[go: up one dir, main page]

RU2787537C1 - Способ получения биотоплива из макроводорослей - Google Patents

Способ получения биотоплива из макроводорослей Download PDF

Info

Publication number
RU2787537C1
RU2787537C1 RU2022124903A RU2022124903A RU2787537C1 RU 2787537 C1 RU2787537 C1 RU 2787537C1 RU 2022124903 A RU2022124903 A RU 2022124903A RU 2022124903 A RU2022124903 A RU 2022124903A RU 2787537 C1 RU2787537 C1 RU 2787537C1
Authority
RU
Russia
Prior art keywords
macroalgae
biomass
biofuel
producing
temperature
Prior art date
Application number
RU2022124903A
Other languages
English (en)
Inventor
Юлия Владимировна Куликова
Станислав Алексеевич Сухих
Ольга Олеговна Бабич
Юлия Михайловна Маргина
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Балтийский федеральный университет имени Иммануила Канта" (БФУ им. И. Канта)
Application granted granted Critical
Publication of RU2787537C1 publication Critical patent/RU2787537C1/ru

Links

Images

Abstract

Изобретение относится к области получения жидкого углеводородного топлива из растительных возобновимых углероднейтральных источников, в частности макроводорослей Балтийского моря, термическими методами. Способ получения биотоплива из макроводорослей заключается в том, что биотопливо производится из биомассы макроводорослей в процессе гидротермального ожижения в реакторе периодического действия, где для конверсии используют биомассу различных видов диких, не культивированных человеком, макроводорослей в смеси с морским мусором и минеральными примесями без предварительной обработки, а также отличается тем, что процесс проводят с использованием в качестве растворителя воды технического качества, без применения каталитических систем при соблюдении следующих параметров процесса: доза биомассы по сухому веществу 1:15-1:5, температура 270-320°С, давление 2-4 МПа. Технический результат заключается в переработке натуральной биомассы макроводорослей, которые не требуют стадии культивирования и, по сути, являются отходами, а также в исключении использования опасных органических растворителей и утилизации побочных газообразных продуктов. 4 пр., 2 табл., 1 ил.

Description

Изобретение относится к области получения жидкого углеводородного топлива из растительных возобновимых углероднейтральных источников, в частности макроводорослей Балтийского моря термическими методами.
В настоящий момент все чаще в морских водах возникают всплески развития макроводорослей, гниение которых приводит к эмиссиям парниковых газов и формированию негативной эколого-экономической ситуации в прибрежных зонах. Перспективным направлением решения проблемы является получения топлива методом гидротермального ожижения (HTL) макроводорослей и морского мусора
В то же время биомасса макроводорослей обладает существенным ресурсным потенциалом, и их переработка в топливо позволит решить сразу две проблемы снижения климатической нагрузки, а именно, обеспечит предотвращение метанообразования в процессе гниения и позволит продвинуться в решении ключевой проблемы современного общества - это сокращение выбросов СО2 от процессов использования ископаемого топлива и его замены углероднейтральными источниками.
Проблема переработки дрейфующих и выброшенных на берег морских водорослей с получением топлива сопряжена с их высокой влажностью, непостоянством состава, сезонными колебаниями объемов и высокой степенью загрязнения посторонними примесями. Технологии прямой трансформации биомассы в жидкое топливо можно условно разбить на 2 группы: биохимические и термохимические. Основные проблемы, связанные с биохимическим получением биотоплив из водорослей - это низкий выход топлива, необходимость предварительной подготовки биомассы и высокая себестоимость процессов извлечения целевых продуктов. Прямая термохимическая конверсия биомассы водорослей в жидкое топливо предусматривает пиролиз и гидротермальное ожижение. Основная проблема получения биотоплива из биомассы методом пиролиза связана с необходимостью сушки сырья до влажности не более 10%, что существенно ухудшает технико-экономические и энергетические параметры процесса.
Гидротермальное ожижение относится к термохимическому процессу, в котором биомасса и органические отходы разлагаются под действием воды, находящейся сверхкритическом состоянии (температура более 374°С и давление более 22,1 МПа). В таких условиях вода действует растворитель, окислитель и источник радикалов.
Известен способ и устройство для производства жидкого биотоплива из углеродсодержащих ископаемых, органических древесных и волокнистых углеродных материалов, при высоких температурах (250-400°С) и давлении (10-30 МПа) с применением различных растворителей, гетерогенных и гомогенных катализаторов. (RU 2575707, 2013).
Недостатком рассмотренного выше способа получения биотоплива являются необходимость предварительной обработки биомассы с получением однородной суспензии, что приводит к высоким энергетическим затратам. Применение дорогостоящих каталитических систем и органических растворителей, приводит к высокой себестоимости и значительному воздействию на окружающую среду.
Аналогичным следует считать известный способ получения бионефти из специально выращенной биомассы микроводорослей путем гидротермального сжижения (CN 104449788 А, 2013). Процесс проводят при дозе биомассы 1:100-1:2, при температуре 180-450°С в присутствии гомогенных катализаторов щелочного ряда (NaOH, KOH, Na2CO3, K2CO3), для разделения пульпы на фракции используются органические растворители.
Недостатками указанного способа получения биотоплива являются необходимость предварительной подготовки биомассы, использование специально культивированной биомассы микроводорослей (что повышает себестоимость и ресурсоемкость процесса), а также использование безвозвратно теряемых гомогенных катализаторов. Ряд патентов предлагает замену минеральных катализаторов отходами пищевой промышленности (прокаленной шелухи семян клещевины), но и эти катализаторы требуют предварительной обработки и также безвозвратно теряются при проведении процесса (WO 2021/102534 А1, 03.06.2021)
Известен патент, описывающий технологию переработку очень широкого спектра растительных и животных отходов с получением жидкого топлива (US 2015148553 А1, 28. 05.2015) при температуре 200-500°С, времени контакта 1-30 минут и дозе воды 50-95%. Основным недостатком данного метода следует считать применение для интенсификации процесса газообразных источников углеводородов, подаваемых в реактор (смесь газообразных углеводородов, в том числе кислородсодержащих и/или синтез-газа). Добавление газообразных продуктов сопряжено с дополнительными затратами, усложнением технологического оборудования и повышением его пожаро-, взрывоопасности.
Наиболее близким аналогом предлагаемого способа является способ переработки микроводорослей способ получения бионефти из биомассы специально выращенных микроводорослей методом гидротермальной конверсии, предусматривающий использование гетерогенных катализаторов (оксидов стронция, титана, олова, или их смесь, алюмосодержащего оксидного носителя) с последующей регенерацией катализаторов и рекуперацией тепла (RU 2701372 С1, 26.12.2018).
Основным недостатком предлагаемого способа является использование для производства топлива биомассы специально культивируемых микроводорослей, что существенно повышает себестоимость и сложность аппаратурного оформления процесса. Процесс также предполагает использование гетерогенного катализа, что делает невозможным его применение для переработки цельных макроводорослей без предварительной очистки и измельчения.
Технической проблемой, на решение которой направлено предлагаемое изобретение, является обеспечение возможности переработки биомассы макроводорослей, выброшенных на берег в смеси с минеральными примесями и морским мусором, без предварительной обработки, без применения катализа и органических растворителей с получением жидкого топлива.
Указанная проблема решается способом производства биотоплива, заключающимся в том, что смесь макроводорослей без предварительной обработки смешивают с водой в качестве растворителя и источника и подвергают гидротермальному ожижению при температуре 455-600°С, давлении 10-30 МПа в течение 15-30 мин
Достигаемый технический результат заключается в переработке натуральной биомассы макроводорослей, которые не требуют стадии культивирования и по сути являются отходами, а также в исключении использования опасных органических растворителей и утилизации побочных газообразных продуктов.
В способе получения биотоплива из макроводорослей, при котором биотопливо производится из биомассы макроводорослей в процессе гидротермального ожижения в реакторе периодического действия, согласно изобретению, для конверсии используют биомассу различных видов диких, не культивированных человеком, макроводорослей в смеси с морским мусором и минеральными примесями без предварительной обработки, а также тем, что процесс проводят с использованием в качестве растворителя воды технического качества, без применения каталитических систем при соблюдении следующих параметров процесса: доза биомассы по сухому веществу 1:15-1:5, температура 270-320°С, давление 2-4 Мпа.
На Фиг. 1 показана технологическая схема получения биотоплива методом гидротермального ожижения из биомассы макроводорослей.
Описанный способ осуществляют следующим образом:
В качестве сырья (1) в данном способе возможно использовать выброшенные на берег или дрейфующие макроводоросли, в том числе таксонов Rhodophyta (родов Ceramium, Coccotylus, Furcellaria, Polysiphonia), Chlorophyta (Cladophora, Urospora, Ulva), Phaeophyta (Fucus, Pilayella). Допускается наличие в смеси водорослей до 20% по массе (на сухое вещество) примесей морского мусора и минеральных компонентов (песка и камней). Собранные на берегу водоросли направляют в емкость предварительного нагрева с теплообменником (2). При наличии фракций, линейный размер которых превышает 0,5 диаметра реактора проводится их извлечение и предварительное дробление на роторной ножевой дробилке (3).
Получение биотоплива проводят в реакторе периодического действия (4), оборудованного мешалкой (5). Давление достигается за счет изохорности процесса. Биомассу водорослей смешивают с водой (6) (при необходимости) для достижения соотношения сухое вещество: вода на уровне 1:15-1:5. В данном процессе возможно использование технической воды.
После загрузки реактора его плотно закрывают и начинают нагрев. Для нагрева могут быть использованы любые внешние системы, в том числе внешний электрический нагрев (7). За счет повышения температуры происходит увеличение давления. После достижения требуемого уровня температуры (270-320°С) и давления на уровне 2-4 Мпа активный нагрев прекращают и поддерживают температуру на заданном уровне в течение 15-30 минут. После завершения процесса реактор охлаждают с использованием теплообменника (8) до температуры 60-70°С. При проведении процесса тепловая энергия, частично рекуперируется за счет ее использования для нагрева биомассы водорослей в емкости предварительного нагрева (2). После достижения реакционной смесью температуры 60-70°С открывается вентиль отвода газовой фазы (9). Доля газовой фазы не превышает 5% исходной массы водорослей и может, при необходимости, повергаться факельному сжиганию.
Далее полученный продукт сжижения выгружается в приемный резервуар (10) для отстаивания. По мере накопления жидкая фаза насосами направляется на механическое разделение на биотопливо (11), водную фазу (12) и кек (13) с использованием трехфазной декантерной центрифуги (14). Кек и осадок из приемного резервуара направляют на компостирование с целью последующего использования для рекультивации нарушенных земель. Водная фаза может быть повторно использована в технологическом процессе, в связи с чем, направляется в резервуар накопитель жидкой фазы (15), избыточная вода отводится через систему переливов (16) для удержания механических примесей в систему центральной канализации или на локальные очистные сооружения.
Пример 1. Биомассу макроводорослей Polysiphonia fucoides, выброшенных на берег без предварительной обработки и консервирования, смешивают с водой (доза биомассы 1:10 по сухому веществу) и подвергают переработке методом гидротермального ожижения выше описанным способом. При этом температуру поддерживают на уровне 280°С, давление на уровне 3 Мпа, время обработки 20 минут. Выход жидкого топлива составил 14,33% от исходной биомассы (в пересчете на сухое вещество). Теплотворная способность биотоплива составила 14,33 КДж/г. Содержание серы составило 1,33±0,22%, что соответствует параметрам сернистой нефти.
Пример 2. Способ проводят аналогично примеру 1, при этом используют биомассу макроводорослей Ulva sp.(смесь U.intestinalis и U.prolifera). Дога биомассы в процессе поддерживалась на уровне 1:12 по сухому веществу, температура на уровне 290°С, давление на уровне 3,2 Мпа, время обработки 25 минут.Выход жидкого топлива составил 11,02% от исходной биомассы (в пересчете на сухое вещество). Теплотворная способность биотоплива составила 11,02 КДж/г. Содержание серы составило 1,33±0,22%, что соответствует параметрам малосернистой нефти.
Пример 3. Способ проводят аналогично примеру 1, при этом используют биомассу макроводорослей Cladophora sp.(смесь C.glomerata и C.rupestris). Доза биомассы в процессе поддерживалась на уровне 1:15 по сухому веществу, температура на уровне 300°С, давление на уровне 3,4 Мпа, время обработки 30 минут. Выход жидкого топлива составил 10,25% от исходной биомассы (в пересчете на сухое вещество). Теплотворная способность биотоплива составила 10,25 КДж/г. Содержание серы составило 0,60±0,01%, что соответствует параметрам малосернистой нефти.
Пример 4. Способ проводят аналогично примеру 1, при этом используют биомассу макроводорослей Furcellaria lumbricalis. Доза, биомассы в процессе поддерживалась на уровне 1:8 по сухому веществу, температура на уровне 320°С, давление на уровне 4 Мпа, время обработки 20 минут. Выход жидкого топлива составил 9,13% от исходной биомассы (в пересчете на сухое вещество). Теплотворная способность биотоплива составила 9,13 КДж/г. Содержание серы составило 0,55±0,01%, что соответствует параметрам малосернистой нефти.
Figure 00000001
Figure 00000002
Приведенные выше данные свидетельствуют, что применение некаталитического процесса гидротермального ожижения натуральной неподготовленной биомасс макроводорослей при температуре 270-320°С, времени процесса 15-30 минут и давлении 2-4Мпа позволяет обеспечить выход топлива на уровне 9-14% от исходной биомассы. При этом топлива отличается низким содержанием серы (0,37-1,33%) и удовлетворительной калорийностью (5-9 КДж/г). При этом концентрация углерода составляет 69-73%, что в 2 раза выше, чем в исходной биомассе.
Таким образом, предложенный способ позволяет получать удовлетворительное количество жидкого топлива (9-14%) без применения катализа, опасных растворителей и при отсутствии необходимости очистки и подготовки биомассы натуральных водорослей, выброшенных на берег (без дополнительных затрат на и культивирование).

Claims (1)

  1. Способ получения биотоплива из макроводорослей, заключающийся в том, что биотопливо производится из биомассы макроводорослей в процессе гидротермального ожижения в реакторе периодического действия, отличающийся тем, что для конверсии используют биомассу различных видов диких, не культивированных человеком, макроводорослей в смеси с морским мусором и минеральными примесями без предварительной обработки, а также тем, что процесс проводят с использованием в качестве растворителя воды технического качества, без применения каталитических систем при соблюдении следующих параметров процесса: доза биомассы по сухому веществу 1:15-1:5, температура 270-320°С, давление 2-4 МПа.
RU2022124903A 2022-09-21 Способ получения биотоплива из макроводорослей RU2787537C1 (ru)

Publications (1)

Publication Number Publication Date
RU2787537C1 true RU2787537C1 (ru) 2023-01-10

Family

ID=

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376583A (zh) * 2023-02-24 2023-07-04 北京航空航天大学杭州创新研究院 一种基于双层水滑石催化巨藻的航空替代燃料制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104449788A (zh) * 2013-09-13 2015-03-25 中国科学院上海高等研究院 微藻水热液化制备微藻油的方法
RU2575707C2 (ru) * 2010-04-07 2016-02-20 Лайселла Пти Лтд. Способы производства биотоплива
RU2682663C1 (ru) * 2016-11-21 2019-03-20 Бейджинг Хуаши Юнайтед Энерджи Технолоджи энд Девелопмент Ко., Лтд. Способ сжижения биомассы, жидкое топливо и химическое сырьё, полученные данным способом
RU2689325C1 (ru) * 2018-12-26 2019-05-27 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Установка для производства биотоплива
RU2701372C1 (ru) * 2018-12-26 2019-09-26 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Способ получения биотоплива

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2575707C2 (ru) * 2010-04-07 2016-02-20 Лайселла Пти Лтд. Способы производства биотоплива
CN104449788A (zh) * 2013-09-13 2015-03-25 中国科学院上海高等研究院 微藻水热液化制备微藻油的方法
RU2682663C1 (ru) * 2016-11-21 2019-03-20 Бейджинг Хуаши Юнайтед Энерджи Технолоджи энд Девелопмент Ко., Лтд. Способ сжижения биомассы, жидкое топливо и химическое сырьё, полученные данным способом
RU2689325C1 (ru) * 2018-12-26 2019-05-27 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Установка для производства биотоплива
RU2701372C1 (ru) * 2018-12-26 2019-09-26 федеральное государственное автономное образовательное учреждение высшего образования "Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина" Способ получения биотоплива

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376583A (zh) * 2023-02-24 2023-07-04 北京航空航天大学杭州创新研究院 一种基于双层水滑石催化巨藻的航空替代燃料制备方法

Similar Documents

Publication Publication Date Title
Chen et al. Conversion of sweet potato waste to solid fuel via hydrothermal carbonization
CN105505414B (zh) 一种固体垃圾无氧催化热裂解方法
Peng et al. Investigation of the structure and reaction pathway of char obtained from sewage sludge with biomass wastes, using hydrothermal treatment
US9404063B2 (en) System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system
US8623102B2 (en) Process for direct hydorliquefaction of biomass comprising two stages of ebullating bed hydroconversion
CN110451753B (zh) 一种危险固废油泥的处理方法
US20120009660A1 (en) Method of ash removal from a biomass
JP2011514403A (ja) 液体バイオ燃料を形成するためのリグノセルロース系農業廃棄物の完全液化
EP2749626A1 (en) Integrated process for the production of biofuels from solid urban waste
CN107117787B (zh) 一种含油污泥添加微藻生物质协同热解的工艺方法
CN108203588B (zh) 一种氮气氛围低温热解处理废轮胎的方法
CN110358599B (zh) 一种基于水热反应的农林废弃物脱碱炭化方法
CN102482581B (zh) 由固体城市废物生产生物油的方法
AU2016325487A1 (en) Conversion of biomass into methane
Sabry et al. Hydrothermal carbonization of Calotropis procera leaves as a biomass: Preparation and characterization
US8465557B2 (en) Process for making bio-oils and fresh water from aquatic biomass
RU2787537C1 (ru) Способ получения биотоплива из макроводорослей
US9650275B2 (en) Integrated process for the production of bio-oil from sludge coming from a wastewater purification plant
Kandasamy et al. Thermochemical conversion of algal biomass
RU2681306C1 (ru) Однореакторный способ сжижения биомассы
US11059734B2 (en) Method for biomass assisted separation of particulate matter from a liquid stream and upgrading of the combined solids
WO2024048722A1 (ja) 海藻類の資源化方法
CN114846116B (zh) 由高含水量生物质生产粗生物油的方法和用于高含水量生物质流的水热液化的催化剂
CN219314796U (zh) 一种炼化企业三泥的处理装置
Snapkauskienė et al. Banana peel thermochemical conversion