SE428971B - OPTICAL SENSOR - Google Patents
OPTICAL SENSORInfo
- Publication number
- SE428971B SE428971B SE8107188A SE8107188A SE428971B SE 428971 B SE428971 B SE 428971B SE 8107188 A SE8107188 A SE 8107188A SE 8107188 A SE8107188 A SE 8107188A SE 428971 B SE428971 B SE 428971B
- Authority
- SE
- Sweden
- Prior art keywords
- optical sensor
- sensor according
- resonant circuit
- optical
- energy
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims 27
- 239000003990 capacitor Substances 0.000 claims 2
- 230000001419 dependent effect Effects 0.000 claims 2
- 238000005424 photoluminescence Methods 0.000 claims 2
- 239000013078 crystal Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 239000007788 liquid Substances 0.000 claims 1
- 238000005259 measurement Methods 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 claims 1
- 230000035699 permeability Effects 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 claims 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/243—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the phase or frequency of AC
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
- Optical Transform (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
'\ 10 15 20 25 30 8107188-8 I en speciellt föredragen utföringsform består omvandlarelementen av foto- och lysdioder och resonanskretsarna av parallell- eller seriekopplade induk- tanser eller kapacitanser, varvid kapacitansvärden eller induktansvärdet kan vara ett mått på ingångsvariabeln (stor-heten). Sensorn matas med. optisk energi av definierat frekvensinnehåll, t ex i pulsfonn. In a particularly preferred embodiment, the transducer elements consist of photodiodes and LEDs and the resonant circuits consist of parallel or series-connected inductances or capacitances, the capacitance values or the inductance value being a measure of the input variable (quantity). . The sensor is fed with. optical energy of defined frequency content, eg in pulse form.
Jämfört med andra optiska givarprinciper har sensorn sålunda enligt uppfin- ningen följande fördelar: Den kan i flera fall uppbyggas med. hjälp av kommersiellt tillgängliga elektro- nikkomponenter.Compared with other optical sensor principles, the sensor thus has the following advantages according to the invention: It can in several cases be constructed with. using commercially available electronic components.
Den har en okomplicerad optisk uppbyggnad eftersom signalinformationen kan överföras i form av en intensitetsoberoende och våglängdsoberoende module- rings frekvens .It has an uncomplicated optical structure because the signal information can be transmitted in the form of an intensity-independent and wavelength-independent modulation frequency.
Samma optiska överföringslänk kan utnyttjas för flera sensorer genom frek- vensmultiplexing.The same optical transmission link can be used for several sensors by frequency multiplexing.
Uppfinningen är närmare exemplifierad nedan och i bifogade figurer, av vilka fig 1 visar grundprincipen för sensorn, fi'g 2 en utförandeform av ett komplett system, fig 3, 4 och 6 några alternativa utformningar av sensorn samt fig 5 en utformning' med två resonanskretsar medgemensam -optisk matning.The invention is further exemplified below and in the accompanying figures, of which Fig. 1 shows the basic principle of the sensor, Fig. 2 shows an embodiment of a complete system, Figs. 3, 4 and 6 some alternative designs of the sensor and Fig. 5 a design with two resonant circuits common -optic feeding.
Sensorns principiella funktion (se fig 1) är följande: En ljuspuls 1 infaller mot sensorns mottagarenhet 2, som består av en eller flera fotodioder. Den därvid uppkomna elektriska spänningen driver en ström genom sándarenheten 5, exempelvis 'bestående av en lysdiod. Denna ström modu- leras genom resonanslccetsen 4, varvid det utsända ljuset får en oscillerande intensitet med en ringningsfrekvens fr som i huvudsak bestäms av resonans- kretsen 4. Denna är utformad så, att den variabel, som skall mätas eller de- tekteras, ger en påverkan på resonansfrekvensen fr. Alternativt lIåJter man ingångsvariabeln påverka kretsens Q-värde eller dämpning (Q = wo E), vilket dock ställer högre lmav på de i systemet ingående komponenterna. Se flödes/ /tid-kurvorna till vänster i fig 1, där i den övre visas förhållandet mellan øín och tid och i den nedre øut och tid.The principal function of the sensor (see Fig. 1) is as follows: A light pulse 1 is incident on the sensor's receiver unit 2, which consists of one or more photodiodes. The resulting electrical voltage drives a current through the transmitter unit 5, for example consisting of an LED. This current is modulated by the resonant circuit 4, the emitted light having an oscillating intensity with a ringing frequency fr which is mainly determined by the resonant circuit 4. This is designed so that the variable to be measured or detected gives a effect on the resonant frequency fr. Alternatively, the input variable is allowed to influence the Q value or attenuation of the circuit (Q = wo E), which, however, places a higher lmav on the components included in the system. See the flow / / time curves on the left in Fig. 1, where in the upper one the relationship between øín and time is shown and in the lower øut and time.
Fig 2 visar en utförandeform på ett komplett system, baserat på sensorprin- cipen. För signaltransmission används en optisk fiber 5 med två, förgreningar 10 15 20 25 ßO 35 8107188-8 6 och 7. Lysdíoden 8 avger en ljuspuls av hög intensitet och kort varaktig- het (i allmänhet kortare än resonansfrekvensens periodtid). Det från sensor- enheten 9 erhållnaringningsförloppet detekteras av fotodioden 10, vars foto- ström förstärka i förstärkaren 11. signalen banapessfiltrerae (12) för att minska inverkan av brus och andra störningar, t ex elektromagnetisk överkopp- ling från exciteringspulsen till lysdioden 8. Den filtrerade signalen utgör insignal till en s k PLL-krets 15 Qhase Locked _I¿oop, fastlåst slinga). Denna består av en faskomparator 14, ett lågpassfilter samt en spänningsstyrd oscillator 16 (voltage controlled oscillator, V00). I faskomparatorn 14 om- vandlas eventuella variationer i sigrxalens frekvens till elektriska spän- ningsvariationer, som ”låser” den spänningsstyrda oscillatorns 16 frekvens till insignalfrekvensen. Utsignalen från PLL-kretsen påföres en frekvens- delare eller räknare 17, som delar ned frekvensen en jäum multipel, t ex fyra eller åtta. Denna signal går vidare till en monovippa 18 _för bestämning av pulsens varaktighet, och ett drivsteg 19 för att tillräcklig uteffekt till lysdioden 8 skall erhållas. Som utsignal till en eventuell signalbehandlings- enhet, presentationsenhet eller effektororgan kan antingen användas den ana- loga utsignalen från lågpassfiltret 15 eller den frekvensmodulerade signalen från den spänningsstyrda oscillatom 16.Fig. 2 shows an embodiment of a complete system, based on the sensor principle. For signal transmission, an optical fiber 5 with two, branches 10 15 20 25 ßO 35 8107188-8 6 and 7 is used. The LED 8 emits a light pulse of high intensity and short duration (generally shorter than the period time of the resonant frequency). The process obtained from the sensor unit 9 is detected by the photodiode 10, the photocurrent of which amplifies in the amplifier 11. the signal path filter (12) to reduce the effect of noise and other disturbances, for example electromagnetic switching from the excitation pulse to the LED 8. The filtered the signal constitutes an input signal to a so-called PLL circuit 15 Qhase Locked _I¿oop, locked loop). This consists of a phase comparator 14, a low-pass filter and a voltage controlled oscillator 16 (V00). In the phase comparator 14, any variations in the frequency of the sigrxal are converted into electrical voltage variations, which “lock” the frequency of the voltage-controlled oscillator 16 to the input signal frequency. The output signal from the PLL circuit is applied to a frequency divider or counter 17, which divides the frequency by an even multiple, for example four or eight. This signal goes on to a mono flip-flop 18 to determine the duration of the pulse, and a drive stage 19 to obtain sufficient output power to the LED 8. As an output signal to a possible signal processing unit, presentation unit or effector means, either the analog output signal from the low-pass filter 15 or the frequency-modulated signal from the voltage-controlled oscillator 16 can be used.
Det är givetvis även möjligt att exeitera resonanskretsen med en insignal av ' annan form, t ex en sinusformad signal. I detta fall kan amplitud, frekvens och fasläge hos utsignalen utnyttjas för att ge information om resonansfrek- nsnf. ve e r Fig 3 visar några alternativa utformningar av resonanskretsen 4. I fig ia används en parallellresonanskrets, där den variabel som skall mätas/detekte- ras påverkar kretsens kapacitans C. Resonansfrekvensen ges av fr = 1/2 7FV_.It is of course also possible to excite the resonant circuit with an input signal of another form, for example a sinusoidal signal. In this case, the amplitude, frequency and phase position of the output signal can be used to provide information about the resonant frequency nf. Fig. 3 shows some alternative designs of the resonant circuit 4. In Fig. 1a a parallel resonant circuit is used, where the variable to be measured / detected affects the capacitance C of the circuit. The resonant frequency is given by fr = 1/2 7FV_.
I fig 3b är det induktansen L som påverkas av ingångsvariabeln. I fig 3st och šd har serieresonanskretsar använts med modulation av kapacitans (C) respek- tive inaureans (L).In Fig. 3b it is the inductance L which is affected by the input variable. In Figs. 3st and šd, series resonant circuits have been used with modulation of capacitance (C) and inaurance (L), respectively.
I fig 4 har LC-kretsen integrerats med utnyttjande av tunnfilms- eller tj ockfilmstelmologi. Induktansen och kapacitansen är här distribuerade para- metrar och utförda som ledande skikt på. två. plattor 20, 21. De ledande skik- ten har givits mönster såsom två. flata spolar 22. Resonansfrekvensen blir beroende av avståndet mellan plattorna, och anordningen kan alltså med lämp- lig mekanisk utformning t ex detektera en anbringad kraft 23. 10 15 20 25 50 8107188-8 Ytterligare möjligheter till alternativa utformningar av resonanskretsen är användning av den mekaniska resonansen i en piezoelektrisk lcristall, t ex kvarts, .eller element baserade på akustiska ytvågor.In Fig. 4, the LC circuit has been integrated using thin film or thick film stelmology. The inductance and capacitance are distributed parameters here and made as conductive layers. two. plates 20, 21. The conductive layers have been given patterns such as two. flat coils 22. The resonant frequency becomes dependent on the distance between the plates, and the device can thus with a suitable mechanical design, for example, detect an applied force 23. 10 15 20 25 50 8107188-8 Further possibilities for alternative designs of the resonant circuit are the use of the mechanical the resonance in a piezoelectric crystal, such as quartz, or elements based on acoustic surface waves.
I fig Sa visas hur två sensorelement kan kombineras för att t ex temperatur- kompensera eller utnyttja samma optiska länk för att överföra två. oberoende mätsignaler. Två extra fiberförgreningar 24, 25 jämfört med. fig 2 har in- förts. Genom denna anordning exciteras de båda resonanskretsazna med samma puls 26 (fig Sh). Om de båda resonansfrekvenserna antages uppfylla villkoret Af <4 fr, där Af är skillnaden i resonansfrekvens, fås en utsignal øut såsom visas i fig Sb. Det exponentiellt avklingande ringningsförloppet i fig 1 har nu en överlagrad svävningsfrekvens = Af. En svårighet vid realisering av ett dylikt system är dock ett betydligt större krav på högt Q-värde hos resonanskretsaz-na för att möjliggöra en tillräckligt noggrann bestämning av Afa I mera generella multiplextillämpningar bör de olika ingående resonansfrek- vensema vara så åtskilda, att de kan exciteras oberoende av varandra med lämpligt valda kurvformer på excitationssigialen.Fig. 5a shows how two sensor elements can be combined to, for example, temperature compensate or use the same optical link to transmit two. independent measurement signals. Two extra fiber branches 24, 25 compared to. Fig. 2 has been introduced. Through this device, the two resonant circuits are excited by the same pulse 26 (Fig. Sh). If the two resonant frequencies are assumed to satisfy the condition Af <4 fr, where Af is the difference in resonant frequency, an output signal øut is obtained as shown in Fig. Sb. The exponentially decaying ringing process in Fig. 1 now has a superimposed hovering frequency = Aff. A difficulty in realizing such a system, however, is a much greater requirement for a high Q-value of the resonant circuits to enable a sufficiently accurate determination of Afa. In more general multiplex applications, the different input resonant frequencies should be so separated that they can are excited independently with suitably selected waveforms on the excitation signal.
Ett flertal realiseringsmöjligheter erbjuds även ifråga om ingångsvariabelns påverkan på. resonansfrekvensen fr. Tabellen nedan ger några av dessa.A number of realization opportunities are also offered in terms of the input variable's impact on. the resonant frequency fr. The table below gives some of these.
Ingångsvariabel Aktivt element y Mekanism Tungelement, magnet, In- och urkoppling av parallell- mekanisk omkopplare, eller seriekopplad L eller C. kontakter, relä.Input variable Active element y Mechanism Heavy element, magnet, Connection and disconnection of parallel mechanical switch, or series-connected L or C. contacts, relay.
Läge (on/off) ' Variation av t ex plattavstånd för G, läge hos ferritkäi-na L.Position (on / off) 'Variation of eg plate spacing for G, position of the ferrite chains L.
Mekaniskt omvandlarelement. läge (kontinuerligt), L, C kraft, tryck, vätska- nivå, flöde Bimetallswitch In- och urkoppling av L eller C.Mechanical converter element. position (continuous), L, C force, pressure, fluid level, flow Bimetallic switch On or off L or C.
Temperatur' (on/ off) Variation av C (rymdladlnings- Temperatur (konti- nioa, fetoaioa nuerlig) område) med temperaturen.Temperature '(on / off) Variation of C (space charge temperature (continuous, fetoaioa nuerlig) range) with temperature.
Spänning, ström, C Spanningsberoende kapacitans, magnetfält kapacitansdiod.Voltage, current, C Voltage dependent capacitance, magnetic field capacitance diode.
'IQ (on/off), I. ömsesidig inauktans bildad av magnetfält virvelströmmar i näraliggande metallföremål.IQ (on / off), I. mutual inactivity formed by magnetic field eddy currents in nearby metal objects.
Ström, magnetfält L Mättnad av induktanskärna.Current, magnetic field L Saturation of inductance core.
Claims (17)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8107188A SE428971B (en) | 1981-12-02 | 1981-12-02 | OPTICAL SENSOR |
DE19823243074 DE3243074A1 (en) | 1981-12-02 | 1982-11-22 | OPTICAL SENSOR |
JP20778482A JPS58105398A (en) | 1981-12-02 | 1982-11-29 | Optical sensor |
GB08234234A GB2113835B (en) | 1981-12-02 | 1982-12-01 | Sensor with optically excited resonant circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE8107188A SE428971B (en) | 1981-12-02 | 1981-12-02 | OPTICAL SENSOR |
Publications (2)
Publication Number | Publication Date |
---|---|
SE8107188L SE8107188L (en) | 1983-06-03 |
SE428971B true SE428971B (en) | 1983-08-01 |
Family
ID=20345183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SE8107188A SE428971B (en) | 1981-12-02 | 1981-12-02 | OPTICAL SENSOR |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPS58105398A (en) |
DE (1) | DE3243074A1 (en) |
GB (1) | GB2113835B (en) |
SE (1) | SE428971B (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2131552B (en) * | 1982-11-26 | 1986-12-31 | Atomic Energy Authority Uk | Non-destructive testing using eddy-currents |
JPS60111983A (en) * | 1983-11-22 | 1985-06-18 | Honda Motor Co Ltd | Object detecting apparatus |
GB8614746D0 (en) * | 1986-06-17 | 1986-07-23 | Nicholas M J | Sensing device |
DE4129719A1 (en) * | 1991-09-06 | 1992-03-05 | Gistl Egmont | Simultaneous oil temp. and level measuring appts. - uses single phototransistor and light emitting diode with functional changeover by optical coupler for simultaneous display |
DE19510134A1 (en) * | 1995-03-21 | 1996-10-02 | Hydrometer Gmbh | Circuit for measuring physical parameters esp. temp. using Thermistor |
DK1057150T3 (en) | 1997-12-22 | 2003-02-10 | Bent Thorning Bensen As | Method and device for detecting a fluid |
KR102038858B1 (en) | 2015-06-30 | 2019-10-31 | 생-고뱅 퍼포먼스 플라스틱스 코포레이션 | Leak detection system |
EP3333776B1 (en) * | 2016-12-07 | 2021-01-27 | Porta Saber Lda | Activating rfid transponder with light |
US12013313B2 (en) | 2017-11-27 | 2024-06-18 | Saint-Gobain Performance Plastics Corporation | Leak detection system and method of making and using the same |
-
1981
- 1981-12-02 SE SE8107188A patent/SE428971B/en not_active IP Right Cessation
-
1982
- 1982-11-22 DE DE19823243074 patent/DE3243074A1/en not_active Withdrawn
- 1982-11-29 JP JP20778482A patent/JPS58105398A/en active Pending
- 1982-12-01 GB GB08234234A patent/GB2113835B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DE3243074A1 (en) | 1983-06-09 |
GB2113835A (en) | 1983-08-10 |
SE8107188L (en) | 1983-06-03 |
GB2113835B (en) | 1985-06-26 |
JPS58105398A (en) | 1983-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4345482A (en) | Fiber optical devices for measuring physical phenomenon | |
SE428971B (en) | OPTICAL SENSOR | |
Geiger et al. | Electronic tracking system for multiplexed fibre grating sensors | |
RU2405160C1 (en) | Acceleration measurement device | |
EP0244087A2 (en) | Remote temperature-compensated pressure sensor | |
JPH02287266A (en) | Dc current measuring apparatus | |
JPH06342064A (en) | Measuring device of transit time of electromagnetic wave | |
EP0435553A2 (en) | Optical sensing systems | |
CN110470326A (en) | Optical sensor system | |
JPH03176671A (en) | Frequency detector for discriminating operation of multiple longitudinal mode laser | |
RU2165625C1 (en) | Gear measuring accelerations | |
SU828120A1 (en) | Device for varicap rejection by loss resistance | |
RU2688878C1 (en) | Compensatory accelerometer | |
RU2754203C1 (en) | Acceleration measuring device | |
RU2010182C1 (en) | Level meter | |
RU2066853C1 (en) | Device measuring temperature | |
SU1465938A1 (en) | Multivibrator | |
RU2290615C1 (en) | Fiber-optic device for control of fluid temperature | |
RU2186402C2 (en) | Device measuring electric capacitance | |
SU773458A1 (en) | Apparatus for contact-free measuring mainly of machine rotating-member temperature | |
JPH0448289A (en) | Light wave range finder | |
SU741216A1 (en) | Metal locator | |
SU1024822A1 (en) | Acoustic emission signal registering device | |
RU2105970C1 (en) | Inductive pickup | |
RU1772731C (en) | Device for recording acoustic emission signals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NUG | Patent has lapsed |
Ref document number: 8107188-8 Effective date: 19880713 Format of ref document f/p: F |