SE536532C2 - Electronic driver for gas discharge lamp and method in one such driver - Google Patents
Electronic driver for gas discharge lamp and method in one such driver Download PDFInfo
- Publication number
- SE536532C2 SE536532C2 SE1250292A SE1250292A SE536532C2 SE 536532 C2 SE536532 C2 SE 536532C2 SE 1250292 A SE1250292 A SE 1250292A SE 1250292 A SE1250292 A SE 1250292A SE 536532 C2 SE536532 C2 SE 536532C2
- Authority
- SE
- Sweden
- Prior art keywords
- transistor
- frequency
- deactivation
- activated
- low
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 230000009849 deactivation Effects 0.000 claims abstract description 31
- 230000004913 activation Effects 0.000 claims abstract description 16
- 230000001360 synchronised effect Effects 0.000 claims abstract description 6
- 238000004146 energy storage Methods 0.000 claims description 17
- 238000005259 measurement Methods 0.000 claims description 11
- 239000003990 capacitor Substances 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 230000003213 activating effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001934 delay Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/282—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices
- H05B41/2825—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices by means of a bridge converter in the final stage
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/288—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
- H05B41/2885—Static converters especially adapted therefor; Control thereof
- H05B41/2887—Static converters especially adapted therefor; Control thereof characterised by a controllable bridge in the final stage
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/26—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC
- H05B41/28—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters
- H05B41/288—Circuit arrangements in which the lamp is fed by power derived from DC by means of a converter, e.g. by high-voltage DC using static converters with semiconductor devices and specially adapted for lamps without preheating electrodes, e.g. for high-intensity discharge lamps, high-pressure mercury or sodium lamps or low-pressure sodium lamps
- H05B41/292—Arrangements for protecting lamps or circuits against abnormal operating conditions
- H05B41/2921—Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
- H05B41/2925—Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal lamp operating conditions
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B41/00—Circuit arrangements or apparatus for igniting or operating discharge lamps
- H05B41/14—Circuit arrangements
- H05B41/36—Controlling
- H05B41/38—Controlling the intensity of light
- H05B41/39—Controlling the intensity of light continuously
- H05B41/392—Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Circuit Arrangements For Discharge Lamps (AREA)
Abstract
Föreliggande uppfinning avser en metod i en med en drivfrekvensverkande drivkrets (1) för en gasurladdningslampa (LAMP). Nämndadrivkrets innefattar en fullbryggskonfigurerad transistorbrygga (2) medförsta och andra högfrekvenstransistorer (M1,M2) och första och andralägfrekvenstransistorer (M4,M3), parvis inrättade i ett första aktiverattransistorpar innefattande en högfrekvenstransistor (M1; M2) och enlägfrekvenstransistor (M4; M3) samt ett andra avaktiverat transistorpar(M2; M1)lågfrekvenstransistor (M3; M4). Transistorparen (M1, M4; M2, M3) aktiveras respektive avaktiveras relativt varandra under en med nämnda innefattande en högfrekvenstransistor och en drivfrekvens synkroniserad växiingsmod. Vid växlingsmoden utförsavaktivering (S53) av högfrekvenstransistorn (M1; M2) i det förstaaktiverade transistorparet ett första tidsintervail (At1) efter avaktivering(S51) av Iägfrekvenstransistorn (M4; M3) i det första aktiverade(S55, S56)lågfrekvenstransistorn (M3; M4) och av högfrekvenstransistorn (M2; M1) i transistorparet. Aktivering utförs därefter av det andra avaktiverade transistorparet. Uppfinningen avser även en drivkrets (1) innefattande en transistorbrygga(2) och en styrenhet (3) inrättad för parvis avaktivering och aktivering avtransistorer (M1, M4; M2, M3) i enlighet med den uppfinningsenligametoden. (Figur 5a) The present invention relates to a method in one with a drive frequency acting drive circuit (1) for a gas discharge lamp (LAMP). The said drive circuit comprises a full bridge configured transistor bridge (2) including first and second high frequency transistors (M1, M2) and first and second low frequency transistors (M4, M3), arranged in pairs in a first activated transistor pair comprising a high frequency transistor (M1) and M1; second deactivated transistor pair (M2; M1) low frequency transistor (M3; M4). The transistor pairs (M1, M4; M2, M3) are activated and deactivated relative to each other, respectively, during a shift mode synchronized with said comprising a high-frequency transistor and a drive frequency. In the switching mode, deactivation (S53) of the high frequency transistor (M1; M2) in the first activated transistor pair is performed a first time interval (At1) after deactivation (S51) of the low frequency transistor (M4; M3) in the first activated (S55, S56) low frequency M3; and by the high frequency transistor (M2; M1) in the transistor pair. Activation is then performed by the second deactivated transistor pair. The invention also relates to a drive circuit (1) comprising a transistor bridge (2) and a control unit (3) arranged for paired deactivation and activation of transistors (M1, M4; M2, M3) in accordance with the method according to the invention. (Figure 5a)
Description
536 532 strömtoppar som förekommer vid normaldrift av lampan kan hållas inom de i standarden definierade gränsvärdena eller begränsas ytterligare. 536 532 current peaks that occur during normal operation of the lamp can be kept within the limit values defined in the standard or further limited.
Detta uppnås med metoden och drivkretsen enligt föreliggande uppfinning som uppvisar de särdrag och kännetecken som anges i patentkravet 1 respektive patentkravet 8.This is achieved by the method and the driving circuit according to the present invention which have the features and characteristics stated in claim 1 and claim 8, respectively.
I en fördelaktig utföringsform av den uppfinningsenliga metoden inhämtas och analyseras mätdata i en styrenhet i drivkretsen. Mätdata inhämtas från en till en lampterminal anslutande filterkrets och vid punkter i kretsen där dessa mätdata utgör en representation av energilagringen i filterkretsen. Avaktivering av den första högfrekvenstransistorn görs när den induktiva energilagringen i filterkretsen understiger en första förutbestämd nivå. Denna nivå inträffar ett första tidsintervall efter avaktivering av den första lågfrekvenstransistorn.In an advantageous embodiment of the method according to the invention, measurement data are collected and analyzed in a control unit in the drive circuit. Measurement data is obtained from a filter circuit connected to a lamp terminal and at points in the circuit where this measurement data constitutes a representation of the energy storage in the filter circuit. Deactivation of the first high frequency transistor is done when the inductive energy storage in the filter circuit is below a first predetermined level. This level occurs a first time interval after deactivation of the first low frequency transistor.
I en alternativ utföringsform av den uppfinningsenliga metoden bestäms istället ett första tidsintervall för avaktivering av den första högfrekvenstransistorn utifrån kapacitiv energilagringen i filterkretsen.In an alternative embodiment of the method according to the invention, a first time interval is instead determined for deactivating the first high-frequency transistor based on the capacitive energy storage in the filter circuit.
I det följande kommer uppfinningen att beskrivas mer i detalj med hänvisning till de bifogade ritningarna på vilka: Figur 1 Visar ett schematiskt blockschema för en fullbryggskonfigurerad transistorbrygga med ansluten gasurladdningslampa Figur 2 Beskriver signalschema för normaldrift, utan växling.In the following, the invention will be described in more detail with reference to the accompanying drawings, in which: Figure 1 Shows a schematic block diagram of a full bridge configured transistor bridge with connected gas discharge lamp Figure 2 Describes signal diagram for normal operation, without shifting.
Figur 3 a. Beskriver förloppen i drivkretsens komponenter vid växling under en puls b. Beskriver förloppen i drivkretsens komponenter vid växling under flera pulser 536 532 Figur4 a. Visar ett schematiskt blockschema för en utföringsform av den uppfinningsenliga drivkretsen för mätning av induktiv energilagring b. Visar ett utföringsform av den uppfinningsenliga drivkretsen för schematiskt blockschema för en andra mätning av kapacitiv energilagring c. Visar ett schematiskt blockschema för en tredje utföringsform av den uppfinningsenliga drivkretsen för mätning av induktiv energilagring Figur 5 a. Visar en flödesschema över en utföringsform för avaktivering respektive aktivering av transistorbryggan b. Visar ett flödesschema för en alternativ utföringsform för avaktivering respektive aktivering av transistorbryggan I figur 1 visas ett schematiskt blockschema för en fullbryggskonfigurerad transistorbrygga 2 för drivning av en gasurladdningslampa LAMP, företrädesvis en lampa av HID-typ (High lntensity Discharge). Kretsen innefattar fyra transistorer av MOSFET-typ M1-M4. Bryggan är inrättad för diagonal drift, varvid ett första transistorpar M1, M4 är aktiverade när ett andra transistorpar M2, M3 är avaktiverade och vice versa. Växlingen mellan aktiverat och avaktiverat tillstånd för transistorerna sker med en lågfrekvent drivfrekvens.Figure 3 a. Describes the processes in the components of the drive circuit when switching during a pulse b. Describes the processes in the components of the drive circuit when switching during several pulses 536 532 Figure 4 a. Shows a schematic block diagram of an embodiment of the drive circuit for measuring inductive energy storage b. an embodiment of the schematic block diagram drive circuit according to the invention for a second measurement of capacitive energy storage c. Shows a schematic block diagram of a third embodiment of the drive circuit for measuring inductive energy storage according to the invention Figure 5 a. Shows a flow chart of an deactivation and activation embodiment, respectively. transistor bridge b. Shows a flow chart for an alternative embodiment for deactivating and activating the transistor bridge, respectively. Figure 1 shows a schematic block diagram of a fully bridge configured transistor bridge 2 for driving a gas discharge lamp LAMP, preferably a HID type lamp (H igh lntensity Discharge). The circuit comprises four transistors of MOSFET type M1-M4. The bridge is arranged for diagonal operation, wherein a first transistor pair M1, M4 are activated when a second transistor pair M2, M3 are deactivated and vice versa. The switching between activated and deactivated states for the transistors takes place with a low-frequency drive frequency.
I figur 4a, 4b och 4c visas schematiska blockscheman för utföringsformer av den uppfinningsenliga drivkretsen 1, innefattande en transistorbrygga 2 i enlighet med figur 1. Drivkretsen 1 innefattar en fullbryggskonfigurerad transistorbrygga 2 och en till transistorbryggan kopplad styrenhet 3.Figures 4a, 4b and 4c show schematic block diagrams for embodiments of the drive circuit 1 according to the invention, comprising a transistor bridge 2 in accordance with figure 1. The drive circuit 1 comprises a full bridge configured transistor bridge 2 and a control unit 3 connected to the transistor bridge.
Drivkretsen spänningsmatas av en likriktad spänning som kan erhållas via likriktad nätspänning, från ett batteri eller från varje annan typ av likspänningskälla. Transistorbryggan innefattar fyra transistorer M1-M4, 536 532 MOSFET.The drive circuit is supplied with voltage by a rectified voltage which can be obtained via rectified mains voltage, from a battery or from any other type of direct voltage source. The transistor bridge comprises four transistors M1-M4, 536 532 MOSFET.
Transistorbryggan innefattar en högfrekvenssida med transistorerna M1, vilka i den visade utföringsformen är av typen M2 och en lågfrekvenssida med transistorerna M3, M4. Vid normaldrift av transistorbryggan 2 är transistorerna diagonalt aktiverade respektive avaktiverad M1, M4; M2, M3. Växling mellan aktiverat och avaktiverat tillstånd sker med en drivfrekvens för transistorbryggan som synkroniseras med drivfrekvensen för gasurladdningslampan LAMP. Vid normal driftsmod är den första högfrekvenstransistor M1 och den andra lågfrekvenstransistor M4 är aktiverade är under det att en första lågfrekvenstransistor M3 och en andra högfrekvenstransistor M2 är avaktiverade samt vice versa. Vid växling, som kontrolleras av styrenheten 3, avaktiveras den första högfrekvenstransistorn M1 och den andra lågfrekvenstransistorn M4 under det att den andra högfrekvenstransistorn M2 och den första lågfrekvenstransistorn aktiveras. Växling sker med nämnda drivfrekvens och medför att transistorerna parvis diagonalt växlar mellan aktiverat och avaktiverat läge med en växlingsfrekvens som är synkroniserad med drivfrekvensen.The transistor bridge comprises a high frequency side with the transistors M1, which in the embodiment shown are of the type M2 and a low frequency side with the transistors M3, M4. During normal operation of the transistor bridge 2, the transistors are diagonally activated and deactivated M1, M4, respectively; M2, M3. Switching between activated and deactivated state takes place with a drive frequency for the transistor bridge which is synchronized with the drive frequency for the gas discharge lamp LAMP. In normal operating mode, the first high frequency transistor M1 and the second low frequency transistor M4 are activated, while a first low frequency transistor M3 and a second high frequency transistor M2 are deactivated and vice versa. During switching, which is controlled by the control unit 3, the first high-frequency transistor M1 and the second low-frequency transistor M4 are deactivated while the second high-frequency transistor M2 and the first low-frequency transistor are activated. Switching takes place with said drive frequency and causes the transistors to switch in pairs diagonally between activated and deactivated mode with a switching frequency which is synchronized with the drive frequency.
Kondensatorn C1 och spolen L1 bildar tillsammans en filterkrets 5 till vilken en terminal 4 för urladdningslampan LAMP ansluts. Lampans andra terminal är via en spole L2 inkopplad mot transistorbryggan 2. L2 visas i den aktuella utföringsformen som en spole eller drossel, men kan även utgöras av en särskild tändspole för tändning av lampan. Filterkretsen 5 innefattande kondensatorn C1 och spolen L1 medverkar vid växlingen mellan aktiverat respektive avaktiverat tillstånd för de parvis ordnande transistorerna M1,M4; M2,M3 i bryggan 2. Denna växling kommer i det följande att benämnas växlingssekvens. Drift av urladdningslampan LAMP upprätthålls under växlingssekvensen.The capacitor C1 and the coil L1 together form a filter circuit 5 to which a terminal 4 for the discharge lamp LAMP is connected. The second terminal of the lamp is connected via a coil L2 to the transistor bridge 2. L2 is shown in the current embodiment as a coil or choke, but can also consist of a special ignition coil for igniting the lamp. The filter circuit 5 comprising the capacitor C1 and the coil L1 participates in the switching between activated and deactivated states of the paired transistors M1, M4, respectively; M2, M3 in the bridge 2. This change will hereinafter be referred to as the change sequence. Operation of the LAMP discharge lamp is maintained during the shift sequence.
Figur 5a och 5b beskriver utföringsformer för avaktivering och aktivering av transistorbryggan 2 i den i figurerna 4a, 4b eller 4c visade drivkretsen.Figures 5a and 5b describe embodiments for deactivating and activating the transistor bridge 2 in the drive circuit shown in Figures 4a, 4b or 4c.
Den illustrerade växllngssekvensen sker i en transistorbrygga 2 för vilken 536 532 den första högfrekvenstransistorn M1 och den andra lågfrekvenstransistorn M4 befinner sig i ett aktiverat tillstånd. växlingen initieras genom avaktivering S51 av den aktiverade lågfrekvenstransistorn M4, avaktiverade. varefter båda de lågfrekventa transistorerna M3, M4 hålls Växlingsförloppet synkroniseras med drivfrekvensen.The illustrated switching sequence takes place in a transistor bridge 2 for which 536 532 the first high-frequency transistor M1 and the second low-frequency transistor M4 are in an activated state. the switching is initiated by deactivating S51 of the activated low frequency transistor M4, deactivated. after which both the low-frequency transistors M3, M4 are kept The changeover process is synchronized with the drive frequency.
Avaktivering S53 av den första högfrekvenstransistorn utförs ett första tidsintervall efter avaktiveringen S51 av lågfrekvenstransistorn M4.Deactivation S53 of the first high frequency transistor is performed a first time interval after the deactivation S51 of the low frequency transistor M4.
Bestämning S52 av det första tidsintervallet At1 kan utföras via mätning och analys av värden från mätpunkter i drivkretsen vars värden den till filterkretsen 5. Nämnda bestämning S52 kan exempelvis göras genom representerar energilagringen i lampterminalen anslutande nollströmsmätning ZCD, nollspänningsmätning ZVD eller varje annan metod för att fastställa att aktuellt mätvärde motsvarar eller understiger en given nivå. Figur 3a beskriver ett växlingsförlopp i transistorbryggan.Determination S52 of the first time interval At1 can be performed via measurement and analysis of values from measuring points in the drive circuit whose values it to the filter circuit 5. Said determination S52 can for example be made by representing the energy storage in the lamp terminal connecting zero current measurement ZCD, zero voltage measurement ZVD or any other method that the current measured value corresponds to or falls below a given level. Figure 3a describes a changeover process in the transistor bridge.
Strömmen genom spolen L1 och spänningen i kondensatorn C1 utgör exempel på mätvärden som kan nyttjas tillsammans eller var och en för sig för att bestämma energilagringen ifilterkretsen och därigenom även för att fastställa det första tidsintervallet At1_ Den fördröjda avaktiveringen S53 av M1 syftar till att öka spänningen över C1 från en nivå som väsentligen motsvarar spänningen över urladdningslampan Vlamp till en nivå som väsentligen motsvarar en skillnad mellan matningsspänningen Vbus och lampspänningen Vlamp. Den uppbyggda energinivån i L2 möjliggör nollspänningsswitchning ZVS av transistorn M3. När det till styrenheten inhämtade mätresultatet indikerar tillräcklig potentialuppbyggnad i C1, initierar styrenheten aktiveringen S55 av lågfrekvenstransistorn M3. Den i ett diagonalpar med M3 arbetande högfrekvenstransistorn M2 aktiveras vid väsentligen vid samma tidpunkt eller alternativt med en tidsmässig fördröjning som medger omkastning av strömmen genom L1, varigenom potentialen över kondensator C1 påverkas och ytterligare reducerar den strömtopp annars skulle uppkomma vid omkopplingen. 536 532 Lågfrekvenstransistorn M3 aktiveras i den i figur 4a illustrerade utföringsformen efter avaktivering av de tidigare aktiverade transistorerna M1 och M4, men aktivering av M3 kan även utföras i en sekvens som är parallell med avaktiveringen av M1. Aktivering av M3 sker inom ett tidsintervall Atg, Såsom illustreras i figur 5a respektive 5b, kan detta tidsintervall fastställas efter avaktiveringen av M1 eller parallellt med den sekvens varvid tidsintervallet för avaktivering av M1 fastställs och avaktiveringen genomförs. Tidsintervallet från avaktivering av M4 till aktivering av M3 kan dock inte utsträckas längre än den tidsrymd som gasurladdningslampans normaldriftstillstånd kan upprätthållas med avaktiverad lågfrekvenssida i transistorbryggan. De fördröjningar avseende avaktivering av M1 respektive aktivering av M3 som erhålls genom nämnda första tidsintervall At1 respektive andra tidsintervall Atz, kan även förekomma som förutbestämda värden från styrenheten 3, vilket medför att bestämningen S52 av nämnda första tidsintervall At1, bestämningen S54 av nämnda andra tidsintervall At2_ eller bestämningen av båda tidsintervallen kan utgå vid utförande av den uppfinningsenliga metoden. De fördröjningar som erhålls genom dessa tidsintervall, kvarstår dock oberoende av på vilket sätt tidsintervallen har bestämts.The current through the coil L1 and the voltage in the capacitor C1 are examples of measured values that can be used together or individually to determine the energy storage in the filter circuit and thereby also to determine the first time interval At1. The delayed deactivation S53 of M1 aims to increase the voltage across C1 from a level which substantially corresponds to the voltage across the discharge lamp Vlamp to a level which substantially corresponds to a difference between the supply voltage Vbus and the lamp voltage Vlamp. The built-up energy level in L2 enables zero voltage switching ZVS of the transistor M3. When the measurement result obtained for the control unit indicates sufficient potential build-up in C1, the control unit initiates the activation S55 of the low-frequency transistor M3. The high-frequency transistor M2 operating in a diagonal pair with M3 is activated at substantially the same time or alternatively with a time delay which allows reversal of the current through L1, thereby affecting the potential across capacitor C1 and further reducing the current peak that would otherwise occur during switching. 536 532 The low frequency transistor M3 is activated in the embodiment illustrated in Figure 4a after deactivation of the previously activated transistors M1 and M4, but activation of M3 can also be performed in a sequence which is parallel to the deactivation of M1. Activation of M3 takes place within a time interval Atg. As illustrated in Figures 5a and 5b, respectively, this time interval can be determined after the deactivation of M1 or in parallel with the sequence in which the time interval for deactivation of M1 is determined and the deactivation is performed. However, the time interval from deactivation of M4 to activation of M3 cannot be extended beyond the period of time that the normal operating state of the gas discharge lamp can be maintained with deactivated low frequency side in the transistor bridge. The delays regarding deactivation of M1 and activation of M3 obtained by said first time interval At1 and second time interval Atz, respectively, can also occur as predetermined values from the control unit 3, which means that the determination S52 of said first time interval At1, the determination S54 of said second time interval At2_ or the determination of both time intervals can be omitted when carrying out the method according to the invention. The delays obtained by these time intervals, however, remain independent of the manner in which the time intervals have been determined.
I den i figur 4a visade utföringsformen detekterar styrenheten 3 strömmen genom spolen TR1. Vid en alternativ utföringsform kan på motsvarande sätt strömmen genom spolen L1 detekteras.In the embodiment shown in Figure 4a, the control unit 3 detects the current through the coil TR1. In an alternative embodiment, the current through the coil L1 can be detected in a corresponding manner.
I den i figur 4b visade utföringsformen av drivkretsen, är styrenheten 3 istället inrättad att detektera en nollspänning ZVD eller en spänning understigande ett visst förutbestämt gränsvärde. Den visade kretsen fungerar i övrigt på samma sätt som den genom figur 4a beskrivna drivkretsen.In the embodiment of the drive circuit shown in Figure 4b, the control unit 3 is instead arranged to detect a zero voltage ZVD or a voltage below a certain predetermined limit value. The circuit shown otherwise functions in the same way as the drive circuit described by Figure 4a.
Figur 4c visar en alternativ utföringsformen av drivkretsen varvid styrenheten 3 detekterar energinivån i spolen L1 via en hjälplindning. 536 532 Figur 3a beskriver mätvärden i filterkretsen 5 vid ett växlingsförlopp i transistorbryggan. Transistorn M1 drivs med en högfrekvent puls som i figur 3a illustreras av en fyrkantpuls. Transistorn M4 drivs på motsvarande sätt av en lågfrekvent puls. Växlingen i transistorbryggan påbörjas genom avaktivering av transistorn M4. Den till drivkretsen 2 anslutna styrenheten 3, styr såväl den högfrekventa pulsen som den lågfrekventa pulsen. Efter avaktivering av transistorn M4, avaktiveras även högfrekvenstransistorn M1, men denna avaktivering sker tidsfördröjt med ett första tidsintervall At1 så att högfrekvenstransistorer avaktiveras efter ett förlängt tidsintervall innefattande ett normalt switchintervall för transistorerna samt en fördröjning motsvarande nämnda första tidsintervall At. Transistorbryggan befinner sig efter avaktiveringen av högfrekvenstransistorn M1 i en växlingsmod, varvid filterkretsen 5 fungerar i gränslandet mellan kontinuerlig och diskontinuerlig ström. Strömmen lm över den i filterkretsen ingående induktansen L1 avtar successivt fram till aktivering av lågfrekvenstransistorn M3. Lågfrekvenstransistorn M3 aktiveras i för den illustrerade utföringsformen efter avaktivering av de tidigare aktiverade transistorerna M1 och M4. Aktivering av M3 kan påbörjas redan innan M1 är avaktiverad. Tidsintervallet från avaktivering av M4 till aktivering av M3 kan inte utsträckas längre än den tidsrymd som gasurladdningslampans normaldriftstillstånd kan upprätthållas med avaktiverad lågfrekvenssida i transistorbryggan. Den med den första lågfrekvenstransistorn M3 samverkande andra högfrekvenstransistorn M2, aktiveras samtidigt med lågfrekvenstransistorn M3 eller efterföljande aktiveringen av M3.Figure 4c shows an alternative embodiment of the drive circuit in which the control unit 3 detects the energy level in the coil L1 via an auxiliary winding. 536 532 Figure 3a describes measured values in the filter circuit 5 during a changeover process in the transistor bridge. Transistor M1 is driven by a high frequency pulse which is illustrated in Figure 3a by a square pulse. The transistor M4 is similarly driven by a low frequency pulse. The switching in the transistor bridge is started by deactivating the transistor M4. The control unit 3 connected to the drive circuit 2 controls both the high-frequency pulse and the low-frequency pulse. After deactivation of the transistor M4, the high frequency transistor M1 is also deactivated, but this deactivation takes place time-delayed with a first time interval At1 so that high-frequency transistors are deactivated after an extended time interval comprising a normal switch interval for the transistors and a delay corresponding to said first time interval At. After the deactivation of the high-frequency transistor M1, the transistor bridge is in a switching mode, the filter circuit 5 operating in the boundary between continuous and discontinuous current. The current lm across the inductance L1 included in the filter circuit gradually decreases until activation of the low-frequency transistor M3. The low frequency transistor M3 is activated for the illustrated embodiment after deactivation of the previously activated transistors M1 and M4. Activation of M3 can be started even before M1 is deactivated. The time interval from deactivation of M4 to activation of M3 can not be extended beyond the period of time that the normal operating state of the gas discharge lamp can be maintained with deactivated low frequency side in the transistor bridge. The second high-frequency transistor M2 cooperating with the first low-frequency transistor M3 is activated simultaneously with the low-frequency transistor M3 or the subsequent activation of M3.
Transistorbryggan befinner sig därefter i ett aktiverat driftstillstånd, vilket fortgår fram till nästa växlingstillstånd varvid avaktivering av transistorparet (M2, M3) och aktivering av transistorparet (M1, M4) utförs på det sätt som tidigare beskrivits för den omvända situationen.The transistor bridge then operates in an activated operating state, which continues until the next switching state, whereby deactivation of the transistor pair (M2, M3) and activation of the transistor pair (M1, M4) are performed in the manner previously described for the reverse situation.
I en alternativ, i figur 3b illustrerad utföringsform, är det möjligt utföra den ovan beskrivna avaktiveringen under flera pulser, där flera 536 532 högfrekvenspulser förlängs med nämnda tidsintervall under nämnda växlingsförlopp. Genom att tillåta flera pulser på M1 samtidigt som M3 aktiveras minskas problem med strömtoppar vid växlingsförloppet ytterligare.In an alternative embodiment illustrated in Figure 3b, it is possible to perform the deactivation described above during several pulses, where several 536 532 high-frequency pulses are extended by said time interval during said changeover process. By allowing several pulses on M1 at the same time as M3 is activated, problems with current peaks during the changeover process are further reduced.
Claims (1)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1250292A SE536532C2 (en) | 2012-03-23 | 2012-03-23 | Electronic driver for gas discharge lamp and method in one such driver |
PCT/SE2013/050319 WO2013141809A2 (en) | 2012-03-23 | 2013-03-21 | Method and driver for a gas discharge lamp |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE1250292A SE536532C2 (en) | 2012-03-23 | 2012-03-23 | Electronic driver for gas discharge lamp and method in one such driver |
Publications (2)
Publication Number | Publication Date |
---|---|
SE1250292A1 SE1250292A1 (en) | 2013-09-24 |
SE536532C2 true SE536532C2 (en) | 2014-02-04 |
Family
ID=49223426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE1250292A SE536532C2 (en) | 2012-03-23 | 2012-03-23 | Electronic driver for gas discharge lamp and method in one such driver |
Country Status (2)
Country | Link |
---|---|
SE (1) | SE536532C2 (en) |
WO (1) | WO2013141809A2 (en) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3654089B2 (en) * | 1999-10-26 | 2005-06-02 | 松下電工株式会社 | Power supply |
US6380694B1 (en) * | 2000-09-22 | 2002-04-30 | Matsushita Electric Works R & D Laboratory | Variable structure circuit topology for HID lamp electronic ballasts |
US6593703B2 (en) * | 2001-06-15 | 2003-07-15 | Matsushita Electric Works, Ltd. | Apparatus and method for driving a high intensity discharge lamp |
US6992902B2 (en) * | 2003-08-21 | 2006-01-31 | Delta Electronics, Inc. | Full bridge converter with ZVS via AC feedback |
EP1897418A2 (en) * | 2005-06-21 | 2008-03-12 | Koninklijke Philips Electronics N.V. | Method for driving an inverter of a gas discharge supply circuit |
WO2010052630A1 (en) * | 2008-11-07 | 2010-05-14 | Koninklijke Philips Electronics N.V. | Lamp driver |
-
2012
- 2012-03-23 SE SE1250292A patent/SE536532C2/en not_active IP Right Cessation
-
2013
- 2013-03-21 WO PCT/SE2013/050319 patent/WO2013141809A2/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2013141809A3 (en) | 2013-11-14 |
WO2013141809A2 (en) | 2013-09-26 |
SE1250292A1 (en) | 2013-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4848216B2 (en) | Booster circuit, motor drive circuit, and electric power steering control device | |
KR101778694B1 (en) | High-frequency heating device and method and apparatus for controlling power supply of the same | |
CN105980697B (en) | For the method for resonant frequency detection in corona ignition | |
CN103605090A (en) | Demagnetization detection method, demagnetization detection circuit and constant current driver using circuit | |
CN102404899B (en) | Method and device for controlling effuser connected to cutting phase dimmer | |
CN103728578A (en) | Demagnetization detection method, demagnetization detection circuit and constant current driver applying demagnetization detection circuit | |
CN104010399A (en) | Electromagnetic heating apparatus and control method thereof | |
CN1728913B (en) | Driver circuit for an HID lamp and method for operating an HID lamp | |
SE536532C2 (en) | Electronic driver for gas discharge lamp and method in one such driver | |
US8040119B2 (en) | Valley detecting circuit and method for a voltage across a switching device | |
KR101331924B1 (en) | Apparatus for recycling and charging battery | |
US6625043B2 (en) | Power supply unit and driving method thereof | |
JPWO2018034014A1 (en) | Barrier discharge ignition device | |
CN203759232U (en) | Demagnetization detecting circuit and constant current driver applying the same | |
JP4274815B2 (en) | Electric motor drive control device | |
JP2006079983A (en) | Discharge lamp lighting device | |
WO2018034014A1 (en) | Barrier discharge ignition apparatus | |
CN104348336A (en) | Full-bridge secondary side rectification control circuit | |
KR20070044022A (en) | Lamp Driver Provides Synchronization During Current | |
CN100403860C (en) | Discharge lamp starter | |
JP5993618B2 (en) | Discharge lamp lighting device | |
US11811199B2 (en) | Apparatus and methods of detecting transient discharge modes and/or closed loop control of pulsed systems and method employing same | |
JP3643062B2 (en) | Power supply for electric dust collection | |
KR102335230B1 (en) | Apparatus and method of controlling motor for vehicle | |
JP7168510B2 (en) | Discharge control device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |