RU2787537C1 - Способ получения биотоплива из макроводорослей - Google Patents
Способ получения биотоплива из макроводорослей Download PDFInfo
- Publication number
- RU2787537C1 RU2787537C1 RU2022124903A RU2022124903A RU2787537C1 RU 2787537 C1 RU2787537 C1 RU 2787537C1 RU 2022124903 A RU2022124903 A RU 2022124903A RU 2022124903 A RU2022124903 A RU 2022124903A RU 2787537 C1 RU2787537 C1 RU 2787537C1
- Authority
- RU
- Russia
- Prior art keywords
- macroalgae
- biomass
- biofuel
- producing
- temperature
- Prior art date
Links
- 241001474374 Blennius Species 0.000 title claims abstract description 27
- 239000002551 biofuel Substances 0.000 title claims abstract description 20
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 239000002028 Biomass Substances 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 31
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 239000002904 solvent Substances 0.000 claims abstract description 7
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 6
- 239000010809 marine debris Substances 0.000 claims abstract description 6
- 239000011707 mineral Substances 0.000 claims abstract description 6
- 230000003197 catalytic Effects 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 235000019749 Dry matter Nutrition 0.000 claims description 11
- 238000002203 pretreatment Methods 0.000 claims description 6
- 239000000446 fuel Substances 0.000 abstract description 18
- 239000007788 liquid Substances 0.000 abstract description 11
- 239000003960 organic solvent Substances 0.000 abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- 229910052799 carbon Inorganic materials 0.000 abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 4
- 239000002699 waste material Substances 0.000 abstract description 3
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 2
- 239000006227 byproduct Substances 0.000 abstract description 2
- 230000001264 neutralization Effects 0.000 abstract description 2
- 241000894007 species Species 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000003379 elimination reaction Methods 0.000 abstract 1
- 241000195493 Cryptophyta Species 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241001478778 Cladophora Species 0.000 description 2
- 241000196252 Ulva Species 0.000 description 2
- 239000012075 bio-oil Substances 0.000 description 2
- 235000012970 cakes Nutrition 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 239000002638 heterogeneous catalyst Substances 0.000 description 2
- 239000002815 homogeneous catalyst Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000011068 load Methods 0.000 description 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Inorganic materials [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 241001428407 Ceramium Species 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- 241000342020 Cladophora glomerata Species 0.000 description 1
- 241001478819 Cladophora rupestris Species 0.000 description 1
- 241000541310 Coccotylus Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000195480 Fucus Species 0.000 description 1
- 241001134786 Furcellaria Species 0.000 description 1
- 241001134796 Furcellaria lumbricalis Species 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- 241000206639 Polysiphonia Species 0.000 description 1
- 241000720356 Polysiphonia fucoides Species 0.000 description 1
- 241000199894 Pylaiella Species 0.000 description 1
- 241000206572 Rhodophyta Species 0.000 description 1
- 240000000528 Ricinus communis Species 0.000 description 1
- 235000004443 Ricinus communis Nutrition 0.000 description 1
- 241000196245 Ulva intestinalis Species 0.000 description 1
- 241000196253 Ulva prolifera Species 0.000 description 1
- 241000981775 Urospora <green alga> Species 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000010828 animal waste Substances 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009264 composting Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000007210 heterogeneous catalysis Methods 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000001932 seasonal Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing Effects 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N tin hydride Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 230000001131 transforming Effects 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Abstract
Изобретение относится к области получения жидкого углеводородного топлива из растительных возобновимых углероднейтральных источников, в частности макроводорослей Балтийского моря, термическими методами. Способ получения биотоплива из макроводорослей заключается в том, что биотопливо производится из биомассы макроводорослей в процессе гидротермального ожижения в реакторе периодического действия, где для конверсии используют биомассу различных видов диких, не культивированных человеком, макроводорослей в смеси с морским мусором и минеральными примесями без предварительной обработки, а также отличается тем, что процесс проводят с использованием в качестве растворителя воды технического качества, без применения каталитических систем при соблюдении следующих параметров процесса: доза биомассы по сухому веществу 1:15-1:5, температура 270-320°С, давление 2-4 МПа. Технический результат заключается в переработке натуральной биомассы макроводорослей, которые не требуют стадии культивирования и, по сути, являются отходами, а также в исключении использования опасных органических растворителей и утилизации побочных газообразных продуктов. 4 пр., 2 табл., 1 ил.
Description
Изобретение относится к области получения жидкого углеводородного топлива из растительных возобновимых углероднейтральных источников, в частности макроводорослей Балтийского моря термическими методами.
В настоящий момент все чаще в морских водах возникают всплески развития макроводорослей, гниение которых приводит к эмиссиям парниковых газов и формированию негативной эколого-экономической ситуации в прибрежных зонах. Перспективным направлением решения проблемы является получения топлива методом гидротермального ожижения (HTL) макроводорослей и морского мусора
В то же время биомасса макроводорослей обладает существенным ресурсным потенциалом, и их переработка в топливо позволит решить сразу две проблемы снижения климатической нагрузки, а именно, обеспечит предотвращение метанообразования в процессе гниения и позволит продвинуться в решении ключевой проблемы современного общества - это сокращение выбросов СО2 от процессов использования ископаемого топлива и его замены углероднейтральными источниками.
Проблема переработки дрейфующих и выброшенных на берег морских водорослей с получением топлива сопряжена с их высокой влажностью, непостоянством состава, сезонными колебаниями объемов и высокой степенью загрязнения посторонними примесями. Технологии прямой трансформации биомассы в жидкое топливо можно условно разбить на 2 группы: биохимические и термохимические. Основные проблемы, связанные с биохимическим получением биотоплив из водорослей - это низкий выход топлива, необходимость предварительной подготовки биомассы и высокая себестоимость процессов извлечения целевых продуктов. Прямая термохимическая конверсия биомассы водорослей в жидкое топливо предусматривает пиролиз и гидротермальное ожижение. Основная проблема получения биотоплива из биомассы методом пиролиза связана с необходимостью сушки сырья до влажности не более 10%, что существенно ухудшает технико-экономические и энергетические параметры процесса.
Гидротермальное ожижение относится к термохимическому процессу, в котором биомасса и органические отходы разлагаются под действием воды, находящейся сверхкритическом состоянии (температура более 374°С и давление более 22,1 МПа). В таких условиях вода действует растворитель, окислитель и источник радикалов.
Известен способ и устройство для производства жидкого биотоплива из углеродсодержащих ископаемых, органических древесных и волокнистых углеродных материалов, при высоких температурах (250-400°С) и давлении (10-30 МПа) с применением различных растворителей, гетерогенных и гомогенных катализаторов. (RU 2575707, 2013).
Недостатком рассмотренного выше способа получения биотоплива являются необходимость предварительной обработки биомассы с получением однородной суспензии, что приводит к высоким энергетическим затратам. Применение дорогостоящих каталитических систем и органических растворителей, приводит к высокой себестоимости и значительному воздействию на окружающую среду.
Аналогичным следует считать известный способ получения бионефти из специально выращенной биомассы микроводорослей путем гидротермального сжижения (CN 104449788 А, 2013). Процесс проводят при дозе биомассы 1:100-1:2, при температуре 180-450°С в присутствии гомогенных катализаторов щелочного ряда (NaOH, KOH, Na2CO3, K2CO3), для разделения пульпы на фракции используются органические растворители.
Недостатками указанного способа получения биотоплива являются необходимость предварительной подготовки биомассы, использование специально культивированной биомассы микроводорослей (что повышает себестоимость и ресурсоемкость процесса), а также использование безвозвратно теряемых гомогенных катализаторов. Ряд патентов предлагает замену минеральных катализаторов отходами пищевой промышленности (прокаленной шелухи семян клещевины), но и эти катализаторы требуют предварительной обработки и также безвозвратно теряются при проведении процесса (WO 2021/102534 А1, 03.06.2021)
Известен патент, описывающий технологию переработку очень широкого спектра растительных и животных отходов с получением жидкого топлива (US 2015148553 А1, 28. 05.2015) при температуре 200-500°С, времени контакта 1-30 минут и дозе воды 50-95%. Основным недостатком данного метода следует считать применение для интенсификации процесса газообразных источников углеводородов, подаваемых в реактор (смесь газообразных углеводородов, в том числе кислородсодержащих и/или синтез-газа). Добавление газообразных продуктов сопряжено с дополнительными затратами, усложнением технологического оборудования и повышением его пожаро-, взрывоопасности.
Наиболее близким аналогом предлагаемого способа является способ переработки микроводорослей способ получения бионефти из биомассы специально выращенных микроводорослей методом гидротермальной конверсии, предусматривающий использование гетерогенных катализаторов (оксидов стронция, титана, олова, или их смесь, алюмосодержащего оксидного носителя) с последующей регенерацией катализаторов и рекуперацией тепла (RU 2701372 С1, 26.12.2018).
Основным недостатком предлагаемого способа является использование для производства топлива биомассы специально культивируемых микроводорослей, что существенно повышает себестоимость и сложность аппаратурного оформления процесса. Процесс также предполагает использование гетерогенного катализа, что делает невозможным его применение для переработки цельных макроводорослей без предварительной очистки и измельчения.
Технической проблемой, на решение которой направлено предлагаемое изобретение, является обеспечение возможности переработки биомассы макроводорослей, выброшенных на берег в смеси с минеральными примесями и морским мусором, без предварительной обработки, без применения катализа и органических растворителей с получением жидкого топлива.
Указанная проблема решается способом производства биотоплива, заключающимся в том, что смесь макроводорослей без предварительной обработки смешивают с водой в качестве растворителя и источника и подвергают гидротермальному ожижению при температуре 455-600°С, давлении 10-30 МПа в течение 15-30 мин
Достигаемый технический результат заключается в переработке натуральной биомассы макроводорослей, которые не требуют стадии культивирования и по сути являются отходами, а также в исключении использования опасных органических растворителей и утилизации побочных газообразных продуктов.
В способе получения биотоплива из макроводорослей, при котором биотопливо производится из биомассы макроводорослей в процессе гидротермального ожижения в реакторе периодического действия, согласно изобретению, для конверсии используют биомассу различных видов диких, не культивированных человеком, макроводорослей в смеси с морским мусором и минеральными примесями без предварительной обработки, а также тем, что процесс проводят с использованием в качестве растворителя воды технического качества, без применения каталитических систем при соблюдении следующих параметров процесса: доза биомассы по сухому веществу 1:15-1:5, температура 270-320°С, давление 2-4 Мпа.
На Фиг. 1 показана технологическая схема получения биотоплива методом гидротермального ожижения из биомассы макроводорослей.
Описанный способ осуществляют следующим образом:
В качестве сырья (1) в данном способе возможно использовать выброшенные на берег или дрейфующие макроводоросли, в том числе таксонов Rhodophyta (родов Ceramium, Coccotylus, Furcellaria, Polysiphonia), Chlorophyta (Cladophora, Urospora, Ulva), Phaeophyta (Fucus, Pilayella). Допускается наличие в смеси водорослей до 20% по массе (на сухое вещество) примесей морского мусора и минеральных компонентов (песка и камней). Собранные на берегу водоросли направляют в емкость предварительного нагрева с теплообменником (2). При наличии фракций, линейный размер которых превышает 0,5 диаметра реактора проводится их извлечение и предварительное дробление на роторной ножевой дробилке (3).
Получение биотоплива проводят в реакторе периодического действия (4), оборудованного мешалкой (5). Давление достигается за счет изохорности процесса. Биомассу водорослей смешивают с водой (6) (при необходимости) для достижения соотношения сухое вещество: вода на уровне 1:15-1:5. В данном процессе возможно использование технической воды.
После загрузки реактора его плотно закрывают и начинают нагрев. Для нагрева могут быть использованы любые внешние системы, в том числе внешний электрический нагрев (7). За счет повышения температуры происходит увеличение давления. После достижения требуемого уровня температуры (270-320°С) и давления на уровне 2-4 Мпа активный нагрев прекращают и поддерживают температуру на заданном уровне в течение 15-30 минут. После завершения процесса реактор охлаждают с использованием теплообменника (8) до температуры 60-70°С. При проведении процесса тепловая энергия, частично рекуперируется за счет ее использования для нагрева биомассы водорослей в емкости предварительного нагрева (2). После достижения реакционной смесью температуры 60-70°С открывается вентиль отвода газовой фазы (9). Доля газовой фазы не превышает 5% исходной массы водорослей и может, при необходимости, повергаться факельному сжиганию.
Далее полученный продукт сжижения выгружается в приемный резервуар (10) для отстаивания. По мере накопления жидкая фаза насосами направляется на механическое разделение на биотопливо (11), водную фазу (12) и кек (13) с использованием трехфазной декантерной центрифуги (14). Кек и осадок из приемного резервуара направляют на компостирование с целью последующего использования для рекультивации нарушенных земель. Водная фаза может быть повторно использована в технологическом процессе, в связи с чем, направляется в резервуар накопитель жидкой фазы (15), избыточная вода отводится через систему переливов (16) для удержания механических примесей в систему центральной канализации или на локальные очистные сооружения.
Пример 1. Биомассу макроводорослей Polysiphonia fucoides, выброшенных на берег без предварительной обработки и консервирования, смешивают с водой (доза биомассы 1:10 по сухому веществу) и подвергают переработке методом гидротермального ожижения выше описанным способом. При этом температуру поддерживают на уровне 280°С, давление на уровне 3 Мпа, время обработки 20 минут. Выход жидкого топлива составил 14,33% от исходной биомассы (в пересчете на сухое вещество). Теплотворная способность биотоплива составила 14,33 КДж/г. Содержание серы составило 1,33±0,22%, что соответствует параметрам сернистой нефти.
Пример 2. Способ проводят аналогично примеру 1, при этом используют биомассу макроводорослей Ulva sp.(смесь U.intestinalis и U.prolifera). Дога биомассы в процессе поддерживалась на уровне 1:12 по сухому веществу, температура на уровне 290°С, давление на уровне 3,2 Мпа, время обработки 25 минут.Выход жидкого топлива составил 11,02% от исходной биомассы (в пересчете на сухое вещество). Теплотворная способность биотоплива составила 11,02 КДж/г. Содержание серы составило 1,33±0,22%, что соответствует параметрам малосернистой нефти.
Пример 3. Способ проводят аналогично примеру 1, при этом используют биомассу макроводорослей Cladophora sp.(смесь C.glomerata и C.rupestris). Доза биомассы в процессе поддерживалась на уровне 1:15 по сухому веществу, температура на уровне 300°С, давление на уровне 3,4 Мпа, время обработки 30 минут. Выход жидкого топлива составил 10,25% от исходной биомассы (в пересчете на сухое вещество). Теплотворная способность биотоплива составила 10,25 КДж/г. Содержание серы составило 0,60±0,01%, что соответствует параметрам малосернистой нефти.
Пример 4. Способ проводят аналогично примеру 1, при этом используют биомассу макроводорослей Furcellaria lumbricalis. Доза, биомассы в процессе поддерживалась на уровне 1:8 по сухому веществу, температура на уровне 320°С, давление на уровне 4 Мпа, время обработки 20 минут. Выход жидкого топлива составил 9,13% от исходной биомассы (в пересчете на сухое вещество). Теплотворная способность биотоплива составила 9,13 КДж/г. Содержание серы составило 0,55±0,01%, что соответствует параметрам малосернистой нефти.
Приведенные выше данные свидетельствуют, что применение некаталитического процесса гидротермального ожижения натуральной неподготовленной биомасс макроводорослей при температуре 270-320°С, времени процесса 15-30 минут и давлении 2-4Мпа позволяет обеспечить выход топлива на уровне 9-14% от исходной биомассы. При этом топлива отличается низким содержанием серы (0,37-1,33%) и удовлетворительной калорийностью (5-9 КДж/г). При этом концентрация углерода составляет 69-73%, что в 2 раза выше, чем в исходной биомассе.
Таким образом, предложенный способ позволяет получать удовлетворительное количество жидкого топлива (9-14%) без применения катализа, опасных растворителей и при отсутствии необходимости очистки и подготовки биомассы натуральных водорослей, выброшенных на берег (без дополнительных затрат на и культивирование).
Claims (1)
- Способ получения биотоплива из макроводорослей, заключающийся в том, что биотопливо производится из биомассы макроводорослей в процессе гидротермального ожижения в реакторе периодического действия, отличающийся тем, что для конверсии используют биомассу различных видов диких, не культивированных человеком, макроводорослей в смеси с морским мусором и минеральными примесями без предварительной обработки, а также тем, что процесс проводят с использованием в качестве растворителя воды технического качества, без применения каталитических систем при соблюдении следующих параметров процесса: доза биомассы по сухому веществу 1:15-1:5, температура 270-320°С, давление 2-4 МПа.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2787537C1 true RU2787537C1 (ru) | 2023-01-10 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116376583A (zh) * | 2023-02-24 | 2023-07-04 | 北京航空航天大学杭州创新研究院 | 一种基于双层水滑石催化巨藻的航空替代燃料制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104449788A (zh) * | 2013-09-13 | 2015-03-25 | 中国科学院上海高等研究院 | 微藻水热液化制备微藻油的方法 |
RU2575707C2 (ru) * | 2010-04-07 | 2016-02-20 | Лайселла Пти Лтд. | Способы производства биотоплива |
RU2682663C1 (ru) * | 2016-11-21 | 2019-03-20 | Бейджинг Хуаши Юнайтед Энерджи Технолоджи энд Девелопмент Ко., Лтд. | Способ сжижения биомассы, жидкое топливо и химическое сырьё, полученные данным способом |
RU2689325C1 (ru) * | 2018-12-26 | 2019-05-27 | федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" | Установка для производства биотоплива |
RU2701372C1 (ru) * | 2018-12-26 | 2019-09-26 | федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" | Способ получения биотоплива |
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2575707C2 (ru) * | 2010-04-07 | 2016-02-20 | Лайселла Пти Лтд. | Способы производства биотоплива |
CN104449788A (zh) * | 2013-09-13 | 2015-03-25 | 中国科学院上海高等研究院 | 微藻水热液化制备微藻油的方法 |
RU2682663C1 (ru) * | 2016-11-21 | 2019-03-20 | Бейджинг Хуаши Юнайтед Энерджи Технолоджи энд Девелопмент Ко., Лтд. | Способ сжижения биомассы, жидкое топливо и химическое сырьё, полученные данным способом |
RU2689325C1 (ru) * | 2018-12-26 | 2019-05-27 | федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" | Установка для производства биотоплива |
RU2701372C1 (ru) * | 2018-12-26 | 2019-09-26 | федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" | Способ получения биотоплива |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116376583A (zh) * | 2023-02-24 | 2023-07-04 | 北京航空航天大学杭州创新研究院 | 一种基于双层水滑石催化巨藻的航空替代燃料制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Conversion of sweet potato waste to solid fuel via hydrothermal carbonization | |
CN105505414B (zh) | 一种固体垃圾无氧催化热裂解方法 | |
Peng et al. | Investigation of the structure and reaction pathway of char obtained from sewage sludge with biomass wastes, using hydrothermal treatment | |
US9404063B2 (en) | System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system | |
US8623102B2 (en) | Process for direct hydorliquefaction of biomass comprising two stages of ebullating bed hydroconversion | |
CN110451753B (zh) | 一种危险固废油泥的处理方法 | |
US20120009660A1 (en) | Method of ash removal from a biomass | |
JP2011514403A (ja) | 液体バイオ燃料を形成するためのリグノセルロース系農業廃棄物の完全液化 | |
EP2749626A1 (en) | Integrated process for the production of biofuels from solid urban waste | |
CN107117787B (zh) | 一种含油污泥添加微藻生物质协同热解的工艺方法 | |
CN108203588B (zh) | 一种氮气氛围低温热解处理废轮胎的方法 | |
CN110358599B (zh) | 一种基于水热反应的农林废弃物脱碱炭化方法 | |
CN102482581B (zh) | 由固体城市废物生产生物油的方法 | |
AU2016325487A1 (en) | Conversion of biomass into methane | |
Sabry et al. | Hydrothermal carbonization of Calotropis procera leaves as a biomass: Preparation and characterization | |
US8465557B2 (en) | Process for making bio-oils and fresh water from aquatic biomass | |
RU2787537C1 (ru) | Способ получения биотоплива из макроводорослей | |
US9650275B2 (en) | Integrated process for the production of bio-oil from sludge coming from a wastewater purification plant | |
Kandasamy et al. | Thermochemical conversion of algal biomass | |
RU2681306C1 (ru) | Однореакторный способ сжижения биомассы | |
US11059734B2 (en) | Method for biomass assisted separation of particulate matter from a liquid stream and upgrading of the combined solids | |
WO2024048722A1 (ja) | 海藻類の資源化方法 | |
CN114846116B (zh) | 由高含水量生物质生产粗生物油的方法和用于高含水量生物质流的水热液化的催化剂 | |
CN219314796U (zh) | 一种炼化企业三泥的处理装置 | |
Snapkauskienė et al. | Banana peel thermochemical conversion |