[go: up one dir, main page]

RU2794727C1 - Способ приготовления катализатора гидрокрекинга углеводородного сырья - Google Patents

Способ приготовления катализатора гидрокрекинга углеводородного сырья Download PDF

Info

Publication number
RU2794727C1
RU2794727C1 RU2022109386A RU2022109386A RU2794727C1 RU 2794727 C1 RU2794727 C1 RU 2794727C1 RU 2022109386 A RU2022109386 A RU 2022109386A RU 2022109386 A RU2022109386 A RU 2022109386A RU 2794727 C1 RU2794727 C1 RU 2794727C1
Authority
RU
Russia
Prior art keywords
zeolite
catalyst
aluminum
hydrocracking
silicon
Prior art date
Application number
RU2022109386A
Other languages
English (en)
Inventor
Павел Петрович Дик
Иван Сергеевич Голубев
Максим Олегович Казаков
Михаил Владимирович Парфенов
Олег Владимирович Климов
Александр Степанович Носков
Original Assignee
Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ")
Filing date
Publication date
Application filed by Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") filed Critical Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ")
Application granted granted Critical
Publication of RU2794727C1 publication Critical patent/RU2794727C1/ru

Links

Abstract

Изобретение относится к способам приготовления катализаторов гидрокрекинга углеводородного сырья, ориентированных на получение керосиновых и дизельных фракций в условиях малого содержания аммиака в водородсодержащем газе, например в условиях второй стадии гидрокрекинга. Способ приготовления катализатора гидрокрекинга углеводородного сырья характеризуется тем, что сначала готовят носитель, содержащий аморфный алюмосиликат, оксид алюминия и одновременно два различных цеолита Y, один из которых имеет поверхность, обогащенную кремнием, а второй - поверхность, обогащенную алюминием, после этого пропиткой носителя наносят никель и вольфрам в виде биметаллических комплексных соединений Ni(NH4)a[HbW2O5(C6H5O7)2], где: C6H5O7 - частично депротонированная форма лимонной кислоты, a=0, 1 или 2, b=2-a, после сушки и последующей прокалки получают катализатор, содержащий компоненты в следующих концентрациях, мас. %: WO3 – 20,2-30,3, NiO – 4,6-6,9, цеолит Y с поверхностью, обогащенной кремнием, 0,7-1,7, цеолит Y с поверхностью, обогащенной алюминием, 2,2-3,5, аморфный алюмосиликат 27,6-33,8, γ-Al2O3 - остальное, с последующим его сульфидированием. При этом в качестве первого цеолита носитель содержит цеолит Y с более высокой концентрацией кислотных центров и c соотношением поверхностной к объемной концентрации кремния к алюминию Si/Al = 1,2-2,1, а в качестве второго цеолита носитель содержит цеолит Y с более низкой концентрацией кислотных центров и c соотношением поверхностной к объемной концентрации кремния к алюминия Si/Al = 0,7-0,9. Технический результат состоит в том, что способ позволяет получить катализатор, имеющий высокую активность и оптимальные для гидрокрекинга углеводородного сырья кислотные характеристики. 2 з.п. ф-лы, 2 табл., 8 пр.

Description

Изобретение относится к способам приготовления катализаторов гидрокрекинга углеводородного сырья, предназначенных для получения керосиновых и дизельных фракций при низком содержании аммиака в водородсодержащем газе, такие условия достигаются на второй стадии гидрокрекинга или при гидрокрекинге сырья практически не содержащего азотсодержащих соединений, например восков Фишера-Тропша и н-алканов, полученных из жирных кислот.
В нефтеперерабатывающей промышленности наблюдаются следующие тенденции: увеличение глубины переработки нефти, ужесточение требований к моторным топливам, вовлечение в переработку все более тяжелой нефти. Кроме того в связи с трендом на декарбонизацию становится актуальной переработка углеводородного сырья полученного из биомассы например жирных кислот и восков Фишера-Тропша.
Гидрокрекинг углеводородного сырья позволяет увеличить глубину нефтепереработки, вовлекать в переработку более тяжелые нефти и углеводородное сырье полученного из биомассы и при этом получать высококачественные моторные топлива - с низким содержанием серы и ароматических соединений.
В зависимости от условий проведения процесса гидрокрекинга и применяемых катализаторов можно добиваться изменения фракционного состава получаемой смеси углеводородов в широких пределах, что позволяет существенно регулировать выход получаемых продуктов: углеводородного газа, бензиновой, керосиновой, дизельной фракций, остатка гидрокрекинга.
Из-за повышенного спроса и высоких эксплуатационных характеристик наиболее ценными продуктами гидрокрекинга являются керосиновая и дизельная фракции. Существующие способы приготовления катализаторов гидрокрекинга приводят к получению катализаторов, обладающих низкой селективностью по отношению к керосиновой и дизельной фракциям и не позволяют достигать высоких выходов керосиновой и дизельной фракций даже при ужесточении условий проведения процесса гидрокрекинга, например, за счет подъема температуры в реакторе.
Соответственно, актуальной задачей является создание новых способов приготовления высокоактивных катализаторов гидрокрекинга, селективных к керосиновой и дизельной фракциям, позволяющих получать керосиновую и дизельную фракции с высоким выходом.
Известны различные способы приготовления нанесенных катализаторов гидрокрекинга углеводородного сырья, однако общим недостатками для них являются низкий выход целевых продуктов - керосиновой и дизельной фракций.
Чаще всего для приготовления катализаторов гидрокрекинга углеводородного сырья используют композиции, содержащие оксиды никеля и молибдена или вольфрама, нанесенные на носитель, содержащий аморфный алюмосиликат, высококремниземистый цеолит Y и оксид алюминия. Так известен способ приготовления катализаторов гидрокрекинга [РФ № 2 338 590], заключающийся в приготовлении носителя, содержащего цеолит фожазитной структуры с размером элементарной ячейки 24.10-24.40Å, объемным соотношением оксид кремния/оксид алюминия выше 12, связующее вещество, по меньшей мере, один металл групп VI и VIII. При этом процесс гидрокрекинга ведут при температуре 250-500°С, давлении 3-30 МПа, основным недостатком такого способа приготовления катализатора и способа проведения процесса гидрокрекинга является низкий выход керосиновой и дизельной фракций.
Известны попытки увеличить активность и/или селективность к средним дистиллятам и/или низкотемпературные свойства получаемых нефтепродуктов за счет способа приготовления катализатора, заключающегося в использовании цеолитов двух разных структурных классов - цеолита Y и цеолита бета [US 2018/0361366], [WO 2022/025957] либо MTW [WO 2021/226277], [WO 2021/236457]. Однако за счет того, что цеолиты бета либо MTW имеют поры меньшего размера, чем цеолит Y, это приводит к недостатку такого способа приготовления катализаторов и способов проведения процесса гидрокрекинга выражающемуся в низком выходе керосиновой и дизельной фракций.
Наиболее близким по своей технической сущности к заявляемому способу приготовления катализаторов является способ приготовления катализаторов гидрокрекинга углеводородного сырья, описанный в способе изготовления средних дистиллятов [US 2015/0159095 A1]. Способ приготовления заключается в использовании композиции, включающий в свой состав ультрастабильный цеолит Y 1-60 мас.%, аморфный крекирующий компонент 10-70 мас.%, один либо более металлов Группы VIB либо Группы VIII и опционально связующее 0-35 мас.%, например, оксид алюминия, и опционально промоторы (бор, фтор, алюминий, кремний, магний, цинк) в количестве 0-10 мас.%. В случае использования неблагородных металлов суммарное содержание металлов составляет 2-50 мас.%.
При этом в известном способе приготовления катализатора в качестве цеолита Y используется сильно деалюминированный ультрастабильный цеолит Y с низкой кислотностью 1-100 мкмоль/г, с мольным соотношением SiO2/Al2O3 не менее 50. При этом нанесение металлов на носитель происходит в присутствии кислородсодержащего лиганда, выбранного из карбоксикислот, аминокислот, эфиров, кетонов, многоатомных спиртов, аминоспиртов или их смеси, например, лимонной кислоты.
Основным недостатком прототипа, также, как и других известных способов приготовления катализаторов, является низкая активность и низкий выход керосиновой и дизельной фракций.
Изобретение решает задачу создания улучшенного способа приготовления катализатора гидрокрекинга углеводородного сырья, характеризующегося получением катализатора с оптимальным химическим составом катализатора, включающим высокодисперсные оксиды вольфрама и никеля, полученные из биметаллических комплексных соединений, нанесенных на композитный носитель, в состав которого входит оксид алюминия, аморфный алюмосиликат и два цеолита Y с различной кислотностью и распределением алюминия.
Технический результат - способ позволяет получить катализатор, имеющий высокую активность и оптимальные для гидрокрекинга углеводородного сырья кислотные характеристики.
Для достижения технического результата решается задача приготовления катализатора, в котором сначала готовят носитель, содержащий одновременно два различных цеолита Y, один из которых имеет поверхность, обогащенную кремнием, а второй - поверхность, обогащенную алюминием, после этого наносят никель и вольфрам в виде биметаллических комплексных соединений Ni(NH4)a[HbW2O5(C6H5O7)2], где: C6H5O7 - частично депротонированная форма лимонной кислоты a=0, 1 или 2, b=2-a, после сушки и последующей прокалки получают катализатор, содержащий компоненты в следующих концентрациях, мас.%: WO3 - 20.2-30.3, NiO - 4.6-6.9, цеолит Y с поверхностью, обогащенной кремнием, 0.7-1.7, цеолит Y с поверхностью, обогащенной алюминием, 2.2-3.5, аморфный алюмосиликат 27.6-33.8, γ-Al2O3 - остальное.
При этом никель и вольфрам содержится в форме высокодисперсных оксидов, полученных из биметаллических комплексных соединений Ni(NH4)a[HbW2O5(C6H5O7)2], где: C6H5O7 - частично депротонированная форма лимонной кислоты a=0, 1 или 2; b=2-a; кремний в форме аморфного алюмосиликата и двух различных цеолитов Y, алюминий в форме γ-Al2O3, аморфного алюмосиликата и двух различных цеолитов Y.
В качестве первого цеолита Y используется цеолит Y c соотношением поверхностной к объемной концентрации кремния к алюминия (П/О Si/Al) в диапазоне 1.2-2.1 (т.е. поверхность кристаллов цеолита обогащена кремнием) концентрацией Бренстедовских кислотных центров по данным ИК спектроскопии адсорбированного пиридина 62-83 мкмоль/г, общей кислотностью по данным ТПД аммиака 145-180 мкмоль/г, размером элементарной ячейки 24.24-24.28Å, удельной поверхностью 823-947 м2/г.
В качестве второго цеолита Y используется цеолит Y c соотношением П/О Si/Al в диапазоне 0.7-0.9 (т.е. поверхность кристаллов цеолита обогащена алюминием), концентрацией Бренстедовских кислотных центров по данным ИК спектроскопии адсорбированного пиридина 12-27 мкмоль/г, общей кислотностью по данным ТПД аммиака 47-63 мкмоль/г, размером элементарной ячейки 24.22-24.23Å, удельной поверхностью 736-810 м2/г.
При этом способ приготовления катализатора обеспечивает получение катализатора со следующим содержанием компонентов, мас.%: WO3 - 25.2-30.3 мас.%, NiO - 5.8-6.9 мас.%, цеолита Y с поверхностью обогащенной кремнием 0.7-1.7 мас.%, цеолита Y с поверхностью обогащенной алюминием 2.2-3.5 мас.%, аморфный алюмосиликат 35.2-38.7 мас.%, γ-Al2O3 остальное.
При этом способ приготовления катализатора обеспечивает получение частиц с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм и длиной до 20 мм, имеющие объемную механическую прочность, определяемую по методу Shell SMS 1471, не менее 1,0 МПа. В качестве аморфного алюмосиликата могут использоваться алюмосиликаты с массовым отношением Si/Al от 0,6 до 1,2, характеризующиеся рентгенограммами, содержащими широкий пик в области 16,5-33,5° с максимумом 23,0-23,8°.
Отличительным признаком предлагаемого способа приготовления катализатора по сравнению с прототипом является то, что для приготовления катализатора используется два цеолита Y, отличающихся кислотностью и распределением алюминия между поверхностью кристаллов и их объемом.
Первый цеолит Y с поверхностью кристаллов обогащенной кремнием Y имеет П/О Si/Al в диапазоне 1.2-2.1 концентрацией Бренстедовских кислотных центров по данным ИК спектроскопии адсорбированного пиридина 62-83 мкмоль/г, общей кислотностью по данным ТПД аммиака 145-180 мкмоль/г, размером элементарной ячейки 24.24-24.28Å, удельной поверхностью 823-947 м2/г.
Второй цеолит Y с поверхностью кристаллов обогащенной алюминием имеет соотношение П/О Si/Al в диапазоне 0.7-0.9, концентрацией Бренстедовских кислотных центров по данным ИК спектроскопии адсорбированного пиридина 12-27 мкмоль/г, общей кислотностью по данным ТПД аммиака 47-63 мкмоль/г, размером элементарной ячейки 24.22-24.23Å, удельной поверхностью 736-810 м2/г.
При этом способ приготовления катализатора обеспечивает получение катализатора содержащего: WO3 - 25.2-30.3 мас.%, NiO - 5.8-6.9 мас.%, цеолита Y с поверхностью обогащенной кремнием 0.7-1.7 мас.%, цеолита Y с поверхностью обогащенной алюминием 2.2-3.5 мас.%, аморфный алюмосиликат 35.2-38.7 мас.%, γ-Al2O3 остальное.
Изменение способа приготовления катализатора за счет изменения содержания, массового отношения компонентов катализатора и свойств цеолитов за заявляемые границы приводит к уменьшению активности катализатора в целевых реакциях гидрокрекинга и к уменьшению селективности катализатора по отношению к керосиновой и дизельной фракциям.
Технический результат предлагаемого способа приготовления катализатора складывается из следующих составляющих:
1. Способ приготовления катализатора обеспечивает получение катализатора содержащего одновременно два цеолита Y с различной кислотностью и распределением алюминия между поверхностью и объемом кристаллов, что обеспечивает оптимальное превращение различных классов углеводородов содержащихся в сырье: н-алканов, изо-алканов, циклоалканов, полициклоалканов. Цеолит Y с поверхностью кристаллов обогащенной кремнием и более высокой концентрацией кислотных центров обеспечивает в первую очередь гидрокрекинг наиболее труднопревращаемых молекул сырья - н-алканов и слаборазветвленных изоалканов. Цеолит Y с поверхностью обогащенной алюминием и более низкой концентрацией кислотных центров обеспечивает гидрокрекинг более легкопревращаемых молекул сырья - сильноразветвленных алканов и циклоалканов. Таким образом, комбинация из двух таких цеолитов Y позволяет повысить активность и селективность катализатора в гидрокрекинге углеводородного сырья.
2. Способ приготовления катализатора обеспечивает получение в катализаторе содержание аморфного алюмосиликата в заявляемых концентрациях, что обеспечивает оптимальную концентрацию кислотных центров доступных для наиболее массивных молекул сырья, например полициклоалканов, обеспечивая тем самым высокую активность и селективность в гидрокрекинге углеводородного сырья.
3. Заявляемый способ приготовления обеспечивает получение катализатора, чей химический состав обуславливает высокую активность в целевых реакциях гидрокрекинга и высокую селективность по отношению к керосиновой и дизельной фракциям. Наличие в составе катализатора высокодисперсных оксидов никеля и вольфрама полученных из биметаллических соединений Ni(NH4)a[HbW2O5(C6H5O7)2] в заявляемых концентрациях обеспечивает дальнейшее формирование в катализаторе, при его эксплуатации в гидрокрекинге, высокоактивных частиц сульфидного компонента - NiWS фаз типа II в форме частиц оптимальной для катализа морфологии, локализованных в порах, доступных для всех подлежащих превращению молекул.
Следовательно, каждый существенный признак необходим, а их совокупность является достаточной для достижения новизны качества, неприсущего признакам в разобщенности, то есть поставленная задача достигается не суммой эффектов, а новым сверхэффектом суммы признаков.
Описание предлагаемого технического решения.
Сначала готовят носитель, содержащий аморфный алюмосиликат и оксид алюминия. К навеске порошка гидроксида алюминия AlOOH, имеющего структуру бемита или псевдобемита, при непрерывном перемешивании в смесителе с Z-образными лопастями последовательно добавляют расчетное количество порошка аморфного алюмосиликата с массовым отношением Si/Al = 0.6-1.2, порошка цеолита Y, с поверхностью обогащенной кремнием, и порошка цеолита Y с поверхностью, обогащенной алюминием.
Порошок алюмосиликата может быть получен по любой из известных методик, например, методике соосаждения из совместных растворов алюминатов и силикатов щелочных металлов, или же методике осаждения силикатов щелочных металлов с гелем, полученным из сульфата или нитрата алюминия, или методике гидролиза элементоорганических соединений кремния и алюминия, или какой либо другой методике, обеспечивающей получение аморфного алюмосиликата с массовым отношением Si/Al = 0.6-1.2, характеризующегося на рентгенограмме пиком с максимумом 23,0-23,8°. Аморфный алюмосиликат может быть подвергнут термической обработке, например прокаливанием при температуре 300-850°C, более предпочтительно при температуре 500-750°C.
Далее к смеси порошков добавляют водный раствор азотной кислоты и продолжают перемешивание.
Количество воды, добавляемой для приготовления пасты, зависит от влажности исходных порошков и составляет приблизительно 0,8-1,3 мл/г. Количество азотной кислоты рассчитывают в зависимости от количества γ-Al2O3 так, чтобы кислотный модуль составлял от 0,05 до 0,7, более предпочтительно, от 0,1 до 0,5.
Полученную пасту экструдируют через фильеру с отверстиями, форма и размеры которых обеспечивают получение гранул с поперечным с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм.
Полученный влажный носитель сушат при температуре 100-150°С и прокаливают при температуре 500-600°С. В результате получают однородный носитель белого цвета, представляющий собой гранулы с поперечным с сечением в виде трилистника, четырехлистника либо круга с диаметром описанной окружности 1,2-2,5 мм и длиной 2-20 мм.
Далее готовят пропиточный раствор с заданной концентрацией биметаллических комплексных соединений [Ni(NH4)a[HbW2O5(C6H5O7)2]. Синтез биметаллических соединений в растворе осуществляют следующим образом: в воде при перемешивании растворяют требуемое количество лимонной кислоты C6H8O7 или моногидрата лимонной кислоты C6H8O7·H2O. К полученному раствору при перемешивании и нагревании добавляют требуемое количество никеля (II) углекислого основного водного Ni(CO3)·Ni(OH)2·nH2O. Перемешивание продолжают до полного растворения Ni(CO3)·Ni(OH)2·nH2O и образования раствора темно-зеленого цвета, не содержащего взвешенных частиц. Далее в полученном растворе производят растворение требуемого количества метавольфрамата либо паравольфрамата аммония водного.
При растворении метавольфрамата либо паравольфрамата аммония в полученном растворе происходит образование комплексов [Ni(NH4)a[HbW2O5(C6H5O7)2], где: C6H5O7 - частично депротонированная форма лимонной кислоты a=0, 1 или 2; b=2-a. Перемешивание продолжают до полного растворения метавольфрамата либо паравольфрамата аммония и образования раствора, не содержащего взвешенных частиц.
Полученным раствором пропитывают носитель, содержащий два цеолита Y c различными кислотными свойствами и распределением алюминия, аморфный алюмосиликат и оксид алюминия, при этом используют либо пропитку носителя по влагоемкости, либо из избытка раствора, либо вакуумную пропитку. Пропитку проводят при температуре 15-90°С в течение 5-60 мин при периодическом перемешивании, в случае пропитки из избытка раствора, или вакуумной пропитки, после пропитки избыток раствора сливают с катализатора и используют для приготовления следующих партий катализатора. После пропитки катализатор сушат на воздухе при температуре 100-250°С. После этого катализатор прокаливают при температуре 400-600°С в токе воздуха достаточном для выгорания лимонной кислоты в нанесенных комплексных соединениях.
В результате получают катализатор, характеристики которого полностью соответствуют заявляемым интервалам.
Далее катализатор испытывают в гидрокрекинге непревращенного остатка, являющегося сырьем для второй стадии гидрокрекинга, с содержанием серы и азота <0.0001 мас.% и 0.00048 мас.% соответственно, температурой дистилляции 5% об. 344°С и температурой дистилляции 95% об. 517°С. Перед испытаниями катализатор сульфидируют путем его нагрева в токе водорода и сульфидирующей смеси, представляющей собой гидроочищенное дизельное топливо с содержанием серы <0.001 мас.% и содержанием азота <0.0001 мас.% , в которое дополнительно добавлен диметилдисульфид с концентрацией 20 г/л. Сульфидирование проводят при 13.0 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 8ч при 240°С, а затем 8 ч при 340°С. Процесс гидрокрекинга проводят при температурах 355-370°С, давлении 16 МПа, объемном расходе сырья 1.4 ч-1, объемном соотношение водород/сырье - 750 м3(при н.у.)/м3.
Сущность изобретения иллюстрируется следующими примерами:
Пример 1. (Согласно известному техническому решению).
Готовят носитель, содержащий 50 мас.% оксида алюминия, 47.5 мас.% аморфного алюмосиликата и 2.5 мас.% цеолита Y1 со свойствами указанными в таблице 1. В смесителе с Z-образными лопастями перемешивают 40.0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 34.8 г порошка аморфного алюмосиликата с соотношением Si/Al=0.9 и 1.60 г порошка цеолита Y1. К смеси добавляют 77 мл воды и 6,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 60 г готового носителя с влагоёмкостью 1.30 мл/г.
Готовят водный раствор, содержащий Ni(NH4)a[HbW2O5(C6H5O7)2], для чего в 40 мл воды при 80°С и перемешивании последовательно растворяют 11.19 г моногидрата лимонной кислоты C6H3O7×H2O, 6.18 г гидроксида никеля Ni(OH)2, 23.94 г метавольфрамата аммония (NH4)6W7O24×H2O. Далее добавлением воды объем раствора доводят до 78 мл. 60 г носителя пропитывают по влагоемкости 78 мл полученного раствора. Катализатор сушат на воздухе при 120°С, а затем прокаливают в токе воздуха при 500°С.
Полученный катализатор содержит, мас.%: WO3 - 25.2; NiO - 5.8; цеолит Y1 - 1.7; аморфный алюмосиликат - 32.8; γ-Al2O3 - остальное.
Порцию катализатора, объемом 10см3 смешивают с 40см3 карбида кремния (0,1-0,3 мм), помещают в проточный реактор из нержавеющей стали и нагревают в токе водорода и сульфидирующей смеси, представляющей собой гидроочищенное дизельное топливо с содержанием серы <0.001 мас.% и содержанием азота <0.0001 мас.%, в которое дополнительно добавлен диметилдисульфид с концентрацией 20 г/л. Сульфидирование проводят при 13.0 МПа, расходе сульфидирующей смеси 2 ч-1 и объемном отношении водород/сульфидирующая смесь 500 нм33 8ч при 240°С, а затем 8 ч при 340°С. Далее катализатор испытывают в гидрокрекинге непревращенного остатка, являющегося сырьем для второй стадии гидрокрекинга, с содержанием серы и азота <0.0001 мас.% и 0.00048 мас.% соответственно, температурой дистилляции 5% об. 344°С и температурой дистилляции 95% об. 517°С. Процесс гидрокрекинга проводят при температурах 355-370°С, давлении 16.0 МПа, объемном расходе сырья 1.4 ч-1, объемном соотношение водород/сырье - 750 м3(при н.у.)/м3. Результаты тестирования приведены в таблице 2.
Пример 2.
Готовят носитель, содержащий 50 мас.% оксида алюминия, 42 мас.% аморфного алюмосиликата и 8.0 мас.% цеолита Y2 со свойствами, указанными в таблице 1. В смесителе с Z-образными лопастями перемешивают 40.0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита, и 30.7 г порошка аморфного алюмосиликата с соотношением Si/Al=0.9 и 5.20 г порошка цеолита Y2. К смеси добавляют 72 мл воды и 6,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 60 г готового носителя с влагоёмкостью 1.02 мл/г.
Готовят водный раствор, содержащий Ni(NH4)a[HbW2O5(C6H5O7)2] аналогично примеру 1. Далее добавлением воды объем раствора доводят до 62 мл. 60 г носителя пропитывают по влагоемкости 62 мл полученного раствора. Катализатор сушат на воздухе при 120°С, а затем прокаливают в токе воздуха при 500°С.
Полученный катализатор содержит, мас.%: WO3 - 25.2; NiO - 5.8; цеолит Y1 - 5.5; аморфный алюмосиликат - 29.0; γ-Al2O3 - остальное.
Далее катализатор тестируют в гидрокрекинге непревращенного остатка аналогично примеру 2. Результаты тестирования приведены в таблице 2.
Примеры 3-8 иллюстрируют предлагаемое техническое решение.
Пример 3.
Готовят носитель, содержащий 50 мас.% оксида алюминия, 45 мас.% аморфного алюмосиликата и два цеолита, со свойствами указанными в таблице 1: 1.5 мас.% цеолита Y1 с поверхностью обогащенной кремнием и 3.5 мас.% цеолита Y2 с поверхностью обогащенной алюминием
В смесителе с Z-образными лопастями перемешивают 40.0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 32.9 г порошка аморфного алюмосиликата с соотношением Si/Al=0.9 и 1.00 г порошка цеолита Y1 и 2.30 г порошка цеолита Y2. К смеси добавляют 75 мл воды и 6,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 60 г готового носителя с влагоёмкостью 1.12 мл/г.
Готовят водный раствор, содержащий Ni(NH4)a[HbW2O5(C6H5O7)2] аналогично примеру 1. Далее добавлением воды объем раствора доводят до 68 мл. 60 г носителя пропитывают по влагоемкости 68 мл полученного раствора. Катализатор сушат на воздухе при 120°С, а затем прокаливают в токе воздуха при 500°С.
Полученный катализатор содержит, мас.%: WO3 - 25.2; NiO - 5.8; цеолит Y1 - 1.0; цеолит Y2 - 2.4, аморфный алюмосиликат - 31.1; γ-Al2O3 - остальное.
Далее катализатор тестируют в гидрокрекинге непревращенного остатка аналогично примеру 2. Результаты тестирования приведены в таблице 2.
Пример 4.
Готовят носитель, содержащий 50 мас.% оксида алюминия, 45 мас.% аморфного алюмосиликата и два цеолита, со свойствами указанными в таблице 1: 1.0 мас.% цеолита Y1 с поверхностью обогащенной кремнием и 5.0 мас.% цеолита Y2 с поверхностью обогащенной алюминием
В смесителе с Z-образными лопастями перемешивают 40.0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 32.2 г порошка аморфного алюмосиликата с соотношением Si/Al=0.9 и 0.60 г порошка цеолита Y1 и 3.30 г порошка цеолита Y2. К смеси добавляют 74 мл воды и 6,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 60 г готового носителя с влагоёмкостью 1.09 мл/г.
Готовят водный раствор, содержащий Ni(NH4)a[HbW2O5(C6H5O7)2] аналогично примеру 1. Далее добавлением воды объем раствора доводят до 66 мл. 60 г носителя пропитывают по влагоемкости 66 мл полученного раствора. Катализатор сушат на воздухе при 120°С, а затем прокаливают в токе воздуха при 500°С.
Полученный катализатор содержит, мас.%: WO3 - 25.2; NiO - 5.8; цеолит Y1 - 0.7; цеолит Y2 - 3.5, аморфный алюмосиликат - 30.4; γ-Al2O3 - остальное.
Далее катализатор тестируют в гидрокрекинге непревращенного остатка аналогично примеру 2. Результаты тестирования приведены в таблице 2.
Пример 5.
Готовят носитель, содержащий 50 мас.% оксида алюминия, 45 мас.% аморфного алюмосиликата и два цеолита, со свойствами указанными в таблице 1: 1.5 мас.% цеолита Y3 с поверхностью обогащенной кремнием и 3.5 мас.% цеолита Y2 с поверхностью обогащенной алюминием
В смесителе с Z-образными лопастями перемешивают 40.0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 32.9 г порошка аморфного алюмосиликата с соотношением Si/Al=0.9 и 1.00 г порошка цеолита Y3 и 2.30 г порошка цеолита Y2. К смеси добавляют 74 мл воды и 6,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 60 г готового носителя с влагоёмкостью 1.11 мл/г.
Готовят водный раствор, содержащий Ni(NH4)a[HbW2O5(C6H5O7)2], для чего в 40 мл воды при 80°С и перемешивании последовательно растворяют 8.21 г моногидрата лимонной кислоты C6H3O7×H2O, 4.54 г гидроксида никеля Ni(OH)2, 17.57 г метавольфрамата аммония (NH4)6W7O24×H2O. Далее добавлением воды объем раствора доводят до 66 мл. 60 г носителя пропитывают по влагоемкости 66 мл полученного раствора. Катализатор сушат на воздухе при 120°С, а затем прокаливают в токе воздуха при 500°С.
Полученный катализатор содержит, мас.%: WO3 - 20.2; NiO - 4.6; цеолит Y3 - 1.1; цеолит Y2 - 2.6, аморфный алюмосиликат - 33.8; γ-Al2O3 - остальное.
Далее катализатор тестируют в гидрокрекинге непревращенного остатка аналогично примеру 2. Результаты тестирования приведены в таблице 2.
Пример 6.
Готовят носитель, содержащий 50 мас.% оксида алюминия, 44 мас.% аморфного алюмосиликата и два цеолита, со свойствами указанными в таблице 1: 2.5 мас.% цеолита Y4 с поверхностью обогащенной кремнием и 3.5 мас.% цеолита Y2 с поверхностью обогащенной алюминием
В смесителе с Z-образными лопастями перемешивают 40.0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 32.2 г порошка аморфного алюмосиликата с соотношением Si/Al=0.9 и 1.60 г порошка цеолита Y4 и 2.30 г порошка цеолита Y2. К смеси добавляют 74 мл воды и 6,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 60 г готового носителя с влагоёмкостью 1.08 мл/г.
Готовят водный раствор, содержащий Ni(NH4)a[HbW2O5(C6H5O7)2] аналогично примеру 1. Далее добавлением воды объем раствора доводят до 65 мл. 60 г носителя пропитывают по влагоемкости 65 мл полученного раствора. Катализатор сушат на воздухе при 120°С, а затем прокаливают в токе воздуха при 500°С.
Полученный катализатор содержит, мас.%: WO3 - 25.2; NiO - 5.8; цеолит Y4 - 1.7; цеолит Y2 - 2.4, аморфный алюмосиликат - 30.4; γ-Al2O3 - остальное.
Далее катализатор тестируют в гидрокрекинге непревращенного остатка аналогично примеру 2. Результаты тестирования приведены в таблице 2.
Пример 7.
Готовят носитель аналогично примеру 6.
Готовят водный раствор, содержащий Ni(NH4)a[HbW2O5(C6H5O7)2], для чего в 40 мл воды при 80°С и перемешивании последовательно растворяют 14.75 г моногидрата лимонной кислоты C6H3O7×H2O, 8.15 г гидроксида никеля Ni(OH)2, 31.56 г метавольфрамата аммония (NH4)6W7O24×H2O.
Далее добавлением воды объем раствора доводят до 65 мл. 60 г носителя пропитывают по влагоемкости 65 мл полученного раствора. Катализатор сушат на воздухе при 120°С, а затем прокаливают в токе воздуха при 500°С.
Полученный катализатор содержит, мас.%: WO3 - 30.3; NiO - 6.9; цеолит Y4 - 1.6; цеолит Y2 - 2.2, аморфный алюмосиликат - 27.6; γ-Al2O3 - остальное.
Далее катализатор тестируют в гидрокрекинге непревращенного остатка аналогично примеру 2. Результаты тестирования приведены в таблице 2.
Пример 8.
Готовят носитель, содержащий 50 мас.% оксида алюминия, 44 мас.% аморфного алюмосиликата и два цеолита, со свойствами указанными в таблице 1: 2.5 мас.% цеолита Y1 с поверхностью обогащенной кремнием и 3.5 мас.% цеолита Y5 с поверхностью обогащенной алюминием
В смесителе с Z-образными лопастями перемешивают 40.0 г порошка гидроксида алюминия AlOOH, имеющего структуру псевдобемита и 32.9 г порошка аморфного алюмосиликата с соотношением Si/Al=0.9 и 0.95 г порошка цеолита Y1 и 2.30 г порошка цеолита Y2. К смеси добавляют 74 мл воды и 6,0 мл концентрированной азотной кислоты, имеющей плотность 1,4 г/см3. Пасту перемешивают 30 мин и формуют через фильеру с отверстиями в форме трилистника с диаметром описанной окружности 1,0-1.6 мм. Полученный влажный носитель сушат 4 ч при температуре 100-150°С и прокаливают 4 ч при температуре 550°С. Получают 60 г готового носителя с влагоёмкостью 1.10 мл/г.
Готовят водный раствор, содержащий Ni(NH4)a[HbW2O5(C6H5O7)2] аналогично примеру 1. Далее добавлением воды объем раствора доводят до 66 мл. 60 г носителя пропитывают по влагоемкости 66 мл полученного раствора. Катализатор сушат на воздухе при 120°С, а затем прокаливают в токе воздуха при 500°С.
Полученный катализатор содержит, мас.%: WO3 - 25.2; NiO - 5.8; цеолит Y1 - 1.0; цеолит Y5 - 2.4, аморфный алюмосиликат - 31.1; γ-Al2O3 - остальное.
Далее катализатор тестируют в гидрокрекинге непревращенного остатка аналогично примеру 2. Результаты тестирования приведены в таблице 2.
Таким образом, как видно из приведенных примеров, катализатор, получаемый заявляемым способом, за счет композиции двух цеолитов определенного химического состава имеет высокую селективность к дизельной фракции с температурой начала кипения 180°С и температурой конца кипения 360°С т.е. к керосиновой и дизельной фракциям, обеспечивая значительно больший выход керосиновой и дизельной фракций, чем при использовании катализаторов-прототипов в гидрокрекинге углеводородного сырья.
При этом температура достижения конверсии 55 мас.%, типичной для второй стадии гидрокрекинга на предлагаемых катализаторах, не выше либо ниже, чем на катализаторах-прототипах, что высокую активность предлагаемых катализаторов.
Figure 00000001
Figure 00000002

Claims (3)

1. Способ приготовления катализатора гидрокрекинга углеводородного сырья, характеризующийся тем, что сначала готовят носитель, содержащий аморфный алюмосиликат, оксид алюминия и одновременно два различных цеолита Y, один из которых имеет поверхность, обогащенную кремнием, а второй - поверхность, обогащенную алюминием, после этого пропиткой носителя наносят никель и вольфрам в виде биметаллических комплексных соединений Ni(NH4)a[HbW2O5(C6H5O7)2], где: C6H5O7 - частично депротонированная форма лимонной кислоты, a=0, 1 или 2, b=2-a, после сушки и последующей прокалки получают катализатор, содержащий компоненты в следующих концентрациях, мас. %: WO3 – 20,2-30,3, NiO – 4,6-6,9, цеолит Y с поверхностью, обогащенной кремнием, 0,7-1,7, цеолит Y с поверхностью, обогащенной алюминием, 2,2-3,5, аморфный алюмосиликат 27,6-33,8, γ-Al2O3 - остальное, с последующим его сульфидированием, при этом в качестве первого цеолита носитель содержит цеолит Y с более высокой концентрацией кислотных центров и c соотношением поверхностной к объемной концентрации кремния к алюминию Si/Al=1,2-2,1; в качестве второго цеолита носитель содержит цеолит Y с более низкой концентрацией кислотных центров и c соотношением поверхностной к объемной концентрации кремния к алюминия Si/Al = 0,7-0,9.
2. Способ по п. 1, отличающийся тем, что для приготовления носителя берут цеолит Y с поверхностью, обогащенной кремнием, который имеет концентрацию Бренстедовских кислотных центров по данным ИК-спектроскопии адсорбированного пиридина 62-83 мкмоль/г, общую кислотность по данным ТПД аммиака 145-180 мкмоль/г, размер элементарной ячейки
Figure 00000003
удельную поверхностью 823-947 м2/г.
3. Способ по п. 1, отличающийся тем, что для приготовления носителя берут цеолит Y с поверхностью, обогащенной алюминием, который имеет концентрацию Бренстедовских кислотных центров по данным ИК-спектроскопии адсорбированного пиридина 12-27 мкмоль/г, общую кислотность по данным ТПД аммиака 47-63 мкмоль/г, размер элементарной ячейки
Figure 00000004
удельную поверхностью 736-810 м2/г.
RU2022109386A 2022-04-08 Способ приготовления катализатора гидрокрекинга углеводородного сырья RU2794727C1 (ru)

Publications (1)

Publication Number Publication Date
RU2794727C1 true RU2794727C1 (ru) 2023-04-24

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2202412C2 (ru) * 1997-03-06 2003-04-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения каталитической композиции
US6670295B2 (en) * 2000-10-26 2003-12-30 China Petroleum And Chemical Corporation Highly active midbarrel hydrocracking catalyst and the preparation thereof
RU2540071C2 (ru) * 2009-04-29 2015-01-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Катализатор гидрокрекинга
US20150159095A1 (en) * 2013-12-09 2015-06-11 Bi-Zeng Zhan Method for making a middle distillate
WO2017027498A1 (en) * 2015-08-11 2017-02-16 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing zeolite beta with low od acidity and large domain size
RU2633965C1 (ru) * 2016-10-19 2017-10-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Способ приготовления катализатора гидрокрекинга углеводородного сырья

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2202412C2 (ru) * 1997-03-06 2003-04-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения каталитической композиции
US6670295B2 (en) * 2000-10-26 2003-12-30 China Petroleum And Chemical Corporation Highly active midbarrel hydrocracking catalyst and the preparation thereof
RU2540071C2 (ru) * 2009-04-29 2015-01-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Катализатор гидрокрекинга
US20150159095A1 (en) * 2013-12-09 2015-06-11 Bi-Zeng Zhan Method for making a middle distillate
WO2017027498A1 (en) * 2015-08-11 2017-02-16 Chevron U.S.A. Inc. Middle distillate hydrocracking catalyst containing zeolite beta with low od acidity and large domain size
RU2633965C1 (ru) * 2016-10-19 2017-10-20 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Способ приготовления катализатора гидрокрекинга углеводородного сырья

Similar Documents

Publication Publication Date Title
CA2560925C (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
KR101869759B1 (ko) 수소화처리 촉매 및 이를 제조하는 방법
JP5015425B2 (ja) 極低酸度超安定y型ゼオライト及び均質無定形シリカ−アルミナを含む水素化分解触媒並びに水素化分解方法
RU2402380C1 (ru) Катализатор гидроочистки углеводородного сырья, способ его приготовления и процесс гидроочистки
RU2569682C2 (ru) Состав и способ приготовления носителя и катализатора глубокой гидроочистки углеводородного сырья
RU2534998C1 (ru) Катализатор гидроочистки углеводородного сырья
JP2003299960A (ja) 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
KR20110098947A (ko) 수소화 이성화 촉매, 이의 제조방법, 탄화수소유의 탈랍 방법 및 윤활유 기유의 제조방법
US3977961A (en) Heavy crude conversion
US10603657B2 (en) Nano-sized zeolite supported catalysts and methods for their production
KR101828965B1 (ko) 바이오매스 피셔-트롭시 합성유로부터 항공 등유의 생산에 적합한 촉매제 및 그 제조 방법
JP2006505403A (ja) 高度に均質な非晶質シリカ・アルミナ触媒組成物
US4014821A (en) Heavy crude conversion catalyst
EA037191B1 (ru) Катализатор гидроочистки углеводородного сырья
RU2626397C1 (ru) Способ гидрокрекинга углеводородного сырья
US6551500B1 (en) Hydrocracking catalyst, producing method thereof, and hydrocracking method
RU2607908C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
US3985684A (en) Heavy crude conversion
RU2644563C1 (ru) Катализатор гидроочистки сырья гидрокрекинга
RU2633965C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
RU2794727C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
RU2474474C1 (ru) Катализатор, способ его приготовления и способ получения малосернистого дизельного топлива
RU2786516C1 (ru) Способ гидрокрекинга углеводородного сырья
RU2788742C1 (ru) Катализатор гидрокрекинга углеводородного сырья
RU2607905C1 (ru) Катализатор гидрокрекинга углеводородного сырья