RU2724217C1 - Способ производства стального проката - Google Patents
Способ производства стального проката Download PDFInfo
- Publication number
- RU2724217C1 RU2724217C1 RU2020104964A RU2020104964A RU2724217C1 RU 2724217 C1 RU2724217 C1 RU 2724217C1 RU 2020104964 A RU2020104964 A RU 2020104964A RU 2020104964 A RU2020104964 A RU 2020104964A RU 2724217 C1 RU2724217 C1 RU 2724217C1
- Authority
- RU
- Russia
- Prior art keywords
- steel
- temperature
- rolling
- cooling
- slab
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 75
- 239000010959 steel Substances 0.000 title claims abstract description 75
- 238000000034 method Methods 0.000 title claims abstract description 24
- 238000005096 rolling process Methods 0.000 claims abstract description 54
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 33
- 238000001816 cooling Methods 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 229910052742 iron Inorganic materials 0.000 claims abstract description 15
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 34
- 239000010949 copper Substances 0.000 claims description 30
- 238000004804 winding Methods 0.000 claims description 23
- 239000011572 manganese Substances 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 11
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 10
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 229910052717 sulfur Inorganic materials 0.000 claims description 10
- 239000011593 sulfur Substances 0.000 claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052748 manganese Inorganic materials 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 abstract description 21
- 239000002184 metal Substances 0.000 abstract description 21
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 15
- 239000000126 substance Substances 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 7
- 238000005272 metallurgy Methods 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 229910002482 Cu–Ni Inorganic materials 0.000 description 13
- 238000005275 alloying Methods 0.000 description 11
- 239000002244 precipitate Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000001556 precipitation Methods 0.000 description 8
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 229910052739 hydrogen Inorganic materials 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 229910001566 austenite Inorganic materials 0.000 description 6
- 238000005098 hot rolling Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 102220479482 Puromycin-sensitive aminopeptidase-like protein_C21D_mutation Human genes 0.000 description 4
- 238000003723 Smelting Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 239000010955 niobium Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000005266 casting Methods 0.000 description 3
- 230000005294 ferromagnetic effect Effects 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 229910000851 Alloy steel Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000004881 precipitation hardening Methods 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 230000000930 thermomechanical effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910000617 Mangalloy Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LAUCTMALVHLLAL-UHFFFAOYSA-N [Mn].[C].[Fe] Chemical compound [Mn].[C].[Fe] LAUCTMALVHLLAL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Изобретение относится к области металлургии, и в частности, к производству проката нового поколения из экономнолегированных сталей. Для комплексного измельчения зерна феррита до размера не более 10 мкм для экономнолегированных сталей способ производства стального проката включает получение сляба из стали, нагрев слябов выше температуры аустенизации стали, черновую прокатку, междеформационное охлаждение, чистовую прокатку, охлаждение и смотку, при этом сляб получают из стали, содержащей мас. %: 0,05-0,18 С, 0,80-1,80 Mn, 0,6-1,2 Cr, 0,10-0,25 Ni, 0,30-0,60 Cu, не более 0,005 S, железо и неизбежные примеси - остальное, нагрев сляба в печи осуществляют до температуры поверхности сляба не выше 1200°С с выдержкой при этой температуре не более 60 минут, чистовую прокатку осуществляют в температурном диапазоне 950-790°С, обеспечивая не менее 75% суммарной относительной деформации, а смотку полосы в рулон после чистовой прокатки осуществляют при температуре поверхности металла 670-640°С с дальнейшим его охлаждением на спокойном воздухе. 2 табл., 2 пр.
Description
Изобретение относится к металлургии, и в частности, к производству проката нового поколения из экономно легированных сталей.
Технологические процессы выплавки и обработки современных высокопрочных низколегированных сталей позволяют достичь максимально возможного измельчения зерна как единственного фактора, обеспечивающего одновременное повышение прочности и вязкости. Результаты исследований связи между структурой, свойствами и режимами обработки способствовали разработке и оптимизации процессов термомеханической обработки (ТМО). Основные усилия были направлены на достижение максимально возможной степени измельчения зерна. Ранее для этого использовали термообработку, однако ТМО позволяет достичь большей степени измельчения зерна и связанного с ним улучшения свойств.
Известно, что измельчение зерна - уникальный структурный механизм воздействия на свойства стали, поскольку позволяет одновременно повысить предел текучести и снизить переходную температуру хрупкого разрушения стали (см. http://metal-archive.ru/metallurqiya/763-izrnelchenie-zerna.html [1])
Известен способ производства горячекатаного листа из аустенитной же-лезоуглеродмарганцевой стали, описанный в RU 2366727 [2]. Способ предусматривает выплавку стали, химический состав которой включает (мас. %): 0.85≤С≤1.05; 16≤Mn≤19; Si≤2; Al≤0.050; S≤0.030; Р≤0.050; N≤0.1 остальное железо и неизбежные примеси. Для получения горячекатаного листа полуобработанный продукт из этой стали нагревают до температуры между 1100 и 1300°С, прокатывают с температурой окончания прокатки 900°С или выше, выдерживают, затем охлаждают со скоростью 20°С/с или выше и сматывают его в рулон при температуре 400°С или ниже. Недостатком известного способа является высокая стоимость конечного продукта, обусловленная использованием в составе стали большого количества дорогостоящих легирующих компонентов и недостижение желательного измельчения зерна в готовом продукте.
Известен способ производства экономно-легированного высокопрочного проката для труб магистральных газопроводов высокого давления (RU 2617075[3]), который характеризуется тем, что для повышения прочности проката ката при одновременном повышении прокаливаемости, пластичности и ударной вязкости выплавляют сталь, содержащую, мас. %: углерод 0,04÷0,05, марганец 1,9÷2,0, кремний 0,22÷0,25, ниобий 0,07÷0,09, титан 0,02÷0,025, алюминий 0,025÷0,03, азот 0,005÷0,007, сера 0,001÷0,002, фосфор 0,006÷0,008, бор 0,0015÷0,002, железо - остальное, осуществляют непрерывную разливку стали в слябы, аустенизацию при 1050÷1100°С, черновую прокатку с деформацией 12÷20% в области температур рекристаллизации аустенита, чистовую прокатку - в области температур полного торможения рекристаллизации с общей степенью деформации 70÷80%, ускоренное охлаждение при температуре его завершения 350±450°С и индукционный отпуск при температуре 620±10°С.Недостатком известного способа является наличие дополнительных операций после завершения прокатки (индукционный отпуск) и недостаточное измельчение зерна в готовой продукции.
Известен способ производства стального проката из низколегированной стали, включающий получение непрерывнолитых заготовок, содержащих мас. %: 0,09-0,12 С; 1,55-1,70 Mn; 0,20-0,30 Cr; 0,20-0,30 Ni; Cu<0,10; S<0,002, некоторые дополнительные легирующие элементы и железо остальное (RU 2606357 [4]). Для получения проката из непрерывнолитых заготовок толщиной не менее 315 мм проводят аустенизацию заготовок при температуре 1200-1215°С, черновую прокатку начинают при температуре не ниже 950°С и осуществляют до толщины раската не менее 1,3 толщины готового листа с относительными обжатиями за проход не менее 10%, чистовую прокатку начинают при температуре на 115±25°С выше точки Ar3 и завершают на 5-15°С выше температуры начала чистовой прокатки, после чего листы подвергают замедленному охлаждению на воздухе в стопе. Недостатком известного способа является высокая температура конца прокатки, что приводит к росту зерна аустенита и, как следствие, недостижение желательного (не более 10 мкм) измельчения зерна феррита.
Наиболее близким к заявляемому по совокупности существенных признаков является способ изготовления горячекатаного стального проката, включающий выплавку стали, содержащую мас. %: С: 0,08-0,18, Mn: 0,8-1,8, S: 0,005 или менее, Cu: 0,005-0,1, Ni: 0,005-0,1, Cr: 0,002-0,1, остальное дополнительные дорогостоящие легирующие элементы такие как Ti, Nb, V, Mo, В и РЗМ, Fe и случайные примеси остальное (RU 2510803 [5]). Нагревают заготовку до температуры 1150-1300°С. Выполняют горячую прокатку стали с температурой конца прокатки в диапазоне температур от Ar3 до (Ar3+60)°С и степенью обжатия в последней клети чистовой прокатки не менее 25% для получения стального листа. Проводят смотку листа при температуре 570-670°С. При этом охлаждение стального листа перед смоткой начинают не позднее чем через 2 секунды после завершения чистовой прокатки, и осуществляют охлаждение до температуры, равной температуре намотки +50°С или ниже, через 10 секунд после завершения чистовой прокатки.
Недостатком известного способа является невозможность достижения желательного (не более 10 мкм) измельчения зерна феррита при использовании описанных в [5] технологических приемов и параметров для экономно легированных сталей, не содержащих Ti, Nb, V, Mo, В и др.
Заявляемый способ производства стального проката направлен на достижение комплексного измельчения зерна феррита до размера не более 10 мкм для экономно легированных сталей.
Указанный результат достигается тем, что способ производства стального проката включает выплавку слябов из стали, содержащей углерод, марганец, хром, никель, медь, серу, железо и неконтролируемые примеси, нагрев слябов выше температуры аустенизации стали, черновую прокатку, междеформационное охлаждение, чистовую прокатку, охлаждение и смотку.
При этом заготовку получают из стали, содержащей мас. %: 0,05-0,18 С; 0,80-1,80 Mn; 0,6-1,2 Cr; 0,10-0,25 Ni; 0,30-0,60 Cu; не более 0,005 S, железо и неконтролируемые примеси - остальное, нагрев слябов в печи осуществляют до температуры поверхности металла не выше 1200°С с выдержкой при этой температуре не более 60 минут, чистовую прокатку осуществляют в температурном диапазоне 950-790°С, обеспечивая не менее 75% суммарной относительной деформации, а смотку полосы в рулон после чистовой прокатки осуществляют при температуре поверхности металла 670-640°С с дальнейшим его охлаждением на спокойном воздухе.
Отличительными признаками заявляемого способа являются:
- химический состав стали;
- нагрев слябов в печи перед прокаткой до температуры поверхности металла не выше 1200°С с выдержкой при этой температуре не более 60 минут;
- чистовая прокатка в температурном диапазоне 950-790°С;
- суммарная относительная деформация при чистовой прокатке не менее
75%;
- смотка в рулон после чистовой прокатки при температуре поверхности раската 670-640°С с дальнейшим охлаждением рулона на спокойном воздухе.
Выбор предлагаемого химического состава стали продиктован следующим. С одной стороны, сталь целесообразно экономно легировать не очень дорогими и не дефицитными элементами, а с другой - обеспечивать высокие потребительские свойства проката, производимого из такой стали. Исходя из этого разумно предположить, что подобрав химический состав стали, который в совокупности с используемыми правильно определенными технологическими параметрам обеспечивает измельчение зерна в производимом прокате, можно достичь и хороших потребительских характеристик, поскольку измельчение зерна - уникальный структурный механизм воздействия на свойства стали, который при правильно подобранном химическом составе стали позволяет одновременно повысить прочностные характеристики при сохранении вязкости, увеличивает коррозионную стойкость и устойчивость стали к водородному растрескиванию, кроме того, обеспечивает повышение предела текучести и снижение переходной температуры хрупкого разрушения стали.
Углерод необходим для обеспечения прочности и способности сохранять мелкозернистую структуру. Эти эффекты не проявляются в достаточной мере, если вводимое его количество составляет менее 0,05%. С другой стороны, добавление углерода в количествах более 0,18% приводит к снижению ударной вязкости стали в зоне термического воздействия при сварке, а также вызывает заметное ухудшение свариваемости. Таким образом, содержание углерода ограничивается от 0,05 до 0,18.
Сера является постоянной вредной примесью. Сера практически не влияет на прочность, но снижает пластичность, ударную вязкость и коррозионную стойкость. Для этого содержание серы должно быть не более 0,005%.
Снижение содержания углерода, высокая чистота по сере способствуют повышению пластичности и вязкости и являются важнейшим условием улучшения свариваемости и высокой стойкости против растрескивания в холодном состоянии.
Марганец раскисляет сталь, обеспечивает требуемое сочетание прочности и пластичности. Марганец считается технологической примесью, если его содержание не превышает 0,8%. Марганец как технологическая примесь существенного влияния на свойства стали не оказывает. Марганец образует сульфиды MnS, связывающий серу, тем самым предупреждая ее сегрегацию по границам зерен и уменьшает склонность стали к водородному растрескиванию. Для обеспечения такого действия содержание марганца должно составлять 0,8% или более. С другой стороны, при добавлении более 1,8% марганца, снижается прочность границ зерна, что приводит к уменьшению низкотемпературной ударной вязкости и падению устойчивости стали к водородному растрескиванию. Таким образом, содержание марганца ограничивается показателями от 0,8 до 1,8%. В рассматриваемой экономно легированной стали добавки марганца и никеля способствуют твердорастворному упрочнению металла, и, соответственно, повышению прочностных характеристик готового рулонного проката. При этом производственный опыт показывает, что в рамках данной легирующей композиции снижение содержания марганца менее 0,8% приводит к снижению прочностных характеристик и низкотемпературной вязкости ниже желаемых пределов.
Хром является карбидообразующим элементом, как и марганец, но, в отличие от него, препятствуют росту зерна аустенита при нагреве, что обеспечивает более мелкое ферритное зерно. Сталь, легированная хромом, сохраняет более высокую дисперсность карбидных частиц, и соответственно большую прочность. Кроме того, хром значительно повышает коррозионную стойкость стали, особенно в сочетании с никелем. Этот эффект не проявляется в достаточной мере, если добавленное количество составляет менее 0,6%. С другой стороны, добавление более 1,2% хрома приводит к ухудшению свариваемости и увеличивает стоимость легирования. Таким образом, его содержание целесообразно ограничивать пределами от 0,6 до 1,2%.
Никель упрочняет феррит, не снижая его вязкости, и снижает порог хладноломкости.
Медь увеличивает прочность стального листа посредством упрочнения твердого раствора или дисперсионного упрочнения. Не образует соединений с железом, и ее растворимость в нем примерно 1%, если меди в стали более 1%, то она будет находиться в ней в виде металлических включений. Медь в качестве легирующего элемента стали применяется, в том числе, для повышения ее антикоррозионных свойств. Физико-химический механизм этого влияния заключается в образовании на поверхности стали пленки оксида железа, имеющего обогащенную кислородом область гомогенности. Присутствие меди в стали способствует этому обогащению.
Авторами было установлено, что в конечной структуре экономно легированных сталей существенное влияние на измельчение зерна оказывает образование в стали частиц и/или соединений легирующих элементов наноразмерного масштаба.
Одновременное использование в качестве легирующих элементов меди и никеля при соблюдении надлежащих режимов термомеханической обработки позволяет обеспечить формирование частиц наноразмерного масштаба этих элементов в матрице железа. Медь является единственным легирующим элементом, демонстрирующим сильную склонность к кластеризации в матрице ОЦК железа, при этом в тройной системе Fe-Cu-Ni имеется притяжение между атомами меди и никеля. Присутствие в химическом составе никеля будет стимулировать кластеризацию меди на наномасштабном уровне.
При экспериментальном определении режимов, обеспечивающих формирование наноразмерных выделений легирующих элементов, образцы исследуемой стали подвергались нагреву и различной выдержке в печи, деформации различной степени в чистовой группе клетей, различным температурам смотки в рулон на непрерывном широкополосном стане горячей прокатки.
Было установлено, что для формирования наноразмерных выделений Cu, и/или Ni, и/или Cu-Ni в матрице ферромагнитного ОЦК железа при нахождении образцов в интервале температур 610-570°С требуется около 20 минут. При повышении температуры выше 620°С скорость формирования наноразмерных выделений увеличивается многократно. В частности, при температурах 650-620°С формирование происходит за несколько десятков секунд. Соответственно, для того, чтобы обеспечить требуемые временные условия для формирование наноразмерных выделений в условиях широкополосного прокатного стана необходимо после завершения чистовой прокатки обеспечить пребывание полосы несколько десятков секунд при температурах 650-620°C подбором соответствующих параметров технологического процесса в существующем темпе стана, например, подбором температуры поверхности металла вначале смотки проката в рулон. Теплофизические расчеты для условий широкополосного стана горячей прокатки показали, что при толщине полосы от 1,2 до 10 мм на выходе из последней чистовой клети для соблюдения этих условий необходимо, чтобы температура поверхности металла перед смоткой полосы в рулон была в диапазоне 670-640°С, это позволит во время смотки и при дальнейшем остывании металла на спокойном воздухе обеспечить технологическую скую выдержку не менее 30 с для завершения формирования наноразмерных выделений Cu, и/или Ni, и/или Cu-Ni до достижения температуры металла в объеме не ниже 620°С.
Выделения Cu, и/или Ni, и/или Cu-Ni по границам зерен препятствуют росту зерен феррита при собирательной рекристаллизации, обеспечивая тем самым значительное (почти в два раза) снижение объемной доли зерен крупнее 10 мкм. Кроме того, благодаря наноразмерным выделениям Cu предложенная химическая композиция позволяет достигать требуемого уровня механических свойств, несмотря на сниженную концентрацию углерода и исключает появление закалочных структур, например, бейнита.
Исходя из полученных выше данных можно было бы предположить, что целесообразно осуществлять смотку полосы сразу же после завершения чистовой прокатки, т.е. при температурах 950-790°С.Однако, проведенные в дальнейшем эксперименты показали, что при таких высоких температурах смотки не обеспечивается требуемый технический результат, т.к. происходит интенсивный рост зерна, а возможные выделения Cu, и/или Ni, и/или Cu-Ni по границам крупных зерен более 14-16 мкм теряют свою эффективность. Как известно, на непрерывных широкополосных станах горячей прокатки полосу перед смоткой, как правило, либо охлаждают водяными душирующими устройствами на отводящем рольганге для обеспечения значительного снижения температуры, либо подстуживают на воздухе без включения душирующих устройств, чтобы обеспечить меньшие скорости охлаждения. В предлагаемом способе используется технологическая возможность без использования воды добиться остывания полосы до требуемой температуры начала смотки и, тем самым обеспечить технологическую выдержку не менее 30 с для завершения формирования наноразмерных выделений Cu, и/или Ni, и/или Cu-Ni. Было установлено, что повышение температуры поверхности металла при начале смотки выше 670°С приводит к значительному росту ферритного зерна (более 14 мкм), а ниже 640°С не обеспечивает условия для выделений достаточного количества наноразмерных выделений Си, и/или Ni, и/или Cu-Ni, как дополнительного механизма измельчения ферритного зерна, что также не обеспечивает в готовой полосе получение ферритного зерна не более 10 мкм.
Таким образом, была выявлена целесообразность начала проведения операции смотки проката в рулон при достаточно высоких температурах (не ниже 640°С, но не выше 670°С) и дальнейшее остывание рулона на спокойном воздухе. Снижение температуры начала смотки, например, до 610-600°С, как было указано выше, значительно замедляет образование наноразмерных выделений Cu, и/или Ni, и/или Cu-Ni в матрице ферромагнитного ОЦК железа. Таким образом, для обеспечения требуемых потребительских свойств температура поверхности полосы перед смоткой должна быть не выше 670°С. Это обеспечивает, при завершении смотки и остывании рулона на спокойном воздухе, нахождение проката при нужных температурах нужное время (не менее 30 с) и формирование нановыделений Cu с размерами 5-10 нм. В результате соблюдения указанных выше технологических параметров в структуре готового проката обеспечивается ферритное зерно с размером не более 10 мкм.
Интенсивная пластическая деформация оказывает положительное влияние на измельчение зерна в стали. Величина и форма аустенитного зерна зависят от скорости рекристаллизации при прокатке, которая, в свою очередь, зависит от суммарной деформации в чистовой группе клетей стана. Экспериментально установлено, что необходимая степень измельчения микроструктуры происходит при достижении 75% суммарной относительной деформации в чистовой группе стана при температуре конца прокатки 950-790°С (измельчение зерна происходит в момент рекристаллизации, и зарождающиеся новые зерна дополнительно измельчаются интенсивной деформацией). Это позволяет получить равномерную феррито-перлитную структуру, в которой отсутствуют элементы структур закалочного типа, что гарантирует равномерное распределение свойств как по длине проката, так и по его толщине.
Нагрев слябов в печи до температуры поверхности металла не выше 1200°С с выдержкой при этой температуре не более 60 минут, как было экспериментально установлено, обеспечивает более мелкое зерно аустенита при нагреве, а относительно небольшая выдержка в печи препятствует его росту, тем самым также обеспечивая измельчение зерна феррита в готовом прокате. Нагрев металла под прокатку осуществляют выше температуры аустенизации для обеспечения гомогенизации аустенита. Температура нагрева выбирается в зависимости от химического состава стали. Например, при содержании в составе стали в значительном количестве Ti, Nb, Mo, V и т.п.температуру нагрева в печи под прокатку выбирают от 1270°С и, иногда, выше, т.к. эти элементы при более низких температурах плохо растворяются, что снижает эффективность их использования при легировании стали. В экономно легированных сталях нового поколения, как в предлагаемом способе, отсутствуют труднорастворимые элементы, поэтому основная задача на этапе нагрева выбрать оптимальную температуру, с одной стороны, удовлетворяющую энергосиловым параметрам прокатного оборудования, а с другой - не допустить излишнего роста аустенитного зерна в процессе нагрева и во время выдержки металла при этой температуре. При прочих равных условиях, при последующем полиморфном превращении в стали изначально крупное зерно аустенита приведет к получению более крупного зерна феррита, что снижает потребительские свойства готового проката.
Таким образом, только совокупное выполнение всех предложенных технологических режимов: нагрева, прокатки и смотки позволяет сформировать однородную мелкозернистую феррито-перлитную с дисперсионным упрочнением за счет выделения наноразмерных выделений с одновременным достижением высоких показателей прочности, пластичности, хладостойкости, а также коррозионной стойкости.
Кроме того, известно, что уменьшение размера зерна подавляет процессы водородного растрескивания, т.к. концентрация серы выше по границам крупного ферритного зерна в сравнении с более мелким. (Е.Г. Астафурова, Е.В. Мельников, С.В. Астафуров, И.В. Раточка и др. Закономерности водородного охрупчивания аустенитных нержавеющих сталей с ультрамелкозернистой структурой разной морфологии. Физическая мезомеханика, 21, 2, (2018) 103-117 [6]). Исходя из этого разумно предположить, что подобрав химический состав стали, который в совокупности с правильно определенными технологическими параметрами обеспечивает измельчение зерна в производимом прокате стали, можно добиться и повышение его стойкости к водородному растрескиванию.
Сущность заявляемого способа производства стального проката поясняется примерами его реализации.
Пример 1. В общем случае способ реализовывался следующим образом. Заготовку (сляб) стали химического состава, масс. %: 0,05-0,18 С; 0,80-1,80 Mn; 0,005 S; 0,60-1,20 Cr; 0,10-0,25 Ni; 0,30-0,60 Cu остальное Fe и неконтролируемые примеси, полученную после разливки на машине непрерывного литья заготовок, передавали на непрерывный широкополосный стан горячей прокатки.
Перед началом черновой прокатки заготовку нагревали до температуры поверхности металла не выше 1200°С с выдержкой при этой температуре не более 60 минут. Контролируемую прокатку в чистовой группе клетей проводили ли в температурном диапазоне 950-790°С, обеспечивая не менее 75% суммарной относительной деформации. После чистовой прокатки при различных температурах конца прокатки, полоса, двигаясь по отводящему рольгангу стана с отключенными водяными душирующими устройствами (без подачи воды), к моменту начала смотки достигала различных температур поверхности металла 670-640°С, далее сматывалась в рулон с дальнейшим его охлаждением на спокойном воздухе.
Для определения оптимальных вариаций химического состава стали, температуры нагрева перед прокаткой и длительности выдержки при этой температуре, температурных режимов чистовой прокатки, а также температур начала смотки полосы в рулон проводились эксперименты, позволяющие изучить влияние отдельных параметров технологического процесса на измельчение зерна феррита в готовой полосе.
В частности, экспериментально определялись режимы, обеспечивающие формирование наноразмерных выделений Cu, и/или Ni, и/или Cu-Ni. Для этого образцы исследуемой стали, вырезанные из сляба соответствующего химического состава, полученного после разливки на машине непрерывного литья заготовок, подвергались нагреву до 1200°С и выдержке 60 минут, относительной деформации 75% в интервале температур 950-790°С, выдержке 30 с в диапазоне температур 650-620°, при которых железо находится в соответствующем состоянии (для наноразмерных выделений Cu, и/или Ni, и/или Cu-Ni - ферромагнитное ОЦК железо). Для фиксации структурного состояния образцов, с целью установления в них наличия сформированных наноразмерных выделений, образцы подвергались ускоренному охлаждению водой.
Из обработанных указанным выше способом образцов из различных сечений вырезали круглую заготовку диаметром 3 мм и толщиной 0,2-0,3 мм, которую затем утоняли шлифованием до получения фольг толщиной 0,1-0,15 мм для электронно-микроскопических исследований на просвечивающем электронном микроскопе. По результатам исследования устанавливалось наличие в образцах соответствующих выделений Cu, и/или Ni, и/или Cu-Ni наноразмерного масштаба с характерным размером 5-10 нм, химический состав которых подтверждался 3D-атом-проб томографией.
Далее, из образцов, в фольгах которых по результатам исследования реплик были обнаружены выделения Cu, и/или Ni, и/или Cu-Ni наноразмерного масштаба с характерным размером 5-10 нм, изготавливались микрошлифы для исследования микроструктуры на оптическом микроскопе. Подготовка образцов производилась на комплексе оборудования фирмы BUEHLER, исследование микроструктуры образцов проводилось с использованием структурного анализатора, включающего в себя программный пакет SIAMS, микроскоп NIKON EPIPHOT ТМЕ и камеру PixeLink. Используя модуль оценки изображений и программное обеспечение для структурного анализа, получали информацию о размерах зерен феррита. Результаты проведенных исследований приведены в табл. 1.
Пример 2. Заготовки (слябы) стали следующего состава, масс. %: 0,12 С; 1,60 Mn; 0,005 S; 1,10 Cr; 0,20 Ni; 0,60 Си, остальное Fe и неконтролируемые примеси, полученные после разливки на машине непрерывного литья заготовок, передавали на непрерывный широкополосный стан горячей прокатки. Перед началом прокатки заготовку нагревали до 1200°C и обеспечивали выдержку при этой температуре 60 минут. После черновой прокатки осуществляли контролируемую чистовую прокатку с относительной суммарной деформацией 75% и с температурой конца прокатки 800°С.Далее стальная полоса толщиной 2,8 мм по отводящему рольгангу стана с отключенными водяными душирующими устройствами (без подачи воды) двигалась к ближней или дальней моталке для смотки полосы в рулон. Опытные прокатки проводились одинаково, за исключением операции смотки - температура поверхности металла при смотке полосы в рулон изменялась. В начале смотки температура поверхности металла была равна 580, 640°С и 720°С, после чего смотанные рулоны остывали на воздухе.
Из готового проката с различной температурой начала смотки изготавливались образцы на комплексе оборудования фирмы BUEHLER, исследование структуры образцов проводилось с использованием структурного анализатора, включающего в себя программный пакет SIAMS, микроскоп NIKON EPIPHOT ТМЕ и камеры PixeLink. Используя модуль оценки изображений и программное обеспечение для структурного анализа, получали информацию о размерах зерен феррита. Результаты представлены в табл. 2.
Таким образом, полученные результаты подтверждают комплексное влияние технологических факторов: температуры нагрева металла под прокатку 1200°С с выдержкой при этой температуре не больше 60 мин., чистовой прокатки в температурном диапазоне 950-790°С с суммарной относительной деформацией не менее 75% и смотке полосы в рулон после чистовой прокатки при температуре поверхности металла 670-640°С с дальнейшим его охлаждением на спокойном воздухе на получение в структуре готового проката зерна феррита не более 10 мкм. Кроме того, экспериментально подтверждено влияние технологической выдержки короткой продолжительностью (несколько десятков секунд) для завершения формирования наноразмерных выделений Cu, и/или Ni, и/или Cu-Ni, которые обеспечивают дополнительное измельчение зерна феррита.
Литература
1. Измельчение зерна http://metal-archive.ru/metallurgiya/763-izmelchenie-zerna.html
2. Патент РФ №2366727, МПК C21D 8/04,2009
3. Патент РФ №2617075, МПК C21D 8/02, 2017
4. Патент РФ №2606357, МПК C21D 8/02, 2017
5. Патент РФ №2510803, МПК C21D 8/02, 2014
6. Е.Г. Астафурова, Е.В. Мельников, С.В. Астафуров, И.В. Раточка и др. Закономерности водородного охрупчивания аустенитных нержавеющих сталей с ультрамелкозернистой структурой разной морфологии. Физическая мезомеханика, 21, 2, (2018) 103-117.
Claims (3)
- Способ производства стального проката, включающий получение слябов из стали, содержащей углерод, марганец, хром, никель, медь, серу, железо и неизбежные примеси, нагрев слябов выше температуры аустенизации стали, черновую прокатку, междеформационное охлаждение, чистовую прокатку, охлаждение и смотку в рулон, отличающийся тем, что сляб получают из стали, содержащей, мас. %:
-
углерод 0,05-0,18 марганец 0,80-1,80 хром 0,60-1,20 никель 0,10-0,25 медь 0,30-0,60 сера не более 0,005 железо и неизбежные примеси остальное - при этом нагрев слябов в печи осуществляют до температуры поверхности сляба не выше 1200°С с выдержкой при этой температуре не более 60 минут, чистовую прокатку осуществляют в температурном диапазоне 950-790°С, обеспечивая не менее 75% суммарной относительной деформации, а смотку в рулон после чистовой прокатки осуществляют при температуре поверхности проката 670-640°С с дальнейшим его охлаждением на спокойном воздухе.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020104964A RU2724217C1 (ru) | 2020-02-04 | 2020-02-04 | Способ производства стального проката |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2020104964A RU2724217C1 (ru) | 2020-02-04 | 2020-02-04 | Способ производства стального проката |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2724217C1 true RU2724217C1 (ru) | 2020-06-22 |
Family
ID=71135898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2020104964A RU2724217C1 (ru) | 2020-02-04 | 2020-02-04 | Способ производства стального проката |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2724217C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2820583C1 (ru) * | 2023-12-04 | 2024-06-05 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Способ производства горячекатаного хладостойкого рулонного проката, устойчивого к атмосферной коррозии |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2346061C2 (ru) * | 2003-06-18 | 2009-02-10 | Смс Демаг Акциенгезелльшафт | Способ и установка для изготовления горячекатаной полосы с двухфазной структурой |
EP2594657A1 (en) * | 2010-11-22 | 2013-05-22 | Nippon Steel & Sumitomo Metal Corporation | Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof |
RU2615667C1 (ru) * | 2015-12-09 | 2017-04-06 | Публичное акционерное общество "Северсталь" | Способ производства горячекатаных листов из низколегированной стали класса прочности к65 для электросварных прямошовных труб |
RU2689348C1 (ru) * | 2018-06-26 | 2019-05-27 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Способ производства горячекатаного проката повышенной прочности |
RU2696186C2 (ru) * | 2017-10-05 | 2019-07-31 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Способ производства листового проката из низколегированной трубной стали |
-
2020
- 2020-02-04 RU RU2020104964A patent/RU2724217C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2346061C2 (ru) * | 2003-06-18 | 2009-02-10 | Смс Демаг Акциенгезелльшафт | Способ и установка для изготовления горячекатаной полосы с двухфазной структурой |
EP2594657A1 (en) * | 2010-11-22 | 2013-05-22 | Nippon Steel & Sumitomo Metal Corporation | Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof |
RU2615667C1 (ru) * | 2015-12-09 | 2017-04-06 | Публичное акционерное общество "Северсталь" | Способ производства горячекатаных листов из низколегированной стали класса прочности к65 для электросварных прямошовных труб |
RU2696186C2 (ru) * | 2017-10-05 | 2019-07-31 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Способ производства листового проката из низколегированной трубной стали |
RU2689348C1 (ru) * | 2018-06-26 | 2019-05-27 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Способ производства горячекатаного проката повышенной прочности |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2820583C1 (ru) * | 2023-12-04 | 2024-06-05 | Публичное акционерное общество "Магнитогорский металлургический комбинат" | Способ производства горячекатаного хладостойкого рулонного проката, устойчивого к атмосферной коррозии |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10174396B2 (en) | High-strength cold-rolled steel sheet and method for manufacturing the same (as amended) | |
US10570475B2 (en) | High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet | |
KR101591611B1 (ko) | 냉연 강판의 제조 방법 | |
EP3187613B1 (en) | High-strength cold-rolled steel sheet and method for producing same | |
JP5370016B2 (ja) | 穴広げ性に優れた高強度熱延鋼板及びその製造方法 | |
JP4072090B2 (ja) | 伸びフランジ成形性に優れた高強度鋼板およびその製造方法 | |
JP5858174B2 (ja) | 低降伏比高強度冷延鋼板およびその製造方法 | |
JP2011052321A (ja) | 低温靭性に優れた高強度熱延鋼板およびその製造方法 | |
CN105102662A (zh) | 高强度热轧钢板及其制造方法 | |
JP6597938B1 (ja) | 高強度冷延鋼板、高強度めっき鋼板及びそれらの製造方法 | |
KR20190084092A (ko) | 라인 파이프용 애즈롤 전봉 강관 | |
KR20140054379A (ko) | 내충격 특성이 우수한 고강도 용융 아연 도금 강판 및 그 제조 방법, 및, 고강도 합금화 용융 아연 도금 강판 및 그 제조 방법 | |
BRPI0809301B1 (pt) | Chapa de aço laminada a quente de alta resistência livre de descascamento e método de produção da mesma | |
EP3263728A1 (en) | High-strength cold-rolled steel plate and method for producing same | |
CN111684096B (zh) | 热浸镀锌钢板以及合金化热浸镀锌钢板 | |
US20170204490A1 (en) | High-strength steel sheet and production method for same, and production method for high-strength galvanized steel sheet | |
JP5742123B2 (ja) | ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法 | |
CN113330127A (zh) | 热轧钢板 | |
WO2019107042A1 (ja) | 高強度冷延鋼板およびその製造方法 | |
JP4116901B2 (ja) | バーリング性高強度薄鋼板およびその製造方法 | |
WO2022138894A1 (ja) | 鋼板、部材およびそれらの製造方法 | |
WO2021193310A1 (ja) | 高強度熱延鋼板及びその製造方法 | |
WO2020179737A1 (ja) | 熱間圧延鋼板およびその製造方法 | |
JP2021063253A (ja) | 高強度熱延鋼板及びその製造方法 | |
JP4158737B2 (ja) | 微細粒熱延鋼板の製造方法 |