RU2740995C1 - Способ получения микрокремнезема из природного диатомита осаждением раствора азотной кислоты - Google Patents
Способ получения микрокремнезема из природного диатомита осаждением раствора азотной кислоты Download PDFInfo
- Publication number
- RU2740995C1 RU2740995C1 RU2020116983A RU2020116983A RU2740995C1 RU 2740995 C1 RU2740995 C1 RU 2740995C1 RU 2020116983 A RU2020116983 A RU 2020116983A RU 2020116983 A RU2020116983 A RU 2020116983A RU 2740995 C1 RU2740995 C1 RU 2740995C1
- Authority
- RU
- Russia
- Prior art keywords
- diatomite
- solution
- microsilica
- precipitation
- temperature
- Prior art date
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims abstract description 20
- 229910021487 silica fume Inorganic materials 0.000 title claims abstract description 18
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 title claims abstract description 6
- 229910017604 nitric acid Inorganic materials 0.000 title claims abstract description 6
- 238000001556 precipitation Methods 0.000 title abstract description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 35
- 238000001354 calcination Methods 0.000 claims abstract description 15
- 239000002244 precipitate Substances 0.000 claims abstract description 11
- 238000005406 washing Methods 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 7
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- 239000007790 solid phase Substances 0.000 claims abstract description 4
- 238000000227 grinding Methods 0.000 claims abstract description 3
- 239000007791 liquid phase Substances 0.000 claims abstract description 3
- 239000012065 filter cake Substances 0.000 claims abstract 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 27
- 239000000377 silicon dioxide Substances 0.000 claims description 20
- 230000002378 acidificating effect Effects 0.000 claims description 4
- 238000012545 processing Methods 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 15
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 abstract description 12
- 238000004519 manufacturing process Methods 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 7
- 239000002253 acid Substances 0.000 abstract description 6
- 239000000654 additive Substances 0.000 abstract description 4
- 239000012535 impurity Substances 0.000 abstract description 4
- 239000004567 concrete Substances 0.000 abstract description 2
- 239000004570 mortar (masonry) Substances 0.000 abstract description 2
- 238000010276 construction Methods 0.000 abstract 2
- 239000004035 construction material Substances 0.000 abstract 1
- 239000011810 insulating material Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 24
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- 229910004298 SiO 2 Inorganic materials 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000011435 rock Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004876 x-ray fluorescence Methods 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- UGACIEPFGXRWCH-UHFFFAOYSA-N [Si].[Ti] Chemical compound [Si].[Ti] UGACIEPFGXRWCH-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 229910021486 amorphous silicon dioxide Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011372 high-strength concrete Substances 0.000 description 1
- 239000010903 husk Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- -1 iron (III) ions Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000010458 rotten stone Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 229910021489 α-quartz Inorganic materials 0.000 description 1
- 229910000500 β-quartz Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
- C01B33/187—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates
- C01B33/193—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by acidic treatment of silicates of aqueous solutions of silicates
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Изобретение относится к строительным материалам, а именно к производству модифицированных добавок для бетонов, строительных растворов, сухих строительных смесей, теплоизоляционных материалов. Предложен способ получения микрокремнезема из природного диатомита осаждением раствора HNO3, включающий предварительное прокаливание диатомита при температуре 500°С в течение 30-120 мин, его измельчение, после чего измельченный и прокаленный диатомит обрабатывают с использованием 30%-ного раствора NaOH, где соотношение жидкой и твердой фаз составляет 14:1, при температуре термостатирования 90°С в течение 2 ч, далее отделяют образовавшийся осадок и осаждают SiO2 раствором концентрированной HNO3 до кислой реакции раствора рН 1-2, осуществляют последующую промывку и просушку осадка на фильтре, который затем переносят в чашку Петри и сушат при 100-160°С в сушильном шкафу до постоянной массы. Технический результат - изобретение позволяет увеличить выход тонкодисперсного аморфного химически чистого микрокремнезема с минимальным содержанием примесей из природного диатомита осаждением раствора HNO3 до 87,2%, где содержание SiO2 составляет 95,36 ÷ 99,63%, а также осуществить экономию времени на промывание осадка водой для удаления хлорид-ионов. 3 табл.
Description
Изобретение относится к строительным материалам, а именно к производству модифицированных добавок для бетонов, строительных растворов, сухих строительных смесей, теплоизоляционных материалов.
Диоксид кремния – вещество широкого применения, которое необходимо для приготовления биоцидных, огнестойких тканей, особо «чистого» увиолевого стекла, высокопрочных бетонов, теплоизоляционных материалов, керамики, огнеупоров, резины, волоконно-оптического кабеля, в пищевой (добавка Е 551), фармацевтической и текстильной промышленности. В настоящее время наблюдается значительный рост потребления аморфных кремнеземов в мировой промышленности. Помимо традиционного их использования в качестве добавок в резину, пластмассу (RU 2262544, МПК С22В 43/12, опубл. 20.10.2005), бумаги, для изготовления клеев, жидкого стекла, керамики, адсорбентов и т.д. Значительно увеличивается потребление нанодисперсного химически чистого аморфного кремнезема в высокотехнологичных отраслях промышленности. Поэтому необходимо разрабатывать новые технологии для получения аморфного кремнезема.
В качестве исходного материала для получения аморфного кремнезема в России служит кремнеземсодержащее сырье, к которому относятся диатомиты, трепел и опока. Эти породы состоят в основном на 60-80% по массе из различных модификаций диоксида кремния.
Сырьевой базой кремнеземосодержащего сырья для получения кремнезема в Республике Мордовия могут служить два месторождения диатомита – Атемарское, Анучинское с суммарными запасами 21 106 тыс. м3.
Диатомит Атемарского месторождения представляет собой сцементированную породу, светло-серого цвета. В порошке появляется желтый оттенок. Порошок диатомита не растворим в кислотах (HCl, HNO3, H2SO4) и относится к кислым породам. Для переведения его в раствор необходимо сплавление.
Известен способ получения диоксида кремния, включающий переработку фторидных растворов, образующийся в результате вскрытия титанокремниевого концентрата 8 %-ным раствором плавиковой кислоты (HF) с получением раствора, содержащего кремний в виде фторидных соединений, а также алюминий и железо. Раствор фильтруют, упаривают до образования сухих солей. В фильтрате кремний находится в виде соединения H2SiF6, обладающего высокой летучестью. В процессе упарки данное соединение переходит в газовую фазу. Последнюю обрабатывают раствором гидрооксида аммония (NH4OH), при этом в осадок переходит диоксид кремния, а в растворе концентрируется фтористый аммоний (RU 2262544, МПК С22В 43/12, опубл. 20.10.2005).
Недостатки способа заключаются в использовании фторидных соединений, которые являются агрессивными продуктами. Это вызывает необходимость применять дорогостоящие материалы при аппаратурном оформлении процесса, а также создавать повышенные меры безопасности для обслуживающего технический процесс персонала. Данные недостатки ведут к существенному повышению себестоимости диоксида кремния.
Известен способ получения диоксида кремния, получаемого карбонизацией жидкого стекла углекислым газом с содержанием CO2 17-25% при температуре 78-82°С Процесс карбонизации ведут до достижения рН 9-10,5. Полученную суспензию подвергают гидродинамической активации, затем суспензию нейтрализуют серной кислотой до рН 5,0-8,5 с выдержкой в реакторе, промывают горячей водой и подвергают распылительной сушке (RU 2023664, МПК С01В 33/18, опубл. 30.11.1994).
Недостатком способа являются многооперационность, использование для нейтрализации серной кислоты, а затем образование сернокислых стоков. Кроме, того, в качестве исходного сырья используют жидкое стекло, которое является целевым технологическим продуктом. Все это удорожает процесс, усложняет аппаратурное оформление и не решает экологических задач.
Известен способ получения диоксида кремния, в котором пирогенный высокодисперсный кремнезем получают путем сжигания четыреххлористого кремния в потоке кислорода и водорода, в итоге получается высокодисперсный аморфный диоксид кремния и хлористый водород в газообразном состоянии (RU 2474535, МПК C01B 33/12, B82B 3/00, B82Y 40/00, опубл. 10.02.2013).
Недостаток известного способа заключается в том, что производство требует больших энергозатрат и серьезных мер по взрывобезопасности.
Кроме того, например, способ обработки мелкодисперсной кремнийсодержащей пыли газоочистки электротермического производства кремния и кремнистых ферросплавов (RU 2085488, МПК С01В 33/18) содержит недостаток в том, что получается недостаточно чистый микрокремнезем, поэтому необходимы дополнительные затраты по очистке продукта. Способы получения диоксида кремния высокой чистоты из рисовой шелухи (RU 2480408, МПК С01В 33/12, В01J 19/10, опубл. 27.04.2013, RU 94031518, МПК C01B 33/12 , опубл.10.077.1994, RU 2488558 МПК C01B 33/12 , опубл. 27.07.2013, IN 148538, МПК C01B 33/12, опубл. 28.03.1981, RU 94031518, МПК C01B 33/12 , опубл.10.07.1996, GB 1508825, МПК С01В 33/12, опубл. 26.03.1975, CN 86104705, МПК С01В 33/113,С01В 33/12, опубл. 14.07.1986) недостаточно рациональны и экологически небезопасны, либо требуют сложных и дорогостоящих систем очистки.
Известен способ получения высокодисперсного диоксида кремния, включающий растворение силиката натрия (глыбы) в автоклаве в воде под избыточным давлением 0,57-0,59 МПа, с обработкой раствора газовой смесью содержащей углекислый газ (RU 2156734, МПК С01В 33/18, опубл. 27.09.2000).
Недостатком данного способа является его многооперационность, получение продукта диоксида кремния (SiO2) недостаточно высокого качества.
Наиболее близким техническим решением к заявленному изобретению является способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом, который включает предварительное просушивание и измельчение диатомита. В измельченный диатомит добавляют 10-30%-ный раствор гидроксида натрия, выдерживают в термостате при температуре 70-90°C в течение 2-3 ч при соотношении жидкой и твердой фаз 12:1. Осуществляют осаждение кремниевой кислоты из фильтрата добавлением концентрированного раствора соляной кислоты. Отделяют осадок диоксида кремния и сушат. Изобретение позволяет получить мелкодисперсный аморфный микрокремнезем дисперсностью 0,062-0,097 мкм высокой степени чистоты из недорогого минерального сырья с выходом целевого продукта до 99,97% (RU 2625114, МПК С01В 33/18, С01В 33/193, опубл. 11.07.2017).
Недостаток прототипа заключается в том, что данный способ получения микрокремнезема является трудоемким, длительным и позволяет получать небольшие количества конечного продукта. При низких значениях рН происходят потери кремнезема за счет перехода кремниевой кислоты в истинно-растворимое состояние. Поэтому коллоидно-растворенную кремниевую кислоту необходимо дегидратировать и коагулировать, истинно-растворенную – полимеризировать и дегидратировать. Для уменьшения потерь кремниевой кислоты проводят повторные операции с фильтратом (выпаривание) или введение раствора желатина. После осаждения кремниевой кислоты концентрированной соляной кислотой (HCl) в фильтрате установлены высокое содержание хлорид-ионов. В этих условиях возможна сорбция хлорид-ионов кремниевой кислотой. Для удаления хлорид-ионов из осадка требуется длительное промывание его горячей водой, подкисленной азотной кислотой (HNO3).
Технический результат, достигаемый при использовании заявленного изобретения, заключается увеличении выхода тонкодисперсного аморфного химически чистого микрокремнезема с минимальным содержанием примесей из природного диатомита осаждением раствора HNO3 до 87,2%, где содержание SiO2 составляет 95,36 ÷ 99,63%, а также экономии времени на промывание осадка водой для удаления хлорид-ионов.
Сущность изобретения заключается в том, что способ получения микрокремнезема из природного диатомита осаждением раствора HNO3 включает предварительное прокаливание диатомита при температуре 500°С в течении 30-120 мин, после чего измельченный и прокаленный диатомит обрабатывают с использованием 30%-ного раствора гидроксида натрия (NaOH), где соотношение жидкой и твердой фаз составляет 14:1, при температуре термостатирования 90°С в течение 2 ч, далее отделяют образовавшийся осадок и осаждают SiO2 раствором концентрированной HNO3 до кислой реакции раствора рН 1-2, осуществляют последующую промывку и просушку осадка на фильтре, который затем переносят в чашку Петри и сушат при 100-160°С в сушильном шкафу до постоянной массы.
В табл. 1 представлен элементный состав природного диатомита в зависимости от времени прокаливания по данным рентгенофлуоросцентного анализа (Т = 500°С), в табл. 2 – выход аморфного микрокремнезема из прокаленного диатомита в зависимости от концентрации щелочи и температуры прокаливания (τ =2 ч, T термостатирования 90°С), в табл. 3 – элементный состав порошка аморфного микрокремнезема, синтезированного из прокаленного диатомита (τ = 2 ч) в зависимости от концентрации NaOH и температуры прокаливания по данным рентгенофлуоресцентного анализа.
Способ осуществляют следующим образом.
Природный диатомит необходимо всегда предварительно прокаливать. При прокаливании прежде всего происходит удаление адсорбционной воды (в интервале температур 100 ÷ 300°С), затем поровой воды (в интервале температур 300 ÷ 400°С) с последующим выгоранием органических веществ при температуре выше 400°С. Уже при температуре 500°С и более в диатомите возможен фазовый переход β-кварца в α-кварц.
Время прокаливания составляет от 30 до 120 мин, так как продолжительность тепловой обработки диатомита более 2 ч может привести к разложению структуры породы. Термообработку диатомита осуществляют при: 100, 200, 300, 400, 500, 600°С в муфельной печи в алундовых и корундовых тиглях. В процессе прокаливания наблюдают изменение цвета породы от серой до красно-бурой. Химический состав природного диатомита в зависимости от времени прокаливания при стабильной температуре представлен в табл. 1.
Из таблицы видно, что химический состав диатомита при стабильной температуре (до 500°С) практически не зависит от времени прокаливания. Содержание SiO2 составляет в среднем 88,00%.
После термической обработки измельченный и прокаленный диатомит отвешивают на технических весах массой 25,00 – 50,00 г, помещают в коническую колбу ~ на 500 – 750 мл, добавляют 350 мл раствора NaOH различной концентрации: 10-, 20-, 30%-ной, накрывают часовым стеклом и выдерживают в термостате при температуре 90°C в течение 2 ч, периодически перемешивая. Соотношение Ж-Т фаз составляет 6:1 – 14:1.
Для поддержания температуры в работе используют криотермостат жидкостной ТЖ-ТС-01/16К-40. По истечении времени горячий раствор фильтруют через неплотный фильтр. Из полученного фильтрата осаждают кремниевую кислоту концентрированной кислотой HNO3. Кислоту добавляют медленно, при перемешивании до кислой реакции раствора рН 1–2. Раствор упаривают досуха в термостойком стакане на водяной или песчаной бане. Сухой остаток обрабатывают 2-3 раза небольшими порциями концентрированной HNO3 для обезвоживания гидратированного SiO2. Затем добавляют 200-250 мл горячей дистиллированной воды и продолжают нагревать на водяной бане до полного растворения солей. Нерастворимым остается только гидратированный SiO2 в виде хлопьевидной массы. После выдерживания осадок отфильтровывают через неплотный беззольный фильтр и промывают на фильтре до отрицательной реакции на ион железа (III) с роданидом.
Осадок подсушивают на фильтре, затем переносят в чашку Петри и сушат при температуре 100-160°С в сушильном шкафу до постоянной массы. Выход аморфного кремнезёма в зависимости от концентрации щелочи и температуры прокаливания представлен в табл. 2.
Как видно из табл. 2, выход аморфного микрокремнезема зависит от температуры прокаливания, концентрации щелочи, соотношения Ж:Т и природы кислоты, которой проводилось осаждение. Наибольший выход микрокремнезема получен при использовании 30% NaOH, температуры прокаливания 500°С, соотношения Ж:Т 14:1, осадитель – концентрированная HNO3 выход составил 87,2% .
Результаты химического анализа порошков синтезированного микрокремнезема показали (табл. 3), что он состоит на 95,36 ÷ 99,63% из SiO2. Основными примесями являются оксид натрия (Na2O). Оксиды железа, алюминия, кальция, калия, титана содержатся в небольших количествах, которые можно отнести к микрокомпонентам.
Примесь хлорида натрия (NaCl) в процессе синтеза его из раствора гидроксида натрия и выделения кремниевой кислоты хлористоводородной кислотой сорбируется на поверхности аморфного кремнезема. NaCl можно удалить обильным промыванием водой. Химический состав синтезированного микрокремнезема практически не зависит от температуры прокаливания, но зависит от концентрации щелочи. С увеличением концентрации щелочи уменьшается процентное содержание SiO2 в связи с увеличением содержания оксида алюминия.
Фильтрат, полученный после отделения синтезированного микрокремнезема и промывания его горячей водой, анализируют на содержание оксида кремния (IV), хлорид-ионов, ионов железа (III) и рН. Результаты анализа свидетельствуют, что после выделения кремниевой кислоты концентрированной HNO3, pH фильтрата равен ~1, что является важным условием получения тонкодисперсного кремнезёма. Фильтрат должен быть непременно кислым (рН 1÷2). Однако при этом возможно повышение растворимости кремниевой кислоты.
После осаждения кремниевой кислоты концентрированной HCl в фильтрате установлены высокое содержание хлорид-ионов. В этих условиях возможна сорбция хлорид-ионов кремниевой кислотой. Для удаления хлорид-ионов из осадка требуется длительное промывание его горячей водой, подкисленной HNO3.
С целью экономии времени на промывание осадка водой для удаления хлорид-ионов удобнее в качестве осадителя кремниевой кислоты из щелочного раствора использовать концентрированную HNO3. Содержание хлорид-ионов в фильтрате в этом случае минимально
По сравнению с известным решением заявленное изобретение позволяет увеличить выход тонкодисперсного аморфного химически чистого микрокремнезема с минимальным содержанием примесей из природного диатомита осаждением раствора HNO3 до 87,2%, где содержание SiO2 составляет 95,36 ÷ 99,63%, а также осуществить экономию времени на промывание осадка водой для удаления хлорид-ионов.
Таблица 1
№ п/п |
t, мин | W, % | |||||||
SiO2 | Fe2O3 | Al2O3 | CaO | TiO2 | MgO | P2O5 | SO3 | ||
1 | 30 | 88,51 | 3,45 | 4,17 | 1,25 | 0,387 | 0,358 | 0,159 | 0,0267 |
2 | 60 | 88,11 | 3,81 | 4,08 | 1,31 | 0,418 | 0,335 | 0,150 | 0,0513 |
3 | 90 | 89,18 | 2,93 | 4,13 | 0,913 | 0,426 | 0,380 | 0,196 | 0,0313 |
4 | 120 | 87,13 | 4,07 | 4,18 | 1,48 | 0,466 | 0,430 | 0,224 | 0,0540 |
Таблица 2
№ п/п |
Т,°С | Конц. NaOH, % |
Диатомит | SiO2 · nH2O, г | Выход, % | Соотношение Ж:Т |
Осадитель – концентрированная HNO3 | ||||||
10 | 500 | 10 | 25,0 | 12,10 | 48,4 | 14:1 |
11 | 20 | 25,0 | 17,30 | 69,2 | 14:1 | |
12 | 30 | 25,0 | 21,81 | 87,2 | 14:1 |
Таблица 3
№ п/п |
Т,°С | Конц. NaOH, % |
SiO2 | Na2O | Cl- | P2O5 | Fe2O3 | Al2O3 | CaO | TiO2 |
W,% | ||||||||||
Осадитель концентрированная HNO3 | ||||||||||
10 | 500 | 10 | 99,13 | 0,48 | – | 0,134 | 0,0373 | – | 0,0113 | 0,0067 |
11 | 20 | 97,13 | 1,14 | – | 0,175 | 0,181 | 0,567 | 0,0244 | 0,0152 | |
12 | 30 | 95,36 | 2,05 | – | 0,176 | 0,426 | 1,84 | 0,0251 | 0,0373 |
Claims (1)
- Способ получения микрокремнезема из природного диатомита, включающий предварительное измельчение и обработку измельченного диатомита раствором гидроксида натрия, отличающийся тем, что включает предварительное прокаливание диатомита при температуре 500°С в течение 30-120 мин, после которого измельченный и прокаленный диатомит обрабатывают с использованием 30%-ного раствора гидроксида натрия, где соотношение жидкой и твердой фаз составляет 14:1, при температуре термостатирования 90°С в течение 2 ч, далее отделяют образовавшийся осадок и осаждают диоксид кремния раствором концентрированной азотной кислоты до кислой реакции раствора рН 1-2, осуществляют последующую промывку и просушку осадка на фильтре, который затем переносят в чашку Петри и сушат при 100-160°С в сушильном шкафу до постоянной массы.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020116983A RU2740995C1 (ru) | 2020-05-22 | 2020-05-22 | Способ получения микрокремнезема из природного диатомита осаждением раствора азотной кислоты |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020116983A RU2740995C1 (ru) | 2020-05-22 | 2020-05-22 | Способ получения микрокремнезема из природного диатомита осаждением раствора азотной кислоты |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2740995C1 true RU2740995C1 (ru) | 2021-01-22 |
Family
ID=74213307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020116983A RU2740995C1 (ru) | 2020-05-22 | 2020-05-22 | Способ получения микрокремнезема из природного диатомита осаждением раствора азотной кислоты |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2740995C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114367268A (zh) * | 2022-01-13 | 2022-04-19 | 武汉理工大学 | 一种硅藻土及其改性方法和应用 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2023664C1 (ru) * | 1991-09-23 | 1994-11-30 | Соболев Валентин Федорович | Способ получения осажденного кремнеземного наполнителя |
CN1212267C (zh) * | 2002-12-18 | 2005-07-27 | 中国矿业大学(北京校区) | 用硅藻土制备纳米二氧化硅的方法 |
RU2261840C1 (ru) * | 2004-06-18 | 2005-10-10 | Наседкин Василий Викторович | Способ получения аморфного диоксида кремния |
RU2319672C2 (ru) * | 2005-11-21 | 2008-03-20 | Лимнологический институт Сибирского отделения Российской академии наук | Способ получения кварцевого стекла |
RU2474535C1 (ru) * | 2011-08-17 | 2013-02-10 | Общество с ограниченной ответственностью "Технострой" (ООО Технострой) | Способ получения аморфного диоксида кремния |
RU2625114C1 (ru) * | 2016-04-22 | 2017-07-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" | Способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом |
CN108190896A (zh) * | 2018-01-20 | 2018-06-22 | 陕西科技大学 | 一种有序介孔纳米二氧化硅微球的制备方法 |
CN109603787A (zh) * | 2018-12-26 | 2019-04-12 | 哈尔滨工大泰铭科技有限公司 | 一种微纳复合粒子及其液相插入制备工艺 |
RU2690830C1 (ru) * | 2018-11-19 | 2019-06-05 | Общество с ограниченной ответственностью "ХИМТЭК" | Способ получения ультрадисперсного порошка диоксида кремния |
-
2020
- 2020-05-22 RU RU2020116983A patent/RU2740995C1/ru active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2023664C1 (ru) * | 1991-09-23 | 1994-11-30 | Соболев Валентин Федорович | Способ получения осажденного кремнеземного наполнителя |
CN1212267C (zh) * | 2002-12-18 | 2005-07-27 | 中国矿业大学(北京校区) | 用硅藻土制备纳米二氧化硅的方法 |
RU2261840C1 (ru) * | 2004-06-18 | 2005-10-10 | Наседкин Василий Викторович | Способ получения аморфного диоксида кремния |
RU2319672C2 (ru) * | 2005-11-21 | 2008-03-20 | Лимнологический институт Сибирского отделения Российской академии наук | Способ получения кварцевого стекла |
RU2474535C1 (ru) * | 2011-08-17 | 2013-02-10 | Общество с ограниченной ответственностью "Технострой" (ООО Технострой) | Способ получения аморфного диоксида кремния |
RU2625114C1 (ru) * | 2016-04-22 | 2017-07-11 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" | Способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом |
CN108190896A (zh) * | 2018-01-20 | 2018-06-22 | 陕西科技大学 | 一种有序介孔纳米二氧化硅微球的制备方法 |
RU2690830C1 (ru) * | 2018-11-19 | 2019-06-05 | Общество с ограниченной ответственностью "ХИМТЭК" | Способ получения ультрадисперсного порошка диоксида кремния |
CN109603787A (zh) * | 2018-12-26 | 2019-04-12 | 哈尔滨工大泰铭科技有限公司 | 一种微纳复合粒子及其液相插入制备工艺 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114367268A (zh) * | 2022-01-13 | 2022-04-19 | 武汉理工大学 | 一种硅藻土及其改性方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2001247885B2 (en) | Precipitated silicas, silica gels with and free of deposited carbon from caustic biomass ash solutions and processes | |
CN108675327B (zh) | 一种低钠亚微米煅烧氧化铝的制备方法 | |
CA1095877A (en) | Process for producing silicon-dioxide-containing waste fines to crystalline zeolitic type-a molecular sieves | |
RU2554136C2 (ru) | Способ получения глинозема | |
US12110233B2 (en) | Active high purity magnesium oxide and its production method | |
NO150954B (no) | Fremgangsmaate til oppberedning av silisiumdioksydholdig avfallsflyvestoev til utfellingskiselsyre eller silikat | |
CN1994880B (zh) | 利用凹凸棒石粘土制备白炭黑的方法 | |
RU2568112C2 (ru) | Способ получения оксида хрома (iii) | |
AU605965B2 (en) | Process for the manufacture of zirconium oxide hydrate from granular crystallized zirconium oxide | |
RU2740995C1 (ru) | Способ получения микрокремнезема из природного диатомита осаждением раствора азотной кислоты | |
NO126680B (ru) | ||
CN109336123A (zh) | 一种利用粉煤灰制备高模数水玻璃的方法 | |
CN103787354B (zh) | 一种利用粉煤灰制备MCM-41分子筛吸附溶液中Cr(Ⅵ)离子的应用 | |
JP5713895B2 (ja) | 微結晶酸化チタンの製造方法 | |
CN102838141A (zh) | 一种菱镁矿除硅铝生产氢氧化镁的工艺 | |
RU2690830C1 (ru) | Способ получения ультрадисперсного порошка диоксида кремния | |
US3116973A (en) | Method for producing high purity silica from kaolin clay | |
Medyankina et al. | Synthesis of nanosized silica from industrial waste and its characteristics | |
CN111268686B (zh) | 一种硅酸盐矿物制备水玻璃的方法及水玻璃 | |
NO121396B (ru) | ||
US2210892A (en) | Process for recovering magnesium oxide | |
CA1144341A (en) | Process for the separation of ferrous, aluminous and manganous contaminations from hydrochloric magnesium chloride solutions | |
RU2625114C1 (ru) | Способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом | |
CN113716577B (zh) | 一种含高岭土的含硅铝原料的脱硅方法 | |
RU2261840C1 (ru) | Способ получения аморфного диоксида кремния |