RU2741986C1 - Биоразлагаемый материал - Google Patents
Биоразлагаемый материал Download PDFInfo
- Publication number
- RU2741986C1 RU2741986C1 RU2020115703A RU2020115703A RU2741986C1 RU 2741986 C1 RU2741986 C1 RU 2741986C1 RU 2020115703 A RU2020115703 A RU 2020115703A RU 2020115703 A RU2020115703 A RU 2020115703A RU 2741986 C1 RU2741986 C1 RU 2741986C1
- Authority
- RU
- Russia
- Prior art keywords
- mixture
- clay
- polylactic acid
- polyhydroxybutyrate
- organomodified
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L3/00—Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
- C08L3/02—Starch; Degradation products thereof, e.g. dextrin
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Insulating Materials (AREA)
- Biological Depolymerization Polymers (AREA)
Abstract
Изобретение относится к области создания биоразлагаемых композиционных материалов, предназначенных для изготовления изоляционных оболочек металлических жил проводов, используемых в кабельной промышленности. Описан биоразлагаемый материал на основе термопластичного крахмала, отличающийся тем, что дополнительно содержит смесь поливинилхлорида суспензионного, полимолочной кислоты и полигидроксибутирата, органомодифицированную мочевиной глину, смесь карбоната кальция, бората цинка, гидроксида магния, кальций-цинковый стабилизатор и тетрафторборат аммония при следующем соотношении, мас.ч.: смесь поливинилхлорида суспензионного, полимолочной кислоты и полигидроксибутирата 100, термопластичный крахмал 15-18, органомодифицированная мочевиной глина 2-3, смесь карбоната кальция, бората цинка, гидроксида магния 12, кальций-цинковый стабилизатор 2-4, тетрафторборат аммония 2-4, причем указанная матричная смесь, включающая в себя поливинилхлорид суспензионный, полимолочную кислоту и полигидроксибутират, подвергается смешению в высокогомогенизирующем смесителе при 35°С, при соотношениях мас.ч. 100:15:35, соответственно, смесь карбоната кальция, бората цинка, гидроксида магния также подвергается смешению в высокогомогенизирующем смесителе при 35°С, при соотношениях мас.ч. 100:45:65, соответственно, органомодифицированная глина представляет собой продукт модификации монтмориллонита катионообменной емкостью 95 мг-экв/100 г глины мочевиной, в количестве 5% от массы монтмориллонита, термопластичный крахмал получают путем смешения крахмала с глицерином и водой при соотношении мас.ч. 100:50:35, соответственно. Техническим результатом изобретения является получение биоразлагаемого композиционного материала с соответствующими промышленному аналогу диэлектрическими, физико-механическими и огнестойкими характеристиками, подвергающегося разложению в почвенной среде и не разрушающегося в атмосфере воздуха. 3 табл., 5 пр.
Description
Изобретение относится к области создания биоразлагаемых композиционных материалов, предназначенных для изготовления изоляционных оболочек металлических жил проводов, используемых в кабельной промышленности.
Увеличение объема отработанных кабелей и проводниковой продукции становится все большей проблемой во всем мире. Это связано с развитием электрической и электронной промышленности, а также энергетики. По данным мировых аналитиков в 2019 г. количество отработанных кабелей и проводниковой продукции соответствовало значению 450 млн. т. Отработанная кабельная продукция с использование различных технологий и оборудования перерабатывается в лом металлических проводов и полимерного материала. После переработки металл становится пригоден для вторичного использования, а полимерная оболочка, к сожалению, в своем большинстве подвергается складированию и захоронению, тем самым оказывая негативное влияние не только на живой организм, но и всей окружающей среде. Особым интересом в последнее время пользуются так называемые биоразлагаемые пластики и биоразлагаемые композиционные материалы, которые после истечения срока службы способны в почвенной среде распадаться на безопасные для окружающей среды компоненты. Согласно заключению отчета по биоразлагаемым материалам, выпущенного Институтом перспективных технологических исследований Европейской комиссии, доля разлагаемых материалов на мировом рынке составляет не более 3%. В основу таких материалов лежит биоразлагаемая полимолочная кислота (ПЛА), модифицированная различными модификаторами - антипирены, пластификаторы, стабилизаторы и т.д. Основными недостатками имеющихся биоразлагаемых полимерных материалов является высокая стоимость композиционных материалов и использование специального оборудования, предназначенного для их создания, что вызывает дополнительные финансовые затраты для производителей. В связи с эти в настоящее время является актуальным создание полимерного биоразлагаемого материала, обладающего рядом ценных свойств - диэлектрических, физико-механических, огнестойких и т.д., предназначенные для кабельной индустрии.
Из уровня техники известны полимерные композиционные материалы, предназначенные для изоляции металлических жил проводов и кабелей. Патент на изобретение US 8722775-B2 «Экологически чистый кабель» описывает биоразлагаемый полимерный материал, получаемый путем смешивания крахмала, гуминовой и / или фульвовой кислот, белого минерального масла, полипропилена и блок-сополимер гидрированного стирола, изопрена / бутадиена. Полимерный материал получают путем предварительного смешения всех компонентов полимерной смеси с последующей их экструзией.
Патент на изобретение JP 2004-311063 описывает силовой кабель, включающий в себя оболочку на основе полимолочной кислоты. Однако, кроме оболочки, силовые кабели имеют и изоляционный слой, который, как следует из рассматриваемого изобретения, не является биоразлагаемым.
Наиболее близким аналогом, известным из уровня техники является патент на изобретение US 7884143В3 «Композиция на основе биополимера для силового и / или телекоммуникационного кабеля». Представленное изобретение относится к силовому и / или телекоммуникационному кабелю, включающему, по меньшей мере, один компонентный элемент, изготовленный из материала, экструдированного из экструдируемой композиции, где указанная экструдируемая композиция содержит биополимер, выбранный из полимеров эфира целлюлозы, полимеров крахмала, образующих комплекс с биоразлагаемым полиэфиром. полимеры полигидроксиалканоата и / или полимеры полимолочной кислоты, содержащие смесь полимолочной кислоты и сложного полиэфира.
Основными недостатками представленных материалов являются их недостаточная изученность. Не представлены результаты исследований влияния процессов разложения при эксплуатации кабелей в атмосфере воздуха. В полной мере не изучены физико-механические характеристики создаваемых полимерных материалов.
Задачей настоящего изобретения является создание полимерного материала, предназначенного в качестве изоляционной оболочки электрических проводов соответствующие требуемым значениям физико-механических характеристик, диэлектрических свойств, горючести, подвергающийся биоразложению при воздействии почвенных микроорганизмов, таких как Pseudomonas lemoigne, Comamonas sp., Acidovorax faecalis, Aspergillus fumigatus, Variovorax paradoxus и т.д., и не разрушаться при эксплуатации в атмосфере воздуха.
Задача решается путем получения полимерных гранул на основе веществ, в количествах мас.ч.:
Смесь поливинилхлорида суспензионного, | |
полимолочной кислоты и полигидроксибутирата | 100 |
Термопластичный крахмал | 15-18 |
Органомодифицированная мочевиной глина | 2-3 |
Смесь карбоната кальция, бората цинка, | |
гидроксида магния | 12 |
Кальций-цинковый стабилизатор | 2-4 |
Тетрафторборат аммония | 2-4, |
причем указанная матричная смесь, включающая в себя поливинилхлорид суспензионный, полимолочную кислоту и полигидроксибутирата подвергается смешению в высокогомогенизирующем смесителе при 35°С, при соотношениях мас.ч. 100:15:35, соответственно. Смесь карбоната кальция, бората цинка, гидроксида магния также подвергается смешению в высокогомогенизирующем смесителе при 35°С, при соотношениях мас.ч. 100:45:65, соответственно. Органомодифицированная глина представляет собой продукт модификации монтмориллонита катионообменной емкостью 95 мг-экв/100 г глины мочевиной, в количестве 5% от массы монтмориллонита. Термопластичный крахмал получают путем смешения крахмала с глицерином и водой, при соотношении мас.ч. 100:50:35, соответственно.
Пример осуществления изобретения: В высокогомогенизирующий смеситель, нагретый до 18ºС, загружают последовательно предусмотренных рецептурой (таблица 1) смесь поливинилхлорида суспензионного, полимолочной кислоты и полигидроксибутирата При дальнейшем повышении температуры в данной установке до 35ºС вводится термопластичный крахмал и органомодифицированная глина. Затем, после нагревания смесителя до 45ºС вводятся смесь карбоната кальция, бората цинка, гидроксида магния. Добавляется кальций – цинковый стабилизатор и тетрафторборат аммония. Полученная гомогенизированная смесь подвергается смешению в течении 3-5 мин. Затем смесь засыпают в экструдер и перерабатывают в зонах Ι-ΙV, при температурах 146ºС, 149ºС, 155ºС и 160ºС соответственно. В таблице 1 представлены составы композиционных материалов по примерам 1-5.
Таблица 1
№ | Наименование компонента | Общее количество, мас.ч. | 1 | 2 | 3 | 4 | 5 |
1 | Смесь поливинилхлорида суспензионного, полимолочной кислоты и полигидроксибутирата | 100 | 100 | 100 | 100 | 100 | 100 |
2 | Термопластичный крахмал | 15-18 | 15 | 17 | 18 | 16 | 18 |
3 | Органомодифицированная мочевиной глина | 2-3 | 2,5 | 2 | 3 | 2,8 | 2,4 |
4 | Смесь карбоната кальция, бората цинка, гидроксида магния | 12 | 12 | 12 | 12 | 12 | 12 |
5 | Кальций-цинковый стабилизатор | 2-4 | 2 | 3 | 3,5 | 4 | 2,9 |
6 | Тетрафторборат аммония | 2-4 | 2 | 3 | 4 | 2 | 3 |
Из полученных после экструзии гранул прессуются образцы различных форм и размеров, подвергающиеся испытаниям, результаты которых представлены в таблице 2.
Таблица 2
№ | Наименование | Аналог | 1 | 2 | 3 | 4 | 5 |
1 | Удельное объемное электрическое сопротивление при 20°С, Ом*см, не менее | 5*1010 | 4,5*1010 | 5,2*1010 | 4,8*1010 | 5*1010 | 5,5*1010 |
2 | Прочность при разрыве, МПа, не менее | 11,7 | 11,0 | 11,4 | 10,7 | 10,7 | 10 |
3 | Относительное удлинение при разрыве, %, не менее | 300 | 298 | 290 | 300 | 285 | 280 |
4 | Кислородный индекс, % | 35 | 35 | 35 | 36 | 35 | 35 |
Механические испытания на одноосное растяжение выполнены на образцах на термопластавтомате SZS-20 (Китай) с давлением на расплав до 120 МПа, при температуре материального цилиндра 230°С и температуре формы 180°С, в форме двухсторонней лопатки с размерами согласно ГОСТ 112 62-80. Испытания проводили на универсальной испытательной машине Gotech Testing Machine CT-TCS 2000, производство Тайвань, при температуре 23°С и скорости деформации ~ 2×10-3 с-1. Измерения объемного удельного сопротивления производилось с помощью электрометра Keithley 6517B совместно с испытательной камерой удельного сопротивления Keithley 8009. Как следует из таблицы 2, характеристики создаваемого материала соответствуют значениям своего аналога.
В таблице 3 представлены значения биоразлагаемости композиционных материалов при различных условиях.
Таблица 3
Наименование и методы испытаний | 1 | 2 | 3 | 4 | 5 | Аналог |
Прочность при разрыве после выдержки в естественных условиях в течение 4 месяцев, МПА | 18 | 18,2 | 18,5 | 18 | 17,9 | 17,6 |
Относительное удлинение после выдержки в естественных условиях в течение 4 месяцев, % | 220 | 221 | 210 | 219 | 220 | 200 |
Прочность при разрыве после выдержки в почве в течение 6 месяцев, МПА | 11 | 10 | 10,3 | 10 | 10 | 17,6 |
Относительное удлинение после выдержки в почве в течение 6 месяцев, % | 105 | 100 | 102 | 103 | 105 | 200 |
Прочность при разрыве после испытания на установке Q-SUN в течение 228 ч, МПа | 17 | 17 | 17,2 | 17,3 | 17 | 16 |
Относительное удлинение после испытания на установке Q-SUN в течении 228 ч, % | 200 | 201 | 200 | 205 | 204 | 195 |
Прочность при разрыве после выдержки без доступа воздуха при температуре 60°C в течение 45 суток, МПа | 10 | 9 | 4 | 10 | 10 | 17,6 |
Относительное удлинение после выдержки без доступа воздуха при температуре 60°C в течение 45 суток, МПа | 125 | 125 | 115 | 115 | 128 | 200 |
Для оценки воздействия естественных факторов (УФ излучение, влажность, смена температур в дневное и ночное время), образцы прошли испытания при экспозиции в естественных условиях (под открытым небом) в течение 4-х месяцев. Для оценки склонности полученных композиций к биоразложению под действием микроорганизмов почвы, образцы опытных образцов были помешены в почву, состоящую из гумуса и суглинка на глубину 20 см на срок 6-8 месяцев. Для оценки эффективности использования комплекса добавки термопластичный крахмал и органомодифицированная глина образцы выдерживали на установке везерометр Q-SUN. Спектр излучения ксеноновых ламп, установленных в везерометре с длиной волны 340 нм. Для оценки эффективности использования комплекса добавки термопластичный крахмал и органомодифицированная глина образцы выдерживали без доступа воздуха при температуре 60°C (имитация условий компостирования) в течение 45 суток.
Технический результат – получение биоразлагаемого композиционного материала с соответствующими промышленному аналогу диэлектрическими, физико-механическими и огнестойкими характеристиками, подвергающегося разложению в почвенной среде и не разрушающегося в атмосфере воздуха.
Claims (3)
- Биоразлагаемый материал на основе термопластичного крахмала, отличающийся тем, что дополнительно содержит смесь поливинилхлорида суспензионного, полимолочной кислоты и полигидроксибутирата, органомодифицированную мочевиной глину, смесь карбоната кальция, бората цинка, гидроксида магния, кальций-цинковый стабилизатор и тетрафторборат аммония при следующем соотношении, мас.ч.:
-
Смесь поливинилхлорида суспензионного, полимолочной кислоты и полигидроксибутирата 100 Термопластичный крахмал 15-18 Органомодифицированная мочевиной глина 2-3 Смесь карбоната кальция, бората цинка, гидроксида магния 12 Кальций-цинковый стабилизатор 2-4 Тетрафторборат аммония 2-4, - причем указанная матричная смесь, включающая в себя поливинилхлорид суспензионный, полимолочную кислоту и полигидроксибутират, подвергается смешению в высокогомогенизирующем смесителе при 35°С, при соотношениях мас.ч. 100:15:35, соответственно, смесь карбоната кальция, бората цинка, гидроксида магния также подвергается смешению в высокогомогенизирующем смесителе при 35°С, при соотношениях мас.ч. 100:45:65, соответственно, органомодифицированная глина представляет собой продукт модификации монтмориллонита катионообменной емкостью 95 мг-экв/100 г глины мочевиной, в количестве 5% от массы монтмориллонита, термопластичный крахмал получают путем смешения крахмала с глицерином и водой при соотношении мас.ч. 100:50:35, соответственно.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020115703A RU2741986C1 (ru) | 2020-05-12 | 2020-05-12 | Биоразлагаемый материал |
EA202190716A EA202190716A1 (ru) | 2020-05-12 | 2021-04-06 | Биоразлагаемый материал |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020115703A RU2741986C1 (ru) | 2020-05-12 | 2020-05-12 | Биоразлагаемый материал |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2741986C1 true RU2741986C1 (ru) | 2021-02-01 |
Family
ID=74554394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020115703A RU2741986C1 (ru) | 2020-05-12 | 2020-05-12 | Биоразлагаемый материал |
Country Status (2)
Country | Link |
---|---|
EA (1) | EA202190716A1 (ru) |
RU (1) | RU2741986C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023050014A1 (en) * | 2021-09-30 | 2023-04-06 | Singular Solutions Inc. | Compostable plasticized polyvinyl chloride compositions and related methods |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7884143B2 (en) * | 2006-12-26 | 2011-02-08 | Nexans | Biopolymer-based composition for a power and/or telecommunications cable |
RU2452517C2 (ru) * | 2007-01-30 | 2012-06-10 | Хемотек Аг | Биоразрушаемое средство для поддержания просвета сосудов |
RU2627363C2 (ru) * | 2011-08-12 | 2017-08-07 | Шнейдер Электрик Эндюстри Сас | Огнестойкий материал, содержащий биополимер |
DE202018003475U1 (de) * | 2018-07-26 | 2019-10-29 | Interprint Gmbh | Mehrlagiger Schichtaufbau |
-
2020
- 2020-05-12 RU RU2020115703A patent/RU2741986C1/ru active
-
2021
- 2021-04-06 EA EA202190716A patent/EA202190716A1/ru unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7884143B2 (en) * | 2006-12-26 | 2011-02-08 | Nexans | Biopolymer-based composition for a power and/or telecommunications cable |
RU2452517C2 (ru) * | 2007-01-30 | 2012-06-10 | Хемотек Аг | Биоразрушаемое средство для поддержания просвета сосудов |
RU2627363C2 (ru) * | 2011-08-12 | 2017-08-07 | Шнейдер Электрик Эндюстри Сас | Огнестойкий материал, содержащий биополимер |
DE202018003475U1 (de) * | 2018-07-26 | 2019-10-29 | Interprint Gmbh | Mehrlagiger Schichtaufbau |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023050014A1 (en) * | 2021-09-30 | 2023-04-06 | Singular Solutions Inc. | Compostable plasticized polyvinyl chloride compositions and related methods |
Also Published As
Publication number | Publication date |
---|---|
EA202190716A1 (ru) | 2021-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104774372B (zh) | 一种高性能电缆阻燃料及其制备方法 | |
EP2035495B1 (de) | Zinksulfid enthaltender kunststoff | |
DE1469998B2 (de) | Verwendung von Bis-(tert.-alkylperoxy)-alkanen zur Härtung von Polymerisaten | |
CN106147159B (zh) | 一种低添加型无卤阻燃聚乳酸复合材料及其制备方法 | |
Abbott et al. | Thermoplastic starch–polyethylene blends homogenised using deep eutectic solvents | |
RU2741986C1 (ru) | Биоразлагаемый материал | |
Xie et al. | Ammonium polyphosphate/montmorillonite nanocomposite with a completely exfoliated structure and charring–foaming agent flame retardant thermoplastic polyurethane | |
CA1111999A (en) | Stabilized polystyrene compositions | |
CN109082115A (zh) | 利用无机亚磷酸金属盐提高热塑性聚合物或其复合物的高温热稳定方法 | |
Yao et al. | Mechanically robust and flame-retarded EPDM composites with high loading of Mg (OH) 2 based on reversible crosslinking network from Diels-Alder reactions | |
Rodrigues et al. | Blown film of PLA for packaging with green tea and fish industrial residues: An insight on their properties | |
CA2060211A1 (en) | Environmentally degradable polymer blends | |
Alwaan et al. | Effect of zinc borate on mechanical and dielectric properties of metallocene linear low-density polyethylene/rubbers/magnesium oxide composite for wire and cable applications | |
EA041187B1 (ru) | Биоразлагаемый материал | |
CN110819058B (zh) | 一种核壳结构纳米凹凸棒土/氢氧化镁掺杂abs复合材料 | |
CN110982213A (zh) | 一种高氧指数、低烟阻燃的abs材料及其制备方法 | |
CN115975370B (zh) | 一种无卤素阻燃tpu及其制备方法 | |
KR101366440B1 (ko) | 생분해성 고분자필름의 제조방법 | |
CN109181294B (zh) | 利用无机和烷基亚磷酸金属盐提高热塑性聚合物或其复合物的高温热稳定方法 | |
KR100875371B1 (ko) | 기계적 강도가 개선된 바이오 복합재료 | |
CN110982212A (zh) | 一种低烟阻燃抗静电的abs材料及其制备方法 | |
Lin et al. | Effect of low-density polyethylene on properties of ethylene-vinyl based semi-conductive shielding materials | |
JPH08302139A (ja) | 熱可塑性成形材料 | |
Liu et al. | Lifetime prediction and aging mechanism of unplasticized polyvinyl chloride filled with calcium carbonate under long-term thermal and oxidative conditions | |
KR102538437B1 (ko) | 자동차용 그로밋 조성물 |