—End of discharge regulating measures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0069—Charging or discharging for charge maintenance, battery initiation or rejuvenation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00711—Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/02—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
- H02J7/04—Regulation of charging current or voltage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
FORFARANDE OCH ANORDNING FOR REKONDMONERING OCH LADDNING AV LADDNINGSBARA BATTERIER FOreliggande uppfinning avser eft fOrfarande och anordning for rekonditio5 nering och laddning av laddningsbara batterier, varvid anordningen innefattar en laddningsenhet fOr strOmpuisladdning och konstantspanningsladdning av ett batten. Det fir tidigare kant aft rekonditionera batterier for aft pa detta Mitt fOrlanga deras livslangd, se exempelvis svenska patentansokningen 9301756-4. I denna patentansOkning beslcrivs ett Mitt fer laddning och rekonditionering av sulfaterade 10 blybatterier. Pulsrnatning utnyttjas harvid, varvid pulsspenningen är fillrackligt hOg for aft astadkomma sa kallad gasning yid batteriets positive och negative poler. Likspanningen paltiggs i form av pulser av en lAngd av 0,5 till 10 s, varvid anordningen levererar sbtim till bafteriet, vilka pulser ár fitskilda av strOmlOsa mellanrum likaledes av storleken av 0,5 till 10 s. PROCEDURE AND DEVICE FOR RECOMMENDATION AND CHARGING OF RECHARGEABLE BATTERIES The present invention relates to a method and apparatus for reconditioning and charging rechargeable batteries, the apparatus comprising a charging unit for current charging and constant voltage charging of a bat. It is previously possible to recondition batteries for this purpose. Extend their service life, see for example Swedish patent application 9301756-4. This patent application describes a medium charge and reconditioning of sulfated lead batteries. Pulse rate is used here, whereby the pulse voltage is sufficiently high and to achieve so-called gassing at the positive and negative poles of the battery. The direct voltage is applied in the form of pulses of a length of 0.5 to 10 s, the device delivering sbtim to the bacterium, which pulses are also separated by strOmlOsa intervals of the size of 0.5 to 10 s.
Det är odcsa kant aft tilifOra sit kallade Canpulser vid konventionell batteri- laddning. Dessa Canpulser Ar dock ej envandbera fOr rekonditionering av batterier utan loner endast till aft motvenca Icristallbildning I batterier, vilka for Ovrigt Ar I gott siddc. It is odcsa edge aft tilifOra its so-called Canpulser at conventional battery- charge. However, these canpulses are not suitable for reconditioning batteries, but only for the purpose of counter-crystal formation in batteries, which are otherwise well seated.
Syftet med foreliggende uppfinning Ar at astadkomma en ny teknik far re- konditionering och laddning av laddningsbara batterler, som at effelctivam An den tidigare kande teknken och majliggOr rekonditionering or* laddning Liven av batterier, vilka Sr i sa daligt skid( alt de tidigare ej kunnat rekonditionems. Genom rekonditionering feirlangs batteriets Ilvsliingd. En blyadcumulators livslangd kan selunda fOrlangas fran 4 - 5 ar till i princip oandlig livslangd. The object of the present invention is to provide a new technique for re- conditioning and charging of rechargeable batteries, as at effelctivam An the prior art and majliggOr reconditioning or * charging The life of batteries, which Sr in such a bad ski (all they previously could not be reconditioned. By reconditioning feirlangs the battery's Ilvsliingd. Required from 4 - 5 years to a basically spiritual life.
Detta sylte uppnits med eft fOrfarande enligt patentkravet 1 och en anord- ning enligt patentkravet 7. This jam is obtained by the method according to claim 1 and a device according to claim 7.
Vid fOreliggande uppfinning utfOrs saledes rekonditioneringen och laddningen enligt ett fOrutbestamt strOmmetningsforlopp, som är anpassat till det aktuella batteriets fillstand. Denna anpassnIng till batteriets tillstand innebar aft eft for- utbestamt %noon faststalls av en eller flera perioder med strOmpulsladdning omvaxlande med en eller flera perioder av konstantspanningsladdning. Harvid mats strOmmen till batteriet fortItipande Mr Mt styra strOmmatningen I enlighet med namnda Wimp. Med fOreliggande uppfinning majliggfirs rekonditionering av liven hopplost uttjanta batterier till en niva av 96% av eft nytt batten. Tekniken enligt 2 uppfinningen âr ej heller enbart anvAndbar for rekonditionering och laddning av blyackumulatorer utan liven far exempelvis nidcelkadiumbatterier. Aft fortlOpande avktinna strammen till batteriet har tiven visat sig sarskilt fardelaldigt, eftersom den elektriska strammen dr en fOr den tillfOrda laddningen direkt bestAmmande storhet Vidare, vid batterier som är i mycket diligt slddc bar strammen vid kon- stantspAnningsladdning begrAnsas till aft barja med for aft inte riskera alt batteriet exploderar, varpi strammen sedan successivt Okas allteftersom batteriet fOrbAttras. Genom den fortlOpande stramavkAnningen majliggars Wan strOmreglering pit tillfarlitiigt sett. In the present invention, the reconditioning and charging are thus carried out according to a predetermined current saturation process, which is adapted to the fill condition of the battery in question. This adaptation to the condition of the battery meant determined% noon is determined by one or more periods of current pulse charging alternating with one or more periods of constant voltage charging. In this case, the power to the battery is fed continuously. Mr Mt controls the power supply in accordance with the said Wimp. With the present invention, reconditioning of the lives of hopelessly used batteries to a level of 96% of the new battery is possible. The technology according to 2 the invention is also not only usable for reconditioning and charging of lead-acid accumulators, but the life of, for example, low-cell battery batteries. Due to the continuous depletion of the current to the battery, the tive has proved to be particularly dangerous, since the electric current draws a direct determinant of the supplied charge. size Furthermore, in the case of batteries that are in very poor slddc, the voltage at con- DC voltage charging is limited to aft barja with for aft not risk all the battery explodes, warpi the voltage then gradually Okas as the battery is IMPROVED. Due to the continuous current generation, Wan current regulation pit is temporarily improved.
Enligt en fOrdelaktig uffOringsforrn av forfarandet enligt uppfinningen finks batteriet under stiampulsmatningsperioden strOmpulser med vtisentligen triangular form. Genom alt anvAnda triangular form far man, for en bestAmd pulsenergi, hOgre toppverde An vid en rektangultir puls, vilket vlsar sig ht3ja effektiviteten i nedbrytning av elektrolytens kristallisering. According to an advantageous embodiment of the process according to the invention finks the battery during the pulse pulse supply period current pulses with a substantially triangular shape. Through all the triangular shapes used, for a given pulse energy, a higher peak value An is obtained at a rectangular pulse, which turns out to increase the efficiency in decomposing the crystallization of the electrolyte.
Enligt en annan fardelaldig utfOringsform av f9rfarandet enligt uppfinning- en tillfOrs strOmpulser med en langd understigande 0,45 s. Genom aft anvAnda sA korta pulser minslcas energitillfarseln och darmed uppvilmmingen. According to another far-reaching embodiment of the method according to the invention, a supply current pulses with a length of less than 0.45 s. By using such short pulses, the energy supply and thus the swelling are reduced.
Enligt Annu en fardelalctig utfaringsform av fiarfarandet enligt uppfinningen tillfars batteriet under strampulsmatningsperiodema strOmpulser med mellanrum mellan pulsema av 1 —10 s, faretrAdesvis 38. HArigenom minskas risken for otilllatst hag uppvirmning av elektfolyten, eftersom temperaturen sjunker under dessa mellanrum. FOr ett bra batted kin mellanrummet gores kortare An far eft dAligt batted. Under dessa mellanrum ifterhAmtar sig Aven det matande natet. According to Annu, a far-reaching embodiment of the method according to the invention, the battery is supplied with current pulses at intervals during the current pulse supply periods. between the pulses of 1—10 s, dangerously 38. This reduces the risk of unauthorized heating of the electrolyte, as the temperature drops below these intervals. For a good batted kin the gap is made shorter An far eft dAligt batted. During these intervals, the feeding net also recovers.
Enligt Annu en annan fOrdelaktig utfOringsform av fOreliggande uppfinning Overvakas batteriets temperatur fortlapande och om temperaturen Overskrider en maximalt tilliden awe grins avbryts laddningen this temperaturen sjunkit med ett farutbestarnt belopp, varefter laddningen Aterupptas med lagre strOmstyrka. I bAsta fall undviker man pA detta Batt aft den mtudmaft tillAtna stnamgrAnsen Anyo Overskrids. Under ails fOrhAllanden fOrlAngs tiden this detta intraffar igen med av- brott I laddningen som fOljd. According to Annu, another advantageous embodiment of the present invention The temperature of the battery is monitored continuously and if the temperature exceeds a maximum confidence awe grins, the charge is interrupted this temperature has dropped by a far-fixed amount, after which the charge is resumed with lower current. In the best case, this Batt avoids the mtudmaft toAtna stnamgransen Anyo Overskrids. Under all circumstances, this time again occurs with break In the charge as follows.
Enligt ytterligare en fardelaktig utharingsform av farfarandet enligt uppfinningen Ar antalet perioder med strOmpulsladdning respektive konstantspAnningsladdning, periodlAngder, stramamplituder, pulslAngder och pulsfrekvenser varier-bare och bestams i beroende av bafterieb kondifion for fastftiggning av ett, far det 3 aktuella batteriet anpassat rekonditionerings- och laddningsfarlopp. Genom att sã-'uncle variera parametrama periodantal, periodlangder och stramamplituder etc kan rekondltIonerings- och laddningsfOrloppet optimeras utgaende fran det aktuells batteriets kondition. 'War rekonditionering cob laddning diagnostiseras alltsa batteriets kondition, vanligen genom uppmatning av syravikten 0th/eller battedspanningen, varpa optimalt rekonditionering- och laddningsfarlopp fastlaggs. Pulslangdens och pulsfrekvensens betydelse har omnamnts oven. Ware, om batteriet an i mycket daligt skidc maste rekonditioneringen bOrja med en strOmpulsladdning for attigang" batteriet, innan konstantspanningsladdning kan fOlja. Vid andra batterier kan det vara !MOM att bOrja med en period med konstantspanningsladdning, fait av en period med strOmpulsladdning, osv. I stort innebar strompulsladdning rekonditionering av batteriet och konstantspanningsladdning ger batted-et den vasentliga laddningen. En sedan inkxlande strampuisladdningsperiod kan alltsa innefatta endast en kraftig strtlmstOt under en noga kontrollerad tidslangd far aft farhindra att batteriet blir alftfar varrnt. Effekten avilenna kraftiga inledande puls är avicristallisering av blypiattoma. Eventuelft kan tiara sadana iniedande, kraftiga strampulser erfordras. I takt med avicristallIseringen sjunker batteriets inre motstand och rekonditioneringen och laddningen kan &ergs% i andra steg. According to a further hazardous form of the process according to the invention, the number of periods of current pulse charge and constant voltage charge, period lengths, current amplitudes, pulse lengths and pulse frequencies, respectively, vary and are determined depending on 3 current battery adapted reconditioning and charging path. By simply varying the parameters period number, period lengths and current amplitudes, etc., the reconditioning and charging process can be optimized based on the condition of the current battery. 'War reconditioning cob charge is thus diagnosed the condition of the battery, usually by supplying the acid weight 0th / or the batted voltage, warp optimal reconditioning and charging path is determined. The significance of pulse length and pulse frequency has been mentioned above. However, if the battery is in very poor condition, the reconditioning must start with a current pulse charge. to access the battery before constant voltage charging can follow batteries it can be! MOM to start with a period of constant voltage charging, fait of a period of current pulse charging, etc. In general, current pulse charging involved reconditioning the battery and constant voltage charging gives the batted the essential charge. A subsequent incremental current discharge period can thus comprise only a strong current during a carefully controlled period of time. prevent the battery from becoming dangerous. The effect of avilenna strong initial pulse is avicrystallization of the lead atoms. If necessary, tiara such inhaling, strong tension pulses may be required. In step with the avicrystallization, the internal resistance of the battery decreases and the reconditioning and charging can & ergs% in other steps.
Enligt en fOrdelaktig utfOringsforrn av anordningen enligt uppfinningen in-nefattar stramgivaren minst ett Hallelement anordnat i en, kring en av laddningskablama anbringad, ringfonnig ferrificama far att bestamma av laddningsstrammen alstrad magnetisk fiodestathet I ferritkaman och dammed laddningsstrommens storlek. Pa delta salt far man en saker, palitlig och robust strOmgivare, som med Ojda temperaturer, som kan upptrada i samband med rekonditionering och laddning av batterier. According to an advantageous embodiment of the device according to the invention, the tension sensor comprises at least one Hall element arranged in a ring-shaped ferric resistor arranged around one of the charging cables to determine the magnetic fiode state generated by the charging current in the ferrite cam and thus the size of the charging current. On delta salt you get a things, reliable and robust current sensor, as with Ojda temperatures, which can occur in connection with reconditioning and charging of batteries.
FOr att %Mara uppfinningen kommer nu en doom exempel veld utfOringsform av anoniningen enligt uppfinningen att fOrklaras narmare med hanvisning till bifogade ritning, pa viiken en utfaringsform illustreras I biodcsohemaform. In order that the present invention will now be explained by way of example, an embodiment of the advertisement according to the invention will be explained in more detail with reference to the accompanying drawing, in which an embodiment will be illustrated in biomedical form.
Den pa ritningen visade utfaringsformen av anordningen enligt uppfinning- en innefattar en laddningsenhet 2, som at drivbar I dels en strOmpulsladdningsmod och dais en konstantspanningsmod. Mena typer av laddningsenheter ár tidlgare kande och kommer ej att beskrivas I deter!, se exempelvls den oven namnda svenska patentansakningen nr. 9301756-4. 4 Laddningsenheten 2 Ar via anslutningskablar 4,6 ansluten till polema 10, 12 hos det batted 8, som skall rekonditioneras 0th laddas. En stramgivare 14 är anordnad aft fortlapande avkanna den till batteriet 8 Skikda strommen och avge motsvarande styrsignaler till en styrenhet 16, vilken är anordnad aft styra ladd- ningsenheten 2. Laddningsenhetens 2 matningsspanning är reglerbar i omradet 2 — 120 V. I konstantspanningsmoden matas batteriet 8 normalt med 2,4 V per battericell i fallet med blyadcumulatorer. Om en eller tiers cotter i ett batted Ar I sArskilt daligt skick, kan dessa celler ges separat rekonditioneringsbehandling i form av extra perioder eller farlangda period med strampulsladdning. The embodiment of the device according to the invention shown in the drawing one comprises a charging unit 2, which is operable in a current pulse charging mode and a constant voltage mode. Mean types of charging units are previously known and will not be described in deter !, see for example the above-mentioned Swedish patent application no. 9301756-4. 4 The charging unit 2 is connected via connection cables 4,6 to the poles 10, 12 of the batted 8 to be reconditioned 0th charged. A current sensor 14 is provided for continuously sensing the current directed to the battery 8 and emitting corresponding control signals to a control unit 16, which is arranged for controlling the charge. The supply voltage of the charging unit 2 is adjustable in the range 2 - 120 V. In the constant voltage mode, the battery 8 is normally supplied with 2.4 V per battery cell in the case of lead-acid accumulators. If one or tiers cotter in a batted Ar In a particularly poor condition, these cells can be given separate reconditioning treatment in the form of extra periods or long-term periods of voltage charging.
Laddningsenheten 2 innefattar strOmbegransningsorgan 20, lampligen i form av strOmbegransningsmotstand, far inkoppling vld behov. Om batteriet 8 namligen ãr haggradigt sulfaterat är det inre motstand Ifigt. Batterlet 8 kan vara pa gransen till kortslutet, varfOr laddningsstrOmmen bun mycket hag I farsta skedet, vilket i varsta fall kan leda till aft batteriet *prangs. Far aft eliminera donna risk in- kopplas strOmbegrensningsorganen 20, sa aft startstrpmmen begransas till tex. 100 A. Sedan Mir batterlets 8 kondltion farbattras kan strammen hajas, t.ex. till 200 A, genom successiv urkoppling av strambegrensningsorganen. Med strambegransningsonganen 20 kan laddningsstrammen regleras I omradet 1 — 500A och strambegransningsorganen 20 In- och urkoppling kan styras fran styrenheten 16 i beroende av,.med stramgivaren 14 avkand, stramstyrka. The charging unit 2 comprises current limiting means 20, suitably in form of current limiting resistor, father connection much needed. Namely, if the battery 8 is highly sulphated, the internal resistance is Ifigt. The battery 8 may be on the verge of short-circuiting, which is why the charging current is very slow in the first stage, which in any case can lead to the battery * bouncing. Far aft eliminate donna risk in- the current limiting means 20 are connected, so that the starting current is limited to e.g. 100 A. After the 8 condltion of the Mir battery is improved, the current can be raised, e.g. to 200 A, by successive disconnection of the current limiting means. With the current limiting device 20, the charging current can be regulated in the range 1 - 500A and the current limiting means 20 The connection and disconnection can be controlled from the control unit 16 in depending on, .with the tension sensor 14 avkand, tension strength.
StrOmgivaren 14 Innefattar en, kring en av kablama 4,6, normak kabeln till batteriets 8 minuspol, anordnad, ringformig ferritkama. I urtag i ferritkaman Or minst eft Hallelement anordnat far att till den efterfagande styrenheten 16 avge styrsignalen, representerande strammen i kabeln 6 genom avkanning av den, av strammen aistrade, magnetiska flOdestatheten i ferritkaman. Lampligen anordnas tva Hallelement i tva, pa olka stallen kings ferriticamans omlcrets anordnade urtag, vilka Hallelement anpassas far olika strammatningsomraden, t.ex. Hallelement 1 for 0 — 100 A och Hallelement 2 far 100— 500 A. Dot har nAmllgen visat sig svart alt tAcka hela det aktueHa stramomradet mad ett enda element. The current sensor 14 Includes, around one of the cables 4,6, the standard cable to the battery's 8 negative pole, arranged, annular ferrite cam. In the recess in the ferrite cam or at least arranged after the Hall element, it is provided to deliver the control signal to the following control unit 16, representing the current in the cable 6 by sensing it, by the strain aistrade, the magnetic flOd state in the ferrite chamber. Lamply, two Hallelement are arranged in two, in different stalls the recesses of the king's ferriticamans are arranged, which Hallelement are adapted for different tight feeding areas, e.g. Hall element 1 for 0 - 100 A and Hall element 2 for 100— 500 A. Dot has now been shown to be black or to thank the entire current tight area with a single element.
Stramgivaren 14 ãr lampligen anordnad aft mats laddningsstrammen med jamna mellanrum, t.ex. varannan selcund, och stramgivaren 14 är anordnad att mate laddningsstrOmmens toppvarde. The tension sensor 14 is suitably arranged to feed the charging tension with at regular intervals, e.g. every other selcund, and the current sensor 14 is arranged to feed the peak value of the charging current.
Laddningsenheten 2 Ar anordnad aft i strampulsladdningsrnoden tillfara batteriet 8 strampulser med vasentligen triangular form. Far viss pulsenergi Ms harvid hogre toppvarde an om fyrkantpulser anvands, vilket visat sig ge effektivare delcristallisering av elelctrolyten. The charging unit 2 Ar arranged in the current pulse charging node supply the battery with 8 current pulses with a substantially triangular shape. Father certain pulse energy Ms at higher peak values than square pulses are used, which has been shown to give more efficient partial crystallization of the electrolyte.
Langden av basen hos de triangulara pulsema ligger i omniclet 0,05 - 0,45 s, d.v.s. korta laddningspulser anvands, vilket her den gynnsamma effekten aft uppvarmningen av batteriet minskar. Ware tillfOrs strOmpulsema batteriet med mellanrum av 0,5 s till 10 s, vilket odcsa bidrar till aft undvika skadligt hOg uppvermning av batteriet Mellanrummet mellan pulsema ken ofta sattas till 3 s, dock ken mellanrummen gores kortare fOr ett battre batten och for ett daligt batted maste mellanrummen median pulsema installas till ett langre varde. Under dessa mellanrum me)-Ian pulsema aterhanitar sig odd det matande natet, antytt vid 18 pa ritningen. Vid anordningen enligt uppfinningen ar antalet perioder med strOmpulsladdning respektive konstantspanningsladdning installbart. Vidare Or sadana parametrar som periodlangder, strOmamplituder, pulslangder och pulsfrekvenser varierbara och i %Nag bestambara i beroende avkonditlonen hoe det batten, som skall nskonditioneras och laddes. Efter det aft batteriels utgangstillstand faststallts inst011s saledes lampliga, anpassade Arden pa namnda parametrar fOr rekonditionerings- och laddningsfOrloppet. Eft rekonditionerings- och laddningsfarlopp ken innefatta strOmpulsladdningsperioder omvibdande med konstantspanningsperioder av vardera 0-48 h, och hela fOrloppet kan Lox. ornfatts tio sadana cykler, d.v.s. maximalt 48011 Vaxlingen av strompulsladdningsperioder och konstantspanningsperioder ken sjalvfallet varieras pa ett otal sat' alit after behov. En normal cykel ken typiskt vara 8 h, t.ex. 6 h pulstrOmktddning saint 2 h konstantspanningsladdning. Tio sadana cykler skulle saledes ta 80 h. 'Ad uppfinningen gOr man emellertid fortHipande matningar, vilket ken resultera i aft rekonditionerings- och ladd- ningsforloppet modifteras fOr aft pasIcynda processen, tex. till cykler om 4 h atompulsladdning plus 4 h konstantspanningsladdning, eller cykler om 8 h pulstrOrnladdning plus 8 h konstantspanningsladdning. Far langre konstantspanningsperioder masts batteriet yam i fOrhAllandevis gott skid( for aft into uppvarmningen skall bli otillatet hOg. 'lid tillfOrsel av strampulser till ett batted alstras frekvenser i omradet fran 0 till cirka 20 MHz. Blysulfatkristallema her en egenfrekvens pa 3,77 MHz, varfOr energi absorberas effelctivt vid donna frekvens vilket leder till aft kristallema sonderbryts, a an svavelmolekylema ken atergallOsning i fallet blyackumulatorer med svavelsyra som elektrolyt. 6 Nar Matningsspanningen I strOmpulsladdningsmoden Overstiger den sa kallade gasspanningen, 2,66 V/cell, far man en cirkulation av syran i en blyathumulator. En urladdad ackumulator har en mar eller mindre hock avlagring p ackumulatoms botten och genom denna cirkulation av syran kommer avlagringen aft omrOras och 'Vitas" fran botten, vilket leder till eked tilifOrsel av bly respektive blydioxid till ackumulatoms elektroder. Pralctiska prov har visat att en &Man avlagring med en tjoddek av 40 mm reduceras till cirka 5 mm tjocklek till %IA av denna omrOringseffekt. The length of the base of the triangular pulses is in the omniclet 0.05 - 0.45 s, i.e. short charging pulses are used, which here reduces the beneficial effect of heating the battery. The current pulses are supplied to the battery at intervals of 0.5 s to 10 s, which also helps to avoid harmful and high heating of the battery. most intervals the median pulses are installed to a longer value. During these intervals, the pulses return to the supply line, indicated at 18 in the drawing. In the device according to the invention, the number of periods with current pulse charge and constant voltage charge, respectively, can be installed. Furthermore, such parameters as period lengths, current amplitudes, pulse lengths and pulse frequencies are variable and can be determined in% Nag depending on the condition of the boat to be conditioned and charged. After the initial state of the battery has been determined, the appropriate, adapted Arden on the said parameters for the reconditioning and charging process are thus set. After the reconditioning and charging cycles, the current comprises pulse pulse charging periods with constant voltage periods of 0-48 hours each, and the entire cycle can be Lox. ornfatts ten such cycles, i.e. maximum 48011 The alternation of current pulse charging periods and constant voltage periods can of course be varied in a number of ways as needed. A normal cycle can typically be 8 hours, e.g. 6 h pulse Charging charge saint 2 h constant voltage charge. Ten such cycles would thus take 80 hours. In the invention, however, continuous feeds are made, which can result in reconditioning and charging. the process is modified before the patient process, e.g. for cycles of 4 hours of nuclear pulse charging plus 4 hours of constant voltage charging, or cycles of 8 hours of pulse charging plus 8 hours of constant voltage charging. For longer periods of constant voltage, the battery is measured in a relatively good ski (before entering the heating should be not allowed high. 'l supply of current pulses to a batted generated frequencies in the range from 0 to about 20 MHz. The lead sulphate crystals here have a natural frequency of 3.77 MHz, which is why energy is absorbed efficiently at this frequency, which leads to the crystals being broken down, in the case of sulfur molecules in the case of lead accumulation in the case of lead accumulators with sulfuric acid as electrolyte. 6 When The supply voltage In the current pulse charge mode Exceeds the so-called gas voltage, 2.66 V / cell, you get a circulation of the acid in a lead accumulator. A discharged accumulator has a more or less hock deposit on the bottom of the accumulator and through this circulation of the acid the deposit comes off Stirred and 'Vitas' from the bottom, which leads to an equal supply of lead and lead dioxide to the accumulator electrodes. Practical tests have shown that a & Man deposit with a thickness of 40 mm is reduced to about 5 mm thickness to% IA of this stirring effect.
Det at av stor vikt alt tilise at batteriets temperatur under laddningen inte Overstiger en maximalt tillaten Ovre grans, typiskt i omradet 50°C, efterscwn batteriet da snabbt nedbryts. FOr den skull utnyttjas temperaturgivare 22 fOr fortlOpande Ovenrakning av batteritemperaturen. Temperaturgivaren 22 Sr ansluten till styrenheten 16 och nar ternperaturen Overskrider den matdmalt tillatna Ovre gransen, tex. 50°C, stirs laddningsenheten 2 till at avbtyta laddningen tills temperaturen sjunkit med tex. 2°, varpa laddningen aterupptas. StrAmmatnIngsfOrloppet Sr lampligen sã instalft, aft styrenheten 16 i ett sadant fall nedreglerar strOmstyrIcan nagot, vilket Ovenrakas med strOmgivaren 14. Pa detta salt undviker men, i baste fall, aft den Ovre ternperaturgransen Overskrids igen och laddningen avbryts, eller atrninstone aft tiden tills den &nit temperaturgransen nas Wangs. It is of great importance that the temperature of the battery during charging is not Exceeds the maximum permitted Upper limit, typically in the range of 50 ° C, after the battery degrades quickly. For this purpose, temperature sensor 22 is used for continuous monitoring of the battery temperature. The temperature sensor 22 is connected to the control unit 16 and when the temperature exceeds the food limit permitted upper limit, e.g. 50 ° C, stir the charging unit 2 to drain the charge until the temperature decreased by e.g. 2 °, warp the charge is resumed. The current supply process is suitably so instalft, because the control unit 16 in such a case down-regulates the power control somewhat, which is interrupted by the current sensor 14. On this salt avoids but, in the best case, the upper temperature limit is exceeded again and charging is interrupted, or atnitinstone temperature limit nas Wangs.
Uppfinningen her oven beskrivits i Wee hand tillampad pa blyadcumulato- rer, men tekniken enligt uppfinningen Sr Sven anvandbar pa andra typer av ackumulatorer. Salunda Sr den val !limped fOr anvandning pa NVCD-ackumulatorer fOr elbilsdrift. Om tekniken enligt uppfinningen anvands pa sadana batterier redan fran berjan, nar batteriema Sr nya, och om batteriema laddas med fOrhallandevis korta tidsintervall, kommer batteriema aft fortlOpande Nines i fullgott skid( 0th vane laddning och rekonditionering Iran utfOras pa fOrhallandevis kort tid, pa sin MO nagra timmar. FOrfarandet och anordningen enligt uppfinningen mejligger saledes laddning av batterier far elbilsdrift pa heft acceptabeft kort tid samtidlgt som batteriema rekonditioneras sit alt det i princip hale fiden bibehalls I nybafteriskick. Ef- tersom denna typ av batterier har on fast elektrolyt far man lita enbart till baterispanningen vid diagnosticering av batteriets tillstand infer en rekondltionering och laddning. 7 The invention has been described above in a way that applies to lead accumulators. rer, but the technique according to the invention Sr Sven applicable to other types of accumulators. Salunda Sr den val! Limped For use on NVCD accumulators for electric car operation. If the technology according to the invention is used on such batteries from the very beginning, when the batteries are new, and if the batteries are charged with relatively short time intervals, the batteries of continuous Nines will in full ski (0th habit charging and reconditioning Iran is carried out in a relatively short time, in its MO few hours. The procedure and device according to the invention thus allows charging of batteries for electric car operation on heft acceptabeft short time as batteries sit all it in principle hale fiden bibehalls I nybafteriskick. Ef- As this type of battery has a solid electrolyte, the battery voltage can only be relied upon when diagnosing the condition of the battery before reconditioning and charging. 7
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9901579A SE9901579A0 (en) | 1999-05-03 | 1999-05-03 | Method and apparatus for reconditioning and recharging of rechargeable batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9901579A SE9901579A0 (en) | 1999-05-03 | 1999-05-03 | Method and apparatus for reconditioning and recharging of rechargeable batteries |
Publications (3)
Publication Number | Publication Date |
---|---|
SE9901579D0 SE9901579D0 (en) | 1999-05-03 |
SE9901579L SE9901579L (en) | 2000-11-04 |
SE9901579A0 true SE9901579A0 (en) | 2000-11-04 |
Family
ID=20415432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE9901579A SE9901579A0 (en) | 1999-05-03 | 1999-05-03 | Method and apparatus for reconditioning and recharging of rechargeable batteries |
Country Status (1)
Country | Link |
---|---|
SE (1) | SE9901579A0 (en) |
-
1999
- 1999-05-03 SE SE9901579A patent/SE9901579A0/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
SE9901579D0 (en) | 1999-05-03 |
SE9901579L (en) | 2000-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2363604C (en) | Method and apparatus for ameliorating electrolyte stratification during rapid charging | |
JP2771036B2 (en) | Method and apparatus for charging, defrosting and formatting a storage battery | |
CN104145399B (en) | Battery control system and set of cells | |
US4016473A (en) | DC powered capacitive pulse charge and pulse discharge battery charger | |
EP1293377B1 (en) | Battery control device | |
JP4923116B2 (en) | Secondary battery system | |
JP3043808B2 (en) | Method for charging rechargeable batteries particularly quickly | |
EP3187359A1 (en) | Battery management system | |
CN106183480B (en) | Electric power supply device, printer and control method | |
CN107091990B (en) | A kind of battery residual capacity measurement and evaluation method | |
CN102089956A (en) | Battery charge and discharge control device and hybrid vehicle equipped with the device | |
FI66506C (en) | FOERFARANDE FOER AUTOMATISK LADDNING OCH OEVERVAKNING AV ETT BATTERI JAEMTE ANORDNING FOER UTFOERANDE AV FOERFARANDET | |
JPH10509838A (en) | Battery charging and conditioning method | |
CN1559098A (en) | System and method for battery charging | |
CN1941494A (en) | Rechargeable battery controller and method for controlling output of rechargeable battery | |
CN102197563A (en) | Failure diagnosis circuit, power supply device, and failure diagnosis method | |
JP2010035350A (en) | Method of controlling charge and discharge of battery in power supply device of hybrid car | |
US6259231B1 (en) | Rapid battery charger | |
JP2002246073A (en) | Abnormality detection device for set battery | |
SE9901579A0 (en) | Method and apparatus for reconditioning and recharging of rechargeable batteries | |
SE525604E5 (en) | Method of charging a battery, computer-readable medium and battery charger | |
CN106685015A (en) | Charging method, charging unit and electronic device | |
US20080129250A1 (en) | Circuits and related methods for charging a battery | |
US8129983B2 (en) | Method and apparatus for controlling charging of a battery in a communication device | |
KR20160061049A (en) | Battery Pack Charger for Improving Charge of Battery Pack Comprising Multiple Battery Units |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NAV | Patent application has lapsed |