RU2702033C1 - Узел герметичности соединений насосно-компрессорных труб (варианты) - Google Patents
Узел герметичности соединений насосно-компрессорных труб (варианты) Download PDFInfo
- Publication number
- RU2702033C1 RU2702033C1 RU2019103096A RU2019103096A RU2702033C1 RU 2702033 C1 RU2702033 C1 RU 2702033C1 RU 2019103096 A RU2019103096 A RU 2019103096A RU 2019103096 A RU2019103096 A RU 2019103096A RU 2702033 C1 RU2702033 C1 RU 2702033C1
- Authority
- RU
- Russia
- Prior art keywords
- tubing
- tightening
- thread
- annular protrusion
- tightness
- Prior art date
Links
- 238000007789 sealing Methods 0.000 claims abstract description 56
- 239000000463 material Substances 0.000 claims abstract description 16
- 238000002844 melting Methods 0.000 claims abstract description 12
- 230000008018 melting Effects 0.000 claims abstract description 12
- 229910052797 bismuth Inorganic materials 0.000 claims description 21
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 claims description 21
- 229910045601 alloy Inorganic materials 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 13
- 239000011521 glass Substances 0.000 claims description 12
- 230000008878 coupling Effects 0.000 abstract description 6
- 238000010168 coupling process Methods 0.000 abstract description 6
- 238000005859 coupling reaction Methods 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 229930195733 hydrocarbon Natural products 0.000 abstract description 4
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 4
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 239000003795 chemical substances by application Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000003825 pressing Methods 0.000 description 5
- 230000013011 mating Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000003566 sealing material Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000003032 molecular docking Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 101150096674 C20L gene Proteins 0.000 description 2
- 102220543923 Protocadherin-10_F16L_mutation Human genes 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 101100445889 Vaccinia virus (strain Copenhagen) F16L gene Proteins 0.000 description 2
- 101100445891 Vaccinia virus (strain Western Reserve) VACWR055 gene Proteins 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000002085 persistent effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 239000002569 water oil cream Substances 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- 241000239290 Araneae Species 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000000655 Distemper Diseases 0.000 description 1
- 229920006360 Hostaflon Polymers 0.000 description 1
- 229920006367 Neoflon Polymers 0.000 description 1
- 108091027981 Response element Proteins 0.000 description 1
- 229920006356 Teflon™ FEP Polymers 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920009441 perflouroethylene propylene Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/04—Couplings; joints between rod or the like and bit or between rod and rod or the like
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/02—Couplings; joints
- E21B17/04—Couplings; joints between rod or the like and bit or between rod and rod or the like
- E21B17/042—Threaded
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L15/00—Screw-threaded joints; Forms of screw-threads for such joints
- F16L15/001—Screw-threaded joints; Forms of screw-threads for such joints with conical threads
- F16L15/004—Screw-threaded joints; Forms of screw-threads for such joints with conical threads with axial sealings having at least one plastically deformable sealing surface
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Abstract
Группа изобретений относится к нефтегазовой промышленности, а именно к оборудованию для добычи углеводородов, и может быть использована в конструкциях насосно-компрессорных труб (НКТ). Узел герметичности соединений НКТ включает стыкуемые друг с другом посредством стягивающей резьбовой муфты концы НКТ, а также герметизирующую прокладку. Конец одной из соединяемых НКТ выполнен в виде стакана, на верхней части внутренней поверхности которого имеется резьба, предназначенная для свинчивания с резьбой стягивающей муфты при затяжке узла, на конце другой НКТ выполнен кольцевой выступ, один из торцов которого имеет возможность контакта с дном стакана, другой - со стягивающей муфтой. Герметизирующий элемент размещен между наружной поверхностью кольцевого выступа и внутренней поверхностью стакана и выполнен из материала, имеющего температуру плавления ниже 300°С. 2 н. и 2 з.п. ф-лы, 3 ил., 1 табл.
Description
Группа изобретений относится к нефтегазовой промышленности, а именно, к оборудованию для добычи углеводородов и может быть использована в конструкциях насосно-компрессорных труб (НКТ), предназначенных для транспортировки в продуктивный пласт рабочего агента, например, в форме воды, находящейся в ультра-сверхкритическом состоянии, и имеющей температуру до 800°С при давлении до 60 МПа.
Из уровня техники известно, что для добычи трудноизвлекаемых запасов углеводородов из нефтекерогеносодержащих продуктивных пластов баженовской, доманиковой и иных свит, все более широкое применение находит термохимическая технология, основанная на применении ультра-сверхкритического парового цикла, суть которого заключается в: (1) генерации на дневной поверхности скважины рабочего агента в форме ультра-сверхкритической воды, имеющей температуру до 800°С при давлении до 60 МПа; (2) доставке рабочего агента по колонне НКТ на забой скважины в его подпакерную зону; (3) инжектировании его в продуктивный пласт.
Естественно, в силу потерь, которые неизбежно возникают при доставке рабочего агента на забой скважины, находящийся, например, на глубине 3000 метров, температура и давление рабочего агента снижаются и составляют, примерно, 500°С при давлении до 50 МПа, при этом, часть рабочего агента через стыки собранных в колонну НКТ, перетекает из полости НКТ в надпакерную зону скважины, что приводит к потерям рабочего агента, иногда весьма существенным, а также к падению его давления.
Поэтому одной из весьма значимых проблем при осуществлении термохимического воздействия на нефтекерогеносодержащие продуктивные пласты является гарантированное обеспечение герметичности стыков НКТ, расположенной в скважине колонны в течение всего срока ее эксплуатации.
В заявленной группе изобретений термин «герметичность соединений» означает гарантированную герметичность стыков труб колонны НКТ в условиях высоких температур (до 800°С) при их нагружении избыточным давлением рабочего агента в течение всего периода эксплуатации колонны НКТ.
Из современного уровня развития техники известно, что решение проблемы обеспечения герметичности стыков НКТ реализуется в нескольких направлениях: (1) герметизацией резьбовых соединений НКТ за счет особых форм и соотношений размеров соединяемых поверхностей; (2) герметизацией резьбовых соединений НКТ путем нанесения на них различных герметизирующих материалов; (3) использованием в узлах соединений герметизирующих элементов (прокладок).
Так, например, известно высокогерметичное резьбовое соединение НКТ (патент РФ №2500875, кл. Е21В 17/00, 2013 г.), содержащее охватываемый и охватывающий элементы, на концах которых на наружной и внутренней поверхностях выполнены упорные конические трапецеидальные резьбы и образующие внутренний узел уплотнения конические контактирующие между собой уплотнительные и упорные торцевые поверхности, образующие между собой острый угол, при этом профиль витка резьб охватываемого и охватывающего элементов на участке схождения опорной грани и вершины, а также на участке схождения закладной грани и вершины, выполнен скругленным, а вершины и закладные грани профиля витка резьб охватываемого и охватывающего элементов выполнены таким образом, что при свинчивании соединения они образуют между собой зазоры, на охватывающем элементе соединения на участке схода резьбы выполнена окружная проточка, на участке схождения уплотнительной поверхности и упорной торцевой поверхности охватывающего элемента выполнена окружная проточка, при этом участок схождения уплотнительной поверхности и поверхности окружной проточки охватывающего элемента, а также участок схождения уплотнительной поверхности и поверхности схода резьбы охватываемого элемента выполнены скругленными, угол наклона уплотнительной поверхности охватываемого элемента к осевой линии резьбы составляет 13-18°, а угол наклона уплотнительной поверхности охватывающего элемента - 8-12°.
Известно высокогерметичное износостойкое резьбовое соединение (патент РФ на полезную модель №129186, кл F16L 15/00, 2013 г.), содержащее сопрягаемые наружный и внутренний элементы с резьбовыми коническими участками и герметизирующий узел, выполненный в виде сопрягаемых конических радиальных и торцевых поверхностей внутреннего и наружного элементов, коническая резьба элементов имеет в сечении профиль неравнобокой трапеции с рабочим углом при вершине 13°, сопрягаемые конические торцевые поверхности выполнены под углом 15° к нормали оси резьбы, а на наружной уплотнительной поверхности внутреннего элемента с конусностью 1:10 выполнена одна или несколько разгрузочных кольцевых проточек.
Приведенные выше решения не могут обеспечить герметичность стыков при транспортировании через колонны таких НКТ рабочих агентов, имеющих высокие температуры и давление.
Герметизация резьбовых соединений НКТ путем нанесения на них различных герметизирующих материалов также используется довольно широко.
Так, например, известен способ герметизации резьбовых соединений труб (патент РФ №2498144, кл. F16L 15/04, 2013 г.), полученное которым резьбовое соединение герметизировано материалом, размещенным в межрезьбовом пространстве, причем перед размещением герметизирующего материала проведена подготовка поверхностей резьбового соединения пассивацией металла, а в качестве герметизирующего материала использована композиция сополимера тетрафторэтилена с гексафторпропиленом и графита с наполнителями.
Основным недостатком данного резьбового соединения является то, что интервал рабочих температур сополимера тетрафторэтилена с гексафторпропиленом, известного также под торговыми марками фторопласт-4МБ, тефлон FEP (США), хостафлон FEP (Германия), неофлон (Япония), составляет от -270 до +205°С, а температура его разложения составляет 380-400°С. Таким образом, сополимер тетрафторэтилена с гексафторпропиленом в силу относительно низкой температуры разложения не может быть использован для герметизации резьбового соединения НКТ, по которым необходимо транспортировать рабочий агент в форме ультра-сверхкритической воды, имеющей температуру до 800°С или в форме сверхкритической воды, имеющей минимальную температуру на забое скважины, равную 500°С.
Известно герметичное коническое трубное соединение (патент РФ №2162928, кл Е21В 17/08, 2001 г.) в котором на поверхность резьбы нанесен слой мягкого металла, при этом слой металла выполнен в виде полосы и расположен от захода в резьбу не менее на 2/3 ее рабочей длины, а на участке, приходящемся на виток с неполным профилем в зоне фаски стандартного ответного резьбового элемента, нанесен на протяжении, по крайней мере, одного витка пояском с толщиной слоя, не менее чем в два раза превышающей толщину слоя в равномерной полосе.
В качестве такого металла могут быть использованы свинец (число твердости по Бринеллю (НВ)=4 ед. и температура плавления=327,4°С) и/или олово (число твердости по Бринеллю (НВ)=5 ед. и температура плавления=231,9°С). Для сравнения число твердости по Бринеллю (НВ) титана равно 160 ед.
Известное соединение не может быть эффективным при транспортировке высокотемпературного рабочего агента высокого давления в форме воды в ультра-сверхкритическом состоянии и/или в форме воды в сверхкритическом состоянии в связи с тем, что при закачке такого рабочего агента в пласт его температура на устье скважины может достигать 800°С, а при отборе из продуктивного пласта водонефтяной эмульсии по той же самой НКТ ее температура на устье скважины составит не менее 300°С и, таким образом, нанесенный на поверхность резьбы слой мягкого металла (свинца или олова) расплавится и перейдет в жидкое состояние. Под давлением расплавленный металл будет вытеснен из резьбового соединения и герметизация резьбового соединения будет нарушена, что может привести к потере значительных объемов рабочего агента и даже к обрыву колонны НКТ, - к аварии на скважине.
Известна теплоизолированная колонна НКТ (патент РФ №2129202, кл. Е21В 17/00, 1999 г.), каждая НКТ которой включает внутреннюю трубу с расположенной на ней многослойной экранной изоляцией, наружную трубу, внутренняя труба выполнена цельной с высаженными профилированными концами, наружная труба перед монтажом сжата вдоль оси на 9-12 мм, имеет на концах конусно-упорную резьбу и снабжена седлом и клапаном, равноудаленным от концов трубы и, после герметизации седла, обваренным вакуумно-плотным швом, внутренняя и наружная трубы выполнены из одного материала и по торцам обварены вакуумно-плотными швами, на многослойной экранной изоляции размещены центрирующие кольца, между слоями многослойной экранной изоляции размещен газопоглотитель, в межтрубном пространстве создан вакуум 10-4-10-3 мм. рт.ст., при этом каждый узел герметичности колонны выполнен в виде резьбовой муфты, навернутой на резьбовые концы соединяемых НКТ, между которыми размещена уплотнительная втулка.
В результате анализа выполнения узла стыковки данной колонны НКТ, необходимо отметить, что для стыковки НКТ в колонну традиционно используется конусно-упорное резьбовое межтрубное соединение, которое при нагреве НКТ до температуры 500-800°С и при давлении до 60 МПа не обеспечивает герметичность соединения и его надежность. Кроме того, используемое для обеспечения надежности и герметичности таких соединений высокое усилие затяжки, близкое по величине к пределу прочности материла НКТ, при эксплуатации может привести к срыву резьбы. По этой причине ресурс таких соединительных элементов труб не превышает нескольких циклов «свинчивание-развинчивание».
Герметизация соединений с использованием герметизирующих элементов, например, прокладок, также известна и является наиболее приемлемой для решения задач настоящей группой изобретений.
Так, например, известно герметичное соединение труб (патент РФ №2513937, кл. Е21В 17/00, 2014 г. - наиболее близкий аналог) включающее стягивающую резьбовую муфту, навинченную на резьбовые концы соединяемых труб, между стыкуемыми торцами которых размещена герметизирующая металлическая прокладка. В процессе эксплуатации труб, например, при прокачке по ним разогретого рабочего агента, прокладка нагревается, увеличиваясь в размерах, и заполняет зазоры между поверхностями ее расположения.
Известный узел соединения не может быть эффективно использован для увеличения степени герметизации стыков НКТ в случае транспортировки высокотемпературного рабочего агента высокого давления в форме воды в ультра-сверхкритическом состоянии и/или в форме воды в сверхкритическом состоянии в связи с тем, что при закачке такого рабочего агента в пласт его температура на устье скважины может достигать 800°С, а при отборе из продуктивного пласта водонефтяной эмульсии по той же самой насосно-компрессорной трубе ее температура на устье скважины составит не менее 300°С и, таким образом, перепад температур будет равен 500°С. Такой значительный по величине перепад температур неизбежно приведет к циклическому увеличению - уменьшению степени натяга по резьбе, то есть - к циклическому изменению осевых усилий и этот процесс неизбежно станет причиной ослабления усилия затяжки резьбы и, соответственно, медленному отвинчиванию труб из муфты и уменьшению степени герметичности трубного соединения.
Другим, не менее существенным недостатком известного узла является то, что прокладка, изготовленная из алюминия, в процессе температурных деформаций может дополнительно нагружать резьбовые соединения осевой силой, примерно, в 60 тонн.
Данные осевые силы являются дополнительной нагрузкой на резьбовое соединение НКТ на фоне ослабления прочностных характеристик металлов или сплавов в присутствии высоких температур, что может привести к обрыву колонны НКТ и к аварии на скважине.
Техническим результатом заявленной группы изобретений является разработка узлов герметичности соединений НКТ, которые гарантированно способны обеспечивать герметичность стыков НКТ, собранных в опущенную в скважину колонну, в условиях действия на стыки высоких температур (до 800°С) и при их нагружении избыточным давлением рабочего агента (до 60 МПа) в течение длительного времени.
Указанный технический результат обеспечивается тем, что в узле герметичности соединений насосно-компрессорных труб, включающем стыкуемые друг с другом посредством стягивающей резьбовой муфты концы насосно-компрессорных труб, а также герметизирующую прокладку, новым является то, что конец одной из соединяемых насосно-компрессорных труб выполнен в виде стакана, на верхней части внутренней поверхности которого имеется резьба, предназначенная для свинчивания с резьбой стягивающей муфты при затяжке узла, на конце другой насосно-компрессорной трубы выполнен кольцевой выступ, один из торцов которого имеет возможность контакта с дном стакана, другой - со стягивающей муфтой, а герметизирующий элемент размещен между наружной поверхностью кольцевого выступа и внутренней поверхностью стакана и выполнен из материала, имеющего температуру плавления ниже 300°С, в частности, из висмута или сплава, содержащего висмут.
В варианте узла герметичности соединений насосно-компрессорных труб, новым является то, что в стягивающей муфте образована кольцевая расточка, а резьба выполнена на части внутренней ее поверхности, на конце одной из соединяемых насосно-компрессорных труб выполнен кольцевой выступ, на наружной образующей поверхности которого имеется резьба, предназначенная для свинчивания с резьбой стягивающей муфты при затяжке узла, на конце другой насосно-компрессорной трубы выполнен кольцевой выступ, один из торцов которого имеет возможность контакта с торцом кольцевого выступа первой насосно-компрессорной трубы, другой - со стягивающей муфтой, а герметизирующий элемент размещен между наружной поверхностью кольцевого выступа второй насосно-компрессорной трубы и внутренней поверхностью расточки стягивающей муфты и выполнен из материала, имеющего температуру плавления ниже 300°С.
В заявленной группе изобретений узлы герметичности соединений НКТ, относятся к объектам одного вида, одинакового назначения и обеспечивают при использовании достижение одного и того же технического результата, то есть, являются вариантами, следовательно, требование единства изобретения в данной заявке соблюдено.
Сущность заявленной группы изобретений поясняется графическими материалами, на которых:
- на фиг. 1 - узел герметичности соединения двух НКТ в сборе (вариант 1);
- на фиг. 2- узел герметичности соединения двух НКТ в сборе (вариант 2);
- на фиг. 3 - график изменения плотности и расширения висмута в зависимости от его температуры.
- табл. - материалы, которые могут быть использованы для изготовления герметизирующих прокладок.
В описании приведенными ниже позициями обозначены следующие конструктивные элементы узлов герметичности
Вариант 1:
1. НКТ, конец которой выполнен в виде стакана с внутренней резьбой;
2. НКТ, конец которой выполнен с кольцевым выступом;
3. Стягивающая муфта с наружной резьбой;
4. Герметизирующая прокладка, выполненная из материала (металла или сплава), имеющего температуру плавления ниже 300°С;
5. Резьбовое соединение НКТ со стягивающей муфтой;
6. Прижимная (нижняя) поверхность кольцевого выступа;
7. Опорная поверхность стакана (дно);
8. Прижимная поверхность стягивающей муфты;
9. Прижимная боковая поверхность кольцевого выступа.
Вариант 2:
10. НКТ, конец которой выполнен с кольцевым выступом с резьбой по его наружной поверхности;
11. НКТ, конец которой выполнен с кольцевым выступом;
12. Стягивающая муфта с внутренней резьбой;
13. Герметизирующая прокладка, выполненная из материала (металла или сплава), имеющего температуру плавления ниже 300°С;
14. Резьбовое соединение НКТ со стягивающей муфтой;
15. Опорная поверхность торца НКТ 10 с наружной резьбой на ее кольцевом выступе;
16. Прижимная нижняя поверхность кольцевого выступа НКТ 11;
17. Прижимная поверхность стягивающей муфты;
18. Прижимная боковая поверхность кольцевого выступа НКТ 11.
Узел герметичности соединений НКТ (фиг. 1 - вариант 1) включает соответствующим образом выполненные стыкуемые при сборке колонны концы НКТ 1 и НКТ 2.
Конец НКТ 1 выполнен в виде стакана, образованного, например, раскаткой или высадкой. Наружная поверхность стакана может иметь различную форму, например, цилиндрическую или граненую. Внутренняя поверхность стакана образована опорной плоской поверхностью 7 (дно стакана), а также боковой поверхностью, образованной цилиндрической частью, примыкающей к дну стакана, и сопряженной с ней конической поверхностью, на которой имеется резьба.
На конце НКТ 2 имеется кольцевой выступ с прижимной нижней торцевой поверхностью 6 и прижимной боковой поверхностью 9.
Узел укомплектован стягивающей муфтой 3, на которой имеется наружная коническая поверхность с выполненной на ней резьбой, а также прижимная торцевая поверхность 8.
Узел оснащен герметизирующей прокладкой 4. Прокладка может быть выполнена из широкой гаммы материалов, представленных, в частности, в таблице. Общим для этих материалов является то, что их температура плавления не должна превышать 300°С.
Внутренний диаметр стакана НКТ 1 в любом случае больше наружного диаметра кольцевого выступа НКТ 2. Это необходимо для размещения в пространстве между ними герметизирующей прокладки 4.
Узел герметичности формируют при сборке НКТ в колонну следующим образом.
НКТ 1 помещают в слайдер (не показан) в вертикальном положении стаканом вверх. В полость стакана НКТ 1, на его опорную поверхность 7 устанавливают герметизирующую прокладку 4, внутренний диаметр которой несколько больше наружного диаметра кольцевого выступа НКТ 2.
НКТ 2 стыкуют с НКТ 1 таким образом, чтобы поверхность 6 кольцевого выступа НКТ 2 прижималась к опорной поверхности 7 стакана НКТ 1, а его боковая поверхность 9 находилась в полости герметизирующей прокладки 4. На НКТ 2 надевают стягивающую муфту 3 и перемещают до контакта ее резьбовой поверхности с резьбовой поверхностью стакана НКТ 1.
Гидравлическим ключом (не показан) вращают стягивающую муфту 3, свинчивая резьбы муфты и стакана, образуя резьбовое соединение 5. При этом муфта 3, своей прижимной поверхностью 8 поджимает прижимную поверхность 6 кольцевого выступа к опорной поверхности (дну) 7 стакана, а также сжимает герметизирующую прокладку 4, действуя на ее верхний торец.
После завершения операции стыковки НКТ 1 и НКТ 2, прижимная поверхность 6 кольцевого выступа НКТ 2 плотно прижата к опорной поверхности 7 дна стакана НКТ 1, а боковые поверхности герметизирующей прокладки 4 плотно поджаты к внутренней цилиндрической поверхности стакана НКТ 1, а также к прижимной поверхности 9 кольцевого выступа НКТ 2. Узел сформирован.
Приведенная выше операция формирования узла герметичности повторяется до тех пор, пока колонна НКТ требуемой длины не будет сформирована и опущена в скважину.
По колонне НКТ с дневной поверхности на забой скважины в ее подпакерный объем подают под давлением рабочий агент - ультра-сверхкритическую или сверхкритическую воду.
Под действием рабочего агента герметизирующая прокладка 4 постепенно нагревается и, по достижении температуры своего плавления, переходит в жидкое состояние и надежно герметизирует стыки НКТ и резьбовое соединение.
Если герметизирующая прокладка выполнена из висмута или сплава, содержащего висмут, то еще до перехода герметизирующей прокладки 4 из твердого состояния в жидкое, некоторая часть рабочего агента через стык, образованный прижимными поверхностями 6 и 7, попадает в объем, в котором находится герметизирующая прокладка 4. В результате химической реакции при взаимодействии ультра-сверхкритической и/или сверхкритической воды с висмутом герметизирующей прокладки 4, синтезируются твердые наноразмерные частицы оксидов металлов (например, оксид висмута (Bi2O3)), которые достаточно быстро кольматируют микро и наноразмерные флюидопроводящие каналы в резьбовом соединении 5 и в стыке, образованном прижимной поверхностью 8 стягивающей муфты и контактирующим с ней верхним торцом кольцевого выступа НКТ 2. По мере нагрева герметизирующая прокладка 4 постепенно переходит из твердого в жидкое состояние, окончательно герметизируя стыки НКТ и резьбовое соединение.
Таким образом, выполнение концов НКТ 1 и НКТ 2, а также используемая в узле герметизирующая прокладка гарантированно обеспечивают герметичность стыков НКТ во всех условиях их эксплуатации.
Узел герметичности соединений НКТ (фиг. 2 - вариант 2) включает соответствующим образом выполненные стыкуемые при сборке колонны концы НКТ 10 и НКТ 11.
На конце НКТ 10 образован кольцевой выступ конической формы, на образующей которого имеется резьба. Торец 15 данного выступа (верхний в плоскости чертежа) является опорной поверхностью.
На конце НКТ 11 имеется кольцевой выступ с прижимной нижней (в плоскости чертежа) торцевой поверхностью 16 и прижимной боковой поверхностью 18.
Узел укомплектован стягивающей муфтой 12, в торце которой выполнена расточка, часть внутренней поверхности которой имеет коническую форму с выполненной на ней резьбой. Дно расточки является прижимной поверхностью 17.
Узел также оснащен герметизирующей прокладкой 13.
Внутренний диаметр расточки стягивающей муфты 12 в любом случае больше наружного диаметра кольцевого выступа НКТ 11. Это необходимо для размещения в пространстве между ними герметизирующей прокладки 13.
Узел герметичности формируют при сборке НКТ в колонну следующим образом.
НКТ 10 помещают в спайдер и располагают кольцевым выступом вверх.
На опорную торцевую поверхность 15 укладывают герметизирующую прокладку 13.
НКТ 11 стыкуют с НКТ 10 таким образом, чтобы поверхность 16 кольцевого выступа НКТ 11 прижималась к опорной поверхности 15 кольцевого выступа НКТ 10, а его боковая поверхность зашла в полость герметизирующей прокладки 13. На НКТ 11 надевают стягивающую муфту 12 и перемещают до контакта ее резьбы с резьбой кольцевого выступа НКТ 10.
Гидравлическим ключом вращают стягивающую муфту 12, свинчивая резьбы муфты и выступа НКТ 10, образуя резьбовое соединение 14. При этом муфта 12 своей прижимной поверхностью 17 поджимает прижимную поверхность 16 кольцевого выступа НКТ 11 к опорной поверхности 15 кольцевого выступа НКТ 10, а также сжимает герметизирующую прокладку 13, действуя на ее верхний торец.
После завершения операции стыковки НКТ 10 и 11, опорная поверхность 15 торца НКТ 10 и прижимная поверхность 16 кольцевого выступа НКТ 11 плотно прижаты друг к другу, а прижимная поверхность 17 стягивающей муфты 12 плотно прижата к верхнему (в плоскости чертежа) торцу кольцевого выступа НКТ 11, а его боковая поверхность 18 плотно прижата к герметизирующей прокладке 13.
Приведенная выше операция формирования узла герметичности повторяется до тех пор, пока колонна НКТ требуемой длины не будет сформирована и опущена в скважину.
Работа собранного узла осуществляется аналогично работе узла по варианту 1.
Как в первом, так и во втором варианте узла герметизирующие прокладки 4 и 13, могут быть выполнены из висмута или сплава, содержащего висмут.
Существенность данного признака объясняется уникальными свойствами висмута, которыми обладает этот металл в процессе фазовых переходов из твердого состояния в жидкое состояние и обратно (фиг. 3) при нагреве узлов герметичности до 600°С в ходе транспортировки рабочего агента по НКТ и при их остывании до 300°С в ходе отбора углеводородов на дневную поверхность скважины.
Так, например, в процессе эксплуатации НКТ с узлами герметичности, описанными выше, находясь на глубине 3000 метров, висмут в твердом состоянии и при температуре горной породы, равной 100°С, имеет плотность 9,78 гр/см3. При нагреве узлов герметичности и при переходе висмута при температуре 271,4°С из твердого состояния в жидкое, его плотность резко/скачкообразно возрастает с 9,69 гр/см3 (Т=271,3°С) до 10,09 гр/см3 (Т=271,4°С), а объем при этом резко/скачкообразно уменьшается. В процессе его дальнейшего нагрева, например, до температуры 500°С его объем увеличивается, а плотность уменьшается с 10,09 гр/см3 (Т=271,4°С) до 9,78 гр/см3 (Т=500°С). В целом, при нагреве и остывании в интервале указанных температур, - от 100°С до 500°С, объем висмута в силу теплового расширения или сжатия изменяется в пределах, примерно, 3%, а от 100°С до 600°С, - в пределах 4%. Именно это свойство висмута и является существенным при использовании его в качестве материала для изготовления герметизирующих прокладок, что позволяет гарантированно не допустить разрыва узлов герметичности в результате теплового расширения металлов и/или сплавов при их переходе из твердого состояния в жидкое.
Как в первом, так и во втором варианте, если герметизирующие прокладки 4 и 13 выполнены из висмута или сплава, содержащего висмут, то они в твердом состоянии должны занимать не более 90% объема, образованного дном стакана НКТ 1, его внутренней цилиндрической поверхностью и боковой прижимной поверхностью кольцевого выступа НКТ 2 для варианта 1 или образованного опорной поверхностью 15 кольцевого выступа НКТ 10, внутренней поверхностью расточки стягивающей муфты 12 и прижимной боковой поверхностью кольцевого выступа НКТ 11 для варианта 2.
Если герметизирующие прокладки 4 и 13 выполнены из материала (металла или сплава, в том числе, приведенного в таблице), имеющего температуру плавления ниже 300°С, то для обеспечения целостности узлов герметичности при их нагреве до температуры 800°С, они в твердом состоянии должны занимать не более 70% объема, сформированного конструктивными элементами, приведенными выше для герметизирующей прокладки из висмута или сплава, содержащего висмут
Необходимо отметить, что для производства НКТ, способных работать одновременно при высоких температурах и давлениях, а также обладать максимально возможной степенью коррозионной стойкости в настоящее время наиболее целесообразно использовать сплав INCONEL 740Н или его аналоги, например, SANICRO 25.
Для повышения надежности резьбового соединения стягивающей муфты и НКТ наиболее целесообразно использовать премиальную резьбу TMK UP™ GX, специально разработанную компанией «Трубная металлургическая компания» (Россия) для реализации тепловых технологий увеличения нефтеотдачи (МУН).
При этом решение по варианту 2, способное выдерживать большие нагрузки, целесообразно применять в обсадных трубах, имеющих внутренний диаметр более 194 мм, а решение по варианту 1, способное выдерживать меньшие нагрузки, чем решение по варианту 2, целесообразно применять в обсадных трубах, имеющих внутренний диаметр менее 178 мм.
Claims (4)
1. Узел герметичности соединений насосно-компрессорных труб, включающий стыкуемые друг с другом посредством стягивающей резьбовой муфты концы насосно-компрессорных труб, а также герметизирующую прокладку, отличающийся тем, что конец одной из соединяемых насосно-компрессорных труб выполнен в виде стакана, на верхней части внутренней поверхности которого имеется резьба, предназначенная для свинчивания с резьбой стягивающей муфты при затяжке узла, на конце другой насосно-компрессорной трубы выполнен кольцевой выступ, один из торцов которого имеет возможность контакта с дном стакана, другой - со стягивающей муфтой, а герметизирующий элемент размещен между наружной поверхностью кольцевого выступа и внутренней поверхностью стакана и выполнен из материала, имеющего температуру плавления ниже 300°С.
2. Узел герметичности соединений насосно-компрессорных труб по п. 1, отличающийся тем, что герметизирующая прокладка выполнена из висмута или сплава, содержащего висмут.
3. Узел герметичности соединений насосно-компрессорных труб, включающий стыкуемые друг с другом посредством стягивающей резьбовой муфты концы насосно-компрессорных труб, а также герметизирующую прокладку, отличающийся тем, что в стягивающей муфте образована кольцевая расточка, а резьба выполнена на части внутренней ее поверхности, на конце одной из соединяемых насосно-компрессорных труб выполнен кольцевой выступ, на наружной образующей поверхности которого имеется резьба, предназначенная для свинчивания с резьбой стягивающей муфты при затяжке узла, на конце другой насосно-компрессорной трубы выполнен кольцевой выступ, один из торцов которого имеет возможность контакта с торцом кольцевого выступа первой насосно-компрессорной трубы, другой - со стягивающей муфтой, а герметизирующий элемент размещен между наружной поверхностью кольцевого выступа второй насосно-компрессорной трубы и внутренней поверхностью расточки стягивающей муфты и выполнен из материала, имеющего температуру плавления ниже 300°С.
4. Узел герметичности соединений насосно-компрессорных труб по п. 3, отличающийся тем, что герметизирующая прокладка выполнена из висмута или сплава, содержащего висмут.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019103096A RU2702033C1 (ru) | 2019-02-05 | 2019-02-05 | Узел герметичности соединений насосно-компрессорных труб (варианты) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019103096A RU2702033C1 (ru) | 2019-02-05 | 2019-02-05 | Узел герметичности соединений насосно-компрессорных труб (варианты) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2702033C1 true RU2702033C1 (ru) | 2019-10-03 |
Family
ID=68170827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019103096A RU2702033C1 (ru) | 2019-02-05 | 2019-02-05 | Узел герметичности соединений насосно-компрессорных труб (варианты) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2702033C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1663174A1 (ru) * | 1988-08-01 | 1991-07-15 | Ивано-Франковский Институт Нефти И Газа | Резьбовое соединение теплонагнетательных труб |
RU2014542C1 (ru) * | 1991-01-09 | 1994-06-15 | Черных Виталий Петрович | Штуцерно-торцевое соединение трубопроводов |
RU2129203C1 (ru) * | 1996-05-28 | 1999-04-20 | Акционерная нефтяная компания "Башнефть" | Способ соединения обсадных труб |
EP1224417B1 (en) * | 1999-10-01 | 2005-08-10 | Fiberspar Corporation | Composite coiled tubing end connector and pipe-to-pipe connector |
RU2513937C1 (ru) * | 2013-03-13 | 2014-04-20 | Геннадий Алексеевич Копылов | Способ герметизации стесненной прокладкой |
RU2651856C1 (ru) * | 2017-03-06 | 2018-04-24 | Акционерное общество "Новомет-Пермь" | Соединение насосно-компрессорных труб |
-
2019
- 2019-02-05 RU RU2019103096A patent/RU2702033C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1663174A1 (ru) * | 1988-08-01 | 1991-07-15 | Ивано-Франковский Институт Нефти И Газа | Резьбовое соединение теплонагнетательных труб |
RU2014542C1 (ru) * | 1991-01-09 | 1994-06-15 | Черных Виталий Петрович | Штуцерно-торцевое соединение трубопроводов |
RU2129203C1 (ru) * | 1996-05-28 | 1999-04-20 | Акционерная нефтяная компания "Башнефть" | Способ соединения обсадных труб |
EP1224417B1 (en) * | 1999-10-01 | 2005-08-10 | Fiberspar Corporation | Composite coiled tubing end connector and pipe-to-pipe connector |
RU2513937C1 (ru) * | 2013-03-13 | 2014-04-20 | Геннадий Алексеевич Копылов | Способ герметизации стесненной прокладкой |
RU2651856C1 (ru) * | 2017-03-06 | 2018-04-24 | Акционерное общество "Новомет-Пермь" | Соединение насосно-компрессорных труб |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1967690B1 (en) | High-strength sealed connection for expandable tubulars | |
US4762344A (en) | Well casing connection | |
CN100485243C (zh) | 制造螺纹管连接的方法、该方法所用成套组件和密封环、及螺纹管连接 | |
JP4234100B2 (ja) | 塑性拡張後の気密性改善のための強化管状継手 | |
CA2185251C (en) | Threaded joint for tubes | |
US6312024B1 (en) | Threaded assembly of metal tubes designed to contain a corrosive fluid | |
US8984734B2 (en) | Step-to-step wedge thread connections and related methods | |
KR101312890B1 (ko) | 나사관 연결부 | |
US8925639B2 (en) | Seal with bellows style nose ring and radially drivable lock rings | |
EA013573B1 (ru) | Трубное соединение с клиновой резьбой | |
KR20040093105A (ko) | 쐐기형 나사부를 이용한 관 접속부 | |
GB2429220A (en) | Reverse sliding seal for expandable tubular connections | |
MXPA05002247A (es) | Junta roscada tubular impermeable con respecto al medio exterior. | |
EP0131622A1 (en) | PIPE CONNECTION WITH IMPROVED METAL-TO-METAL GASKET. | |
US20080238094A1 (en) | Oilfield Threaded Connection | |
JPH0730863B2 (ja) | 金属対金属の楔ねじ継手コネクタ | |
EP3390768B1 (en) | Connectors for high temperature geothermal wells | |
RU2702033C1 (ru) | Узел герметичности соединений насосно-компрессорных труб (варианты) | |
US11408235B2 (en) | Connectors for high temperature geothermal wells | |
US20230349241A1 (en) | Tubular Coupling Assembly With Modified Buttress Thread | |
US4582349A (en) | Plastically deformed seals in downhole tools | |
CN110439476B (zh) | 一种直连型无预应力隔热油管 | |
RU2513937C1 (ru) | Способ герметизации стесненной прокладкой | |
US20220364420A1 (en) | Coupling and method of joining a.p.i. standard pipes for the extraction of crude oils | |
RU2704405C1 (ru) | Насосно-компрессорная труба с теплоизоляционным покрытием |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210206 |