RU2716693C1 - Способ переработки гидролизной кислоты - Google Patents
Способ переработки гидролизной кислоты Download PDFInfo
- Publication number
- RU2716693C1 RU2716693C1 RU2018141717A RU2018141717A RU2716693C1 RU 2716693 C1 RU2716693 C1 RU 2716693C1 RU 2018141717 A RU2018141717 A RU 2018141717A RU 2018141717 A RU2018141717 A RU 2018141717A RU 2716693 C1 RU2716693 C1 RU 2716693C1
- Authority
- RU
- Russia
- Prior art keywords
- titanium
- acid
- extraction
- hydrolytic
- sorption
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D11/00—Solvent extraction
- B01D11/04—Solvent extraction of solutions which are liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J41/00—Anion exchange; Use of material as anion exchangers; Treatment of material for improving the anion exchange properties
- B01J41/04—Processes using organic exchangers
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B17/00—Sulfur; Compounds thereof
- C01B17/69—Sulfur trioxide; Sulfuric acid
- C01B17/90—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
- C01G23/0532—Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing sulfate-containing salts
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J11/00—Recovery or working-up of waste materials
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/42—Treatment or purification of solutions, e.g. obtained by leaching by ion-exchange extraction
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B59/00—Obtaining rare earth metals
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Geology (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Geochemistry & Mineralogy (AREA)
- Sustainable Development (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к переработке отходов производства диоксида титана - гидролизной серной кислоты сульфатным способом с получением продуктов, используемых в химической, металлургической, электронной промышленности. Способ переработки гидролизной кислоты включает последовательное извлечение скандия из гидролизной серной кислоты методом жидкостной экстракции, извлечение серной кислоты сорбцией на низкоосновном поликонденсационном анионите с получением маточника сорбции серной кислоты, который для предотвращения окисления железа и одновременно извлечения титана обрабатывают фосфористой кислотой или солями её щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана в качестве конечного продукта и маточника фильтрации фосфата титана, который утилизируют. Техническим результатом изобретения является увеличение извлечения и чистоты получаемых продуктов. 2 табл., 2 пр.
Description
Изобретение относится к переработке отходов производства диоксида титана сульфатным способом с получением продуктов используемых в химической, металлургической, электронной промышленности.
Сернокислотный метод производства диоксида титана из ильменита и титановых шлаков имеет ряд существенных недостатков - сложная многостадийная схема и значительное количество отходов - загрязненная примесями гидролизная серная кислота (ГСК).
Гидролизную кислоту после концентрирования нельзя возвращать в производственный цикл, из-за присутствующей в ней взвеси гидроксида титана, которая может стать причиной преждевременного гидролиза растворов.
Из методов утилизации ГСК наиболее изученным является метод термического разложения с получением SO2 и нейтрализации известковым молоком с получением гипса для стройматериалов и попутным извлечением гидроксида титана [Гимаев Р.Н., Кондаков Д.И., Сюняев З.И. и др. Современные методы утилизации сернокислотных отходов нефтепереработки и нефтехимии. М.: ЦНИИТЭНефтехим, 1973. - 97с.]. Недостатком данного метода является то, что переработка такого вида отходов (при переработке ильменитовых концентратов на 1 т TiO2 получается до 5 м3 ГСК), связана с большими дополнительными затратами, которые лишь частично компенсируются стоимостью полученных продуктов. Кроме того, при использовании данного метода безвозвратно теряются некоторые редкоземельные металлы, переходящие в ГСК из ильменита, например, скандий.
Наиболее практичным вариантом было бы возвращение ГСК в производственный цикл и, следовательно, сокращение ее общего потребления.
Предложен экстракционный способ [Еденбаев Б.Е., Стряпков А.В., Байков Х,И. Исследование экстракции серной кислоты три-н-октиламином. - Караганда: АН Каз. ССР. - 1974. - 26 с. - Деп. в ВИНИТИ. - 1978. - №207-75.] извлечения серной кислоты техническим три-н-октиламином из ГСК. В качестве экстрагента использовали растворы технического три-н-октиламина в керосине (1:1) и в трибутилфосфате (ТБФ) (1:1) с добавкой 5 об. % высшего спирта (н-гексилового спирта) или без его добавки. Экстрагент регенерировали отмывкой содовым раствором (60 г/дм3), 1 н. раствором едкого натра и водой. Время контакта фаз во всех случаях составляло 10 мин. Органическая фаза отмывалась от кислоты в одну ступень, разделение фаз было удовлетворительное. Варьируя отношением О:В на стадии реэкстракции, авторы показали возможность получения очищенных растворов H2SO4 с концентрацией 56-78 кг/м3.
Недостатком данного метода является большая растворимость органических экстрагентов и растворителей, что будет приводить к загрязнению как рафинатов экстракции, так и очищенной серной кислоты органическими продуктами. Данный метод, так же, не позволяет извлекать, достаточно дорогой скандий присутствующий в ГСК в количестве до 20 мг/дм3, что в двадцать раз превышает концентрацию скандия в растворах от переработки урановых руд – основного промышленного источника получения скандия.
Известен способ получения оксида скандия из сбросного раствора гидролизной кислоты производства пигментного диоксида титана сернокислотным способом (Фаворская Л.В., Кошулько Л.П., Преснецова В.А. Технология минерального сырья: Сб. статей. Вып. 2. Алма-Ата. Мингео Каз. ССР, 1975, С. 67-73.). При реализации способа скандий выделяют с помощью экстракции раствором ди(2-этилгексил)фосфорной кислоты (Ди2ЭГФК) 0,4 моль/л в керосине и соотношении фаз О:В = 1:100. Скандий реэкстрагируют твёрдым фтористым натрием (NaF). Содержание Sc2O3 в конечном продукте составило до 61%.
Недостатком данного способа является использование экстрагента Ди2ЭГФК, который, несмотря на то, что имеет большую ёмкость по Sc, но обладает незначительной селективностью по Sc в присутствии таких элементов как титан, цирконий, торий, РЗЭ, ванадий. В результате получается достаточно грязный оксид скандия. Кроме того, данный Экстрагент, при его использовании в технологии, проявляет склонность к эмульгированию, что затрудняет его эффективное использование; метод не позволяет извлекать титан из ГСК и регенерировать саму ГСК.
Известен способ получения концентрата скандия при сернокислотной переработке отходов алюминиевого производства (Weiwei Wang, Yoko Pranolo, Chu Yong Cheng Recovery of scandium from synthetic red mud leach solutions by solvent extraction with D2EHPA // Separation and Purification Technology 108 (2013) 96–102), включающий экстракцию скандия из сернокислого раствора на экстрагенте состоящем из смеси Ди2ЭГФК и ТБФ, с получением насыщенного экстрагента и рафината экстракции, промывку насыщенного экстрагента раствором H2SO4 = 50-200 г/дм3 и перекиси водорода (H2O2) = 5-20 г/дм3, реэкстракцию скандия раствором состоящим из смеси NaOH и Na2CO3, с получением концентрата скандия.
Несмотря на такие эффективные технологические приёмы как: использование смеси Ди2ЭГФК и ТБФ для понижения эмульгирования органической фазы, дополнительная очистка от ионов титана за счёт введения в промывной сернокислый раствор перекиси водорода, к недостаткам данного способа следует отнести невозможность попутного извлечения титана и очистку ГСК.
Наиболее близким по совокупности существенных признаков к заявляемому изобретению является способ переработки жидких отходов производства диоксида титана (Патент РФ №2651019, дат. рег. 18.04.2018г., «Способ переработки жидких отходов производства диоксида титана», Рычков В.Н., Кириллов Е.В., Кириллов С.В., Буньков Г.М., Боталов М.С., Смирнов А.Л., Машковцев М.А., Смышляев Д.В., заявка №2016137413, опубл. 19.09.2016 г.), где, согласно изобретению, сначала из гидролизной кислоты извлекают скандий методом жидкостной экстракции, далее из гидролизной кислоты извлекают серную кислоту сорбцией на низкоосновном поликонденсационном анионите, после чего из маточника сорбции серной кислоты извлекают титан сорбцией на низкоосновном полимеризационном анионите.
Преимуществом данного способа является комплексность переработки гидролизной кислоты с извлечением всех ценных компонентов и возвратом серной кислоты в основное производство. Однако, ввиду того, что гидролизная кислота является сложным в химическом плане продуктом, с большим содержанием солей, то после операции извлечения кислоты в оставшемся слабокислом растворе может наблюдаться эффект окисления железа (II) до железа (III). Полученное железо (III) в слабокислой среде начинает гидролизоваться с получением объемного студенистого осадка. В виду значительного содержания железа (II) в гидролизной кислоте это может привести к исчезновению текучести слабокислого раствора и получению вместо раствора студенистого осадка гидроксида железа (III). Если допустить протекание такого процесса, то дальнейшее извлечение титана, после извлечения серной кислоты, станет невозможным.
В основу изобретения положена задача, по созданию эффективного комплексного технологического процесса переработки жидких отходов производства диоксида титана.
При этом, техническим результатом заявляемого изобретения является, увеличение извлечения и чистоты получаемых продуктов.
Заявляемый технический результат достигается тем, что в способе переработки гидролизной кислоты, согласно изобретению, маточник сорбции серной кислоты обрабатывают фосфористой кислотой или солями ее щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана и маточника фильтрации фосфата титана, где фосфат титана является конечным продуктом, а маточник фильтрации фосфата титана утилизируют.
Использование фосфористой кислоты или солей ее щелочных металлов и аммония, на данной операции, позволит как стабилизировать железо (II) в слабокислотном растворе после извлечения серной кислоты из гидролизной кислоты за счет восстановительных функций фосфористой кислоты и солей ее щелочных металлов и аммония, так и перевести в осадок титан за счет образования труднорастворимого фосфата титана.
Добавка фосфористой кислоты или солей ее щелочных металлов и аммония, взятых в мольном соотношении менее 0,5 от содержания титана, не позволит достаточно полно выделить титан в виде осадка фосфата титана, а также создать восстановительную среду, препятствующую окислению железа (II) до железа (III). Добавка фосфористой кислоты или солей ее щелочных металлов и аммония, взятых в мольном соотношении более 3 от содержания титана, будет приводить к соосаждению фосфатов железа (II) с фосфатом титана и тем самым загрязнять фосфат титана, усложняя его дальнейшую переработку.
Осуществление заявляемого способа подтверждается следующими примерами.
Пример 1.
Гидролизную серную кислоту, согласно прототипу, приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ 1:3. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией 10 г/дм3. Отмытый экстрагент реэкстрагировали щелочным агентом с содержанием NaOH:Na2CO3 1:3. Рафинат экстракции скандия пропускали через стеклянную колонку диаметром 10 мм и высотой 30 мм, заполненную низкоосновным поликонденсационным анионитом, со скоростью 3 объема раствора через объем анионита в час до полного насыщения. Далее, полученный раствор разделяли на несколько равных частей и добавляли в каждую из них фосфористую кислоту в различном мольном соотношении относительно содержания титана. Полученную суспензию фильтровали. Маточник фильтрации анализировали.
Таблица 1
Концентрация элементов после добавления фосфористой кислоты при мольном соотношении фосфористая кислота : титан | H2SO4 | Fe | Ti | Si |
Концентрация элементов перед добавлением фосфористой кислоты в маточник сорбции серной кислоты г/дм3 | 20 | 39 | 5 | 1 |
0,1 | 20 | 39 | 4,5 | 1 |
0,5 | 20 | 39 | 1,1 | 0,9 |
1 | 20 | 39 | 0,7 | 0,8 |
3 | 20 | 37 | 0,6 | 0,9 |
4 | 20 | 30 | 0,5 | 0,9 |
Из данных, приведенных в таблице 1 видно, что заданный интервал мольного соотношения фосфористой кислоты и титана позволяет перевести в осадок практически весь титан, при этом примеси остаются в растворе.
Пример 2.
Гидролизную серную кислоту приводили в контакт с экстрагентом, содержащим Ди2ЭГФК:ТБФ 1:3. Насыщенный экстрагент отмывали раствором серной кислоты с концентрацией 100 г/дм3 и перекиси водорода с концентрацией 10 г/дм3. Отмытый экстрагент реэкстрагировали щелочным агентом с содержанием NaOH:Na2CO3 1:3. Рафинат экстракции скандия пропускали через стеклянную колонку диаметром 10 мм и высотой 30 мм, заполненную низкоосновным поликонденсационным анионитом, со скоростью 3 объема раствора через объем анионита в час до полного насыщения. Далее, полученный раствор разделяли на несколько равных частей и добавляли в каждую из них аммонийную, натриевую и калиевую соль фосфористой кислоты взятыми в мольном соотношении относительно содержания титана как 1:1 каждая. Полученную суспензию фильтровали. Маточник фильтрации анализировали.
Таблица 2
Концентрация элементов после добавления фосфористой кислоты при мольном соотношении фосфористая кислота : титан | H2SO4 | Fe | Ti | Si |
Концентрация элементов перед добавлением фосфористой кислоты в маточник сорбции серной кислоты г/дм3 | 20 | 39 | 5 | 1 |
Аммонийная соль (NH4)2HPO3 | 20 | 37 | 0,6 | 1 |
Натриевая соль Nа2HPO3 | 20 | 38 | 0,7 | 0,9 |
Калиевая соль K2HPO3 | 20 | 39 | 0,6 | 0,9 |
Из данных, приведенных в таблице 2 видно, что использование взамен фосфористой кислоты солей её щелочных металлов так же приводит к эффективному осаждению фосфата титана.
Claims (1)
- Способ переработки гидролизной кислоты, включающий последовательное извлечение скандия из гидролизной кислоты методом жидкостной экстракции, далее извлечение серной кислоты сорбцией на низкоосновном поликонденсационном анионите, после чего из маточника сорбции серной кислоты извлекают титан, отличающийся тем, что титан извлекают путем обработки маточника сорбции серной кислоты фосфористой кислотой или солями её щелочных металлов и аммония, взятыми в мольном соотношении 0,5-3 от содержания титана в гидролизной кислоте, с получением фосфата титана и маточника фильтрации фосфата титана, где фосфат титана является конечным продуктом, а маточник фильтрации фосфата титана утилизируют.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018141717A RU2716693C1 (ru) | 2018-11-27 | 2018-11-27 | Способ переработки гидролизной кислоты |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018141717A RU2716693C1 (ru) | 2018-11-27 | 2018-11-27 | Способ переработки гидролизной кислоты |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2716693C1 true RU2716693C1 (ru) | 2020-03-13 |
Family
ID=69898247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018141717A RU2716693C1 (ru) | 2018-11-27 | 2018-11-27 | Способ переработки гидролизной кислоты |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2716693C1 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023274838A1 (en) | 2021-06-30 | 2023-01-05 | G S A (Environmental) Limited | PROCESS FOR THE RECOVERY OF RARE EARTH METALS FROM WASTE RESIDUES FROM TiO2 PRODUCTION |
RU2802600C1 (ru) * | 2022-12-13 | 2023-08-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Способ переработки кислых титансодержащих растворов |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2582425C1 (ru) * | 2014-12-10 | 2016-04-27 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Способ извлечения скандия из скандийсодержащего материала |
RU2612107C2 (ru) * | 2015-07-22 | 2017-03-02 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ извлечения скандия из скандийсодержащего продуктивного раствора |
RU2651019C2 (ru) * | 2016-09-19 | 2018-04-18 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ переработки жидких отходов производства диоксида титана |
-
2018
- 2018-11-27 RU RU2018141717A patent/RU2716693C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2582425C1 (ru) * | 2014-12-10 | 2016-04-27 | Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" | Способ извлечения скандия из скандийсодержащего материала |
RU2612107C2 (ru) * | 2015-07-22 | 2017-03-02 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ извлечения скандия из скандийсодержащего продуктивного раствора |
RU2651019C2 (ru) * | 2016-09-19 | 2018-04-18 | Федеральное государственное автономное образовательное учреждение высшего образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ переработки жидких отходов производства диоксида титана |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023274838A1 (en) | 2021-06-30 | 2023-01-05 | G S A (Environmental) Limited | PROCESS FOR THE RECOVERY OF RARE EARTH METALS FROM WASTE RESIDUES FROM TiO2 PRODUCTION |
GB2608597A (en) * | 2021-06-30 | 2023-01-11 | G S A Environmental Ltd | Process for the recovery of rare earth metals from waste residues from TiO2 production |
RU2802600C1 (ru) * | 2022-12-13 | 2023-08-30 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский химико-технологический университет имени Д.И. Менделеева" (РХТУ им. Д.И. Менделеева) | Способ переработки кислых титансодержащих растворов |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9102999B2 (en) | Methods of recovering scandium from titanium residue streams | |
CN101705380B (zh) | 一种从含稀土的铝硅物料中回收稀土方法 | |
AU2012248126B2 (en) | Recovery of soda from bauxite residue | |
EP2964794B1 (en) | A method for re-extraction of rare-earth metals from organic solutions and preparing concentrate of rare-earth metals | |
US3104950A (en) | Process for the separation of iron and titanium values by extraction and the subsequent preparation of anhydrous titanium dopxode | |
US10494697B2 (en) | Method of refining of scandium oxide from concentrates using solvent extraction | |
NO900970L (no) | Fremgangsmaate for behandling av sjeldne jordartsmineraler. | |
CN1020711C (zh) | 从含锗溶液中回收锗的方法 | |
CN101012499A (zh) | 从硫酸强化焙烧稀土矿中全分离高纯稀土氧化物的方法 | |
CN102676830A (zh) | 从钨钢钢渣中提取氧化钪的方法 | |
CN112011691A (zh) | 一种赤泥高效资源化利用方法 | |
US5277816A (en) | Process for producing titanium dioxide | |
US20160016798A1 (en) | A method for purification of circulating leaching solutions from phosphates and fluorides | |
RU2716693C1 (ru) | Способ переработки гидролизной кислоты | |
US3206276A (en) | Process for recovery of pure v2o5 from vanadium bearing materials | |
CN1005565B (zh) | 从人造金红石中提取氧化钪的方法 | |
RU2651019C2 (ru) | Способ переработки жидких отходов производства диоксида титана | |
CN103361488B (zh) | 一种钛白废水中钪的回收方法 | |
RU2765647C2 (ru) | Способ переработки комплексной руды, содержащей в качестве основных компонентов ниобий и редкоземельные элементы | |
RU2618012C2 (ru) | Способ получения оксида скандия из концентрата скандия | |
RU2647047C1 (ru) | Способ получения оксида скандия из концентрата скандия | |
RU2147621C1 (ru) | Способ получения окислов тугоплавких металлов из лопаритового концентрата | |
RU2068392C1 (ru) | Способ извлечения скандия из отходов производства тетрахлорида титана | |
NL8006946A (nl) | Werkwijze voor het winnen van praktisch radiumvrij calciumsulfaat, yttrium en lanthaniden, alsmede calciumsulfaat, yttrium en lanthaniden verkregen volgens deze werkwijze. | |
RU2626264C2 (ru) | Способ дезактивации руд, рудных и техногенных концентратов |