[go: up one dir, main page]

RU2790848C1 - Способ получения керамического материала на основе AlMgB14 - Google Patents

Способ получения керамического материала на основе AlMgB14 Download PDF

Info

Publication number
RU2790848C1
RU2790848C1 RU2022133213A RU2022133213A RU2790848C1 RU 2790848 C1 RU2790848 C1 RU 2790848C1 RU 2022133213 A RU2022133213 A RU 2022133213A RU 2022133213 A RU2022133213 A RU 2022133213A RU 2790848 C1 RU2790848 C1 RU 2790848C1
Authority
RU
Russia
Prior art keywords
almgb14
hot pressing
carried out
sintering
particle size
Prior art date
Application number
RU2022133213A
Other languages
English (en)
Inventor
Илья Александрович Жуков
Павел Юрьевич Никитин
Дмитрий Александрович Ткачев
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет"
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет"
Application granted granted Critical
Publication of RU2790848C1 publication Critical patent/RU2790848C1/ru

Links

Images

Abstract

Изобретение относится к способам получения сверхтвердых керамических материалов, а именно к способам получения керамических материалов на основе AlMgB14, и может быть использовано для изготовления конструкционных материалов и мишеней для магнетронного распыления покрытий, повышающих износостойкость режущих инструментов, деталей машин (валов, подшипников, шестерней), турбин, насосного оборудования и других износостойких, химически инертных деталей. Cпособ включает перемешивание порошков исходных компонентов, механическую активацию полученной порошковой смеси и последующее спекание методом горячего прессования. В качестве исходных компонентов используют порошок интерметаллического сплава Al12Mg17 со средним размером частиц не менее 15 мкм и порошок аморфного черного бора со средним размером частиц не менее 2 мкм в атомном соотношении 2:14 соответственно. Механическую активацию полученной порошковой смеси проводят в планетарной мельнице в атмосфере аргона при скорости вращения барабанов 720-840 об/мин. Спекание осуществляют методом горячего прессования при давлении 30-50 МПа и температуре не менее 1200 °C с выдержкой не менее 20 мин. Достигается увеличение содержания целевой фазы – AlMgB14 в конечном продукте и снижение примесных фаз. 1 ил., 1 табл., 7 пр.

Description

Изобретение относится к способам получения сверхтвердых керамических материалов, а именно к способам получения сверхтвердых керамических материалов на основе AlMgB14, и может быть использовано для изготовления конструкционных материалов и мишеней для магнетронного распыления покрытий, повышающих износостойкость режущих инструментов, деталей машин (валов, подшипников, шестерней), турбин, насосного оборудования и других износостойких, химически инертных деталей.
Известен способ получения сверхтвердого керамического порошкового материала AlMgB14, заключающийся в спекании исходных порошков алюминия, магния и бора в высокотемпературной вакуумной печи с предварительной механической активацией в планетарной мельнице (CN105755304A 2014-12-16, C22C-001/05). Порошки алюминия, магния и бора смешиваются в пропорции Al : Mg : B - (1.0÷1.2):1.0:6.23, механически измельчаются в течение 2-5 часов со скоростью вращения барабанов 250÷350 об/мин. Затем полученная порошковая смесь засыпается в графитовый резервуар и помещается в вакуумную печь. Температура спекания составляет 1300÷1400 °C, время выдержки - 30÷60 мин. Недостатками этого способа являются большая продолжительность спекания порошкового материала, что приводит к росту зерна AlMgB14 и снижению твердости конечного материала. Недостатком данного метода также является использование отдельных порошков алюминия и магния в качестве исходных компонентов, на поверхности которых присутствуют плотные оксидные пленки, что в итоге приводит к росту примесной фазы MgAl2O4, также снижающей твердость конечного материала.
Наиболее близким по технической сущности и достигаемому результату является способ получения поликристаллического материала AlMgB14 методом горячего прессования порошковой смеси Al-Mg-B с предварительной механической активацией порошковой смеси Al-Mg-B (US6099605A, 1999-06-07, C04B-035/58, C09K-003/14). Порошок бора механически измельчается в течение 15 минут в вибрационной мельнице. Затем порошки алюминия, магния и бора смешивают в пропорции Al : Mg : B - 1:1:14 и механически измельчают в течение 20 часов в вибрационной мельнице в атмосфере гелия. Полученную порошковую смесь спекают методом горячего прессования в диапазоне температур 1300÷1500 °C в вакууме. Способ позволяет получить керамические материалы на основе AlMgB14 с содержанием фазы AlMgB14 - 90 масс. % и твердостью - 27÷32 ГПа. Недостатками такого способа является большая продолжительность механической активации порошковой смеси Al-Mg-B, загрязненность примесными фазами MgAl2O4 и FeB49, что значительно ухудшает свойства материала (твердость и коэффициент трения) [Lewis T. L. et al. Al2MgO4, Fe3O4, and FeB impurities in AlMgB14 //Materials Science and Engineering: A. - 2003. - Т. 351. - №. 1-2. - С. 117-122].
Задачей настоящего изобретения является разработка менее энергозатратного, простого в аппаратурном оформлении, нетрудоемкого способа получения сверхтвердого керамического материала на основе химического соединения AlMgB14 высокого качества.
Технический результат состоит в увеличении содержания целевой фазы AlMgB14 в конечном продукте и снижении примесных фаз MgAl2O4, FeB49, Fe, Fe3O4 в конечном материале.
Технический результат достигается тем, что способ получения керамического материала на основе химического соединения AlMgB14 включает перемешивание порошков исходных компонентов, механическую активацию полученной порошковой смеси и последующее спекание методом горячего прессования.. В качестве исходных компонентов используют порошок интерметаллического сплава Al12Mg17 со средним размером частиц не менее 15 мкм и порошок аморфного черного бора со средним размером частиц не менее 2 мкм в атомном соотношении 2:14, соответственно; механическую активацию полученной порошковой смеси проводят в планетарной мельнице в атмосфере аргона при скорости вращения барабанов 720÷840 об/мин и последующее спекание методом горячего прессования при давлении 30÷50 МПа и температуре не менее 1200 °C с выдержкой не менее 20 мин.
Выбор порошка интерметаллического сплава Al12Mg17 в качестве исходного компонента обусловлен тем, что в соответствии с диаграммой состояния фаза Al12Mg17 находится в эвтектической области, является хрупкой и легко подвергается механической активации в планетарной мельнице. Интерметаллический порошок Al12Mg17 значительно меньше подвержен окислению, чем отдельные порошки алюминия и магния. При использовании порошка Al12Mg17 в качестве исходного компонента во время спекания при формировании фазы AlMgB14 происходит прямое борирование интерметаллида Al12Mg17, что позволяет достигнуть увеличения содержанием целевой фазы AlMgB14, снизить содержание примеси MgAl2O4, и полностью исключить примеси Fe3O4, FeB49, Fe в конечном продукте - сверхтвердом керамическом материале на основе химического соединения AlMgB14.
Выбранный режим механической активации исходных компонентов позволяет снизить загрязненность конечного продукта примесными фазами MgAl2O4, FeB49, Fe и получить порошковую смесь субмикронного диапазона для лучшего спекания.
Условия спекания подобраны таким образом, чтобы конечный продукт имел плотность, близкую к теоретической, и, следовательно, высокую твердость, при этом, фазовый состав представлен фазой AlMgB14 с содержанием не менее 92 масс. %.
Примеры конкретного выполнения были реализованы с использованием оборудования Томского регионального центра коллективного пользования ТГУ (ТРЦКП)».
Пример 1. В качестве исходных компонентов используют порошок интерметаллического сплава Al12Mg17 со средним размером частиц 20 мкм, полученный из сплава алюминия-магния, и порошок аморфного черного бора (средний размер частиц - 2.1 мкм). Порошки Al12Mg17 и аморфного черного бора смешивают в атомном соотношении 2:14 соответственно и механически активируют в планетарной мельнице при скорости вращения барабанов 840 об/мин в атмосфере аргона до получения порошковой смеси со средним размером частиц 0.5 мкм. Полученную порошковую смесь помещают в графитовую матрицу диаметром 23 мм с подвижным верхним пуансоном для спекания методом горячего прессования. Затем осуществляют спекание полученной порошковой смеси. Давление прессования составляет 50 МПа, температура спекания - 1400 °C, время выдержки - 20 минут. Для определения содержания целевой фазы AlMgB14 в конечном продукте используют метод рентгенофазового анализа. Рентгенограмма керамического материала на основе AlMgB14, полученного настоящим способом, представлена на фигуре 1. Массовая доля фазы AlMgB14 составляет 98 %. Средняя твердость материала по Виккерсу составляет 27 ГПа, при максимальной твердости 32 ГПа. Условия осуществления способа и характеристика сверхтвердого керамического материала на основе AlMgB14 приведены в таблице.
Пример 2. Способ осуществляют, как описано в примере 1, но давление прессования составляет 30 МПа. Условия осуществления способа и характеристика сверхтвердого керамического материала на основе AlMgB14 приведены в таблице.
Пример 3. Способ осуществляют, как описано в примере 1, но активация порошковой смеси осуществляется при скорости вращения барабанов - 720 об/мин, а давление прессования составляет 40 МПа. Условия осуществления способа и характеристика сверхтвердого керамического материала на основе AlMgB14 приведены в таблице.
Пример 4. Способ осуществляют, как описано в примере 1, но активация порошковой смеси осуществляется при скорости вращения барабанов - 780 об/мин, а давление прессования составляет 40 МПа. Условия осуществления способа и характеристика сверхтвердого керамического материала на основе AlMgB14 приведены в таблице.
Пример 5. Способ осуществляют, как описано в примере 1, но температура горячего прессования составляет 1200 °C, а давление горячего прессования составляет 40 МПа. Условия осуществления способа и характеристика сверхтвердого керамического материала на основе AlMgB14 приведены в таблице.
Пример 6. Способ осуществляют, как описано в примере 1, но температура горячего прессования составляет 1300 °C, а давление горячего прессования составляет 40 МПа. Условия осуществления способа и характеристика сверхтвердого керамического материала на основе AlMgB14 приведены в таблице.
Пример 7. Способ осуществляют, как описано в примере 1, но давление горячего прессования составляет 40 МПа. Условия осуществления способа и характеристика сверхтвердого керамического материала на основе AlMgB14 приведены в таблице.
Таблица
№ примера Скорость вращения, об/мин. Давление прессования, МПа Температура прессования, °C Содержание
AlMgB14/MgAl2O
4/Al, масс. %
Плотность материала, г/см3
1 840 50 1400 98/-/2 2.53
2 840 30 1400 92/8/- 1.62
3 720 40 1400 92/5/5 1.71
4 780 40 1400 94/4/2 1.85
5 840 40 1200 96/1/3 1.41
6 840 40 1300 94/2/4 1.87
7 840 40 1400 96/4/- 2.15
Таким образом, предлагаемый способ позволяет увеличить содержание целевой фазы AlMgB14 до 98 %, снизить содержание примесной фазы MgAl2O4 и полностью исключить примеси FeB49, Fe, Fe3O4 в конечном продукте, что позволяет повысить качество конструкционных материалов и деталей из полученного предложенным способом сверхтвердого керамического материала на основе AlMgB14.

Claims (1)

  1. Способ получения керамического материала на основе AlMgB14, включающий перемешивание порошков исходных компонентов, механическую активацию полученной порошковой смеси и последующее спекание методом горячего прессования, отличающийся тем, что в качестве исходных компонентов используют порошок интерметаллического сплава Al12Mg17 со средним размером частиц не менее 15 мкм и порошок аморфного черного бора со средним размером частиц не менее 2 мкм в атомном соотношении 2:14 соответственно, механическую активацию проводят в планетарной мельнице в атмосфере аргона при скорости вращения барабанов 720-840 об/мин, спекание осуществляют методом горячего прессования при давлении 30-50 МПа и температуре не менее 1200 °C с выдержкой не менее 20 мин.
RU2022133213A 2022-12-19 Способ получения керамического материала на основе AlMgB14 RU2790848C1 (ru)

Publications (1)

Publication Number Publication Date
RU2790848C1 true RU2790848C1 (ru) 2023-02-28

Family

ID=

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU881070A1 (ru) * 1979-07-16 1981-11-15 Предприятие П/Я Р-6209 Способ получени керамического материала
CA2127490A1 (en) * 1993-09-03 1995-03-04 Kenneth F. Ii Lowrance Method of manufacturing a shaped article from a powdered precursor
AU7312494A (en) * 1994-02-16 1995-09-04 University Of Cincinnati, The Method for joining ceramic and metal-ceramic heating elements to electrical terminals by micropyretic synthesis, compositions for electrical terminals and heaters comprising the same
RU2321428C1 (ru) * 2006-05-30 2008-04-10 Государственное учебно-научное учреждение Химический факультет Московского государственного университета им. М.В. Ломоносова Способ получения керамических материалов на основе фосфатов кальция
RU2744543C1 (ru) * 2020-09-15 2021-03-11 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения керамического композиционного материала на основе карбида кремния, армированного волокнами карбида кремния
RU2020111321A (ru) * 2020-03-19 2021-09-21 Павел Юрьевич Никитин Способ получения сверхтвердого керамического материала на основе AlMgB14

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU881070A1 (ru) * 1979-07-16 1981-11-15 Предприятие П/Я Р-6209 Способ получени керамического материала
CA2127490A1 (en) * 1993-09-03 1995-03-04 Kenneth F. Ii Lowrance Method of manufacturing a shaped article from a powdered precursor
AU7312494A (en) * 1994-02-16 1995-09-04 University Of Cincinnati, The Method for joining ceramic and metal-ceramic heating elements to electrical terminals by micropyretic synthesis, compositions for electrical terminals and heaters comprising the same
RU2321428C1 (ru) * 2006-05-30 2008-04-10 Государственное учебно-научное учреждение Химический факультет Московского государственного университета им. М.В. Ломоносова Способ получения керамических материалов на основе фосфатов кальция
RU2020111321A (ru) * 2020-03-19 2021-09-21 Павел Юрьевич Никитин Способ получения сверхтвердого керамического материала на основе AlMgB14
RU2744543C1 (ru) * 2020-09-15 2021-03-11 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ получения керамического композиционного материала на основе карбида кремния, армированного волокнами карбида кремния

Similar Documents

Publication Publication Date Title
US5098469A (en) Powder metal process for producing multiphase NI-AL-TI intermetallic alloys
JP5051168B2 (ja) 窒化物分散Ti−Al系ターゲット及びその製造方法
CN108374113B (zh) 一种TaTiZrAlSi高熵合金及其粉末的制备方法
CH654285A5 (fr) Materiau ceramique et procede de fabrication.
CN112218964B (zh) 密度优化的钼合金
Lei et al. Bulk nanocrystalline Al alloys with hierarchical reinforcement structures via grain boundary segregation and complexion formation
RU2790848C1 (ru) Способ получения керамического материала на основе AlMgB14
JP2018162493A (ja) タングステンシリサイドターゲット及びその製造方法
CN112410634B (zh) 合金化粉末、钨基合金及其制备方法和搅拌工具
Kumar et al. Influence of ceramic particles on the microstructure and mechanical properties of SAC305 lead-free soldering material
JP6342916B2 (ja) Al/TiCナノコンポジット材料を製造する方法
JPH02197535A (ja) 金属間化合物の製法
Chmielewski et al. Relationship between mixing conditions and properties of sintered 20AlN/80Cu composite materials
CN100595007C (zh) 原位制备TiC颗粒增强镁基复合材料的方法
Huang et al. Refinement of TiB2 powders with high-speed planetary mill and its effect on TiB2 sinterability
Chen et al. Nickel aluminide (Ni 3 Al) fabricated by reactive infiltration
Yao et al. Comparative Assessment on Microstructure and Properties of in-situ TiC+ Ti5Si3 Reinforced Ti-Al-Sn-Zr Matrix Composites by Spark Plasma Sintering and Argon Protected Sintering
Liu et al. Microstructure of a bearing-grade silicon nitride
CN111334694A (zh) 一种原生纳米弥散相改性镁合金中lpso结构的方法
KR0174253B1 (ko) Ti5Si3-Cu계 금속간 화합물의 제조방법
Murphy et al. Mechanochemically synthesized NbC cermets: Part I. Synthesis and structural development
CN118880091B (zh) 一种氮化物陶瓷相反应析出强化高熵合金的制备方法
RU2832385C1 (ru) Способ получения высокотемпературной композиционной шихты в системе TaN-HfC-SiC
JPS63171877A (ja) 複合タ−ゲツト材
CN111454062B (zh) 一种AlMgB14陶瓷材料粉体的制备方法