RU2691476C1 - Высокопрочный литейный алюминиевый сплав с добавкой кальция - Google Patents
Высокопрочный литейный алюминиевый сплав с добавкой кальция Download PDFInfo
- Publication number
- RU2691476C1 RU2691476C1 RU2018133627A RU2018133627A RU2691476C1 RU 2691476 C1 RU2691476 C1 RU 2691476C1 RU 2018133627 A RU2018133627 A RU 2018133627A RU 2018133627 A RU2018133627 A RU 2018133627A RU 2691476 C1 RU2691476 C1 RU 2691476C1
- Authority
- RU
- Russia
- Prior art keywords
- alloy
- aluminum
- less
- mpa
- calcium
- Prior art date
Links
- 229910052791 calcium Inorganic materials 0.000 title claims description 14
- 239000011575 calcium Substances 0.000 title claims description 14
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 title claims description 12
- 229910000838 Al alloy Inorganic materials 0.000 title abstract description 5
- 239000000654 additive Substances 0.000 title description 2
- 230000000996 additive effect Effects 0.000 title description 2
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 40
- 239000000956 alloy Substances 0.000 claims abstract description 40
- 238000005266 casting Methods 0.000 claims abstract description 26
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 31
- 239000011701 zinc Substances 0.000 claims description 22
- 239000011777 magnesium Substances 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 10
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 9
- 238000005272 metallurgy Methods 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract 1
- 230000005496 eutectics Effects 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 229910014460 Ca-Fe Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910000907 nickel aluminide Inorganic materials 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 229910018569 Al—Zn—Mg—Cu Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 235000015842 Hesperis Nutrition 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011265 semifinished product Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Mold Materials And Core Materials (AREA)
Abstract
Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С, в частности деталей летательных аппаратов, автомобилей и других транспортных средств. Литейный сплав на основе алюминия содержит, мас. %: 5-6 Zn, 0,6-1,4 Са, 1,2-1,8 Mg, 0,4-0,7 Fe, алюминий – остальное, при этом после литья сплав имеет: временное сопротивление (σ) - не менее 320 МПа, предел текучести (σ) - не менее 210 МПа, относительное удлинение (δ) - не менее 5%. Техническим результатом изобретения является создание нового литейного высокопрочного алюминиевого сплава, предназначенного для получения фасонных отливок. 4 ил., 2 табл., 2 пр.
Description
Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150-200°С: детали летательных аппаратов (самолетов, вертолетов, ракет, беспилотных летательных аппаратов), автомобилей и других транспортных средств (велосипедов, самокатов, тележек), детали спортинвентаря (корпуса клюшек для гольфа, теннисные ракетки) и др.
Наиболее прочные алюминиевые сплавы типа В95 (σв=500-600 МПа) являются деформируемыми и относятся к системе Al-Zn-Mg-Cu (Промышленные алюминиевые сплавы /Справ. изд./ Алиева С.Г., Альтман М.Б. и др. М., Металлургия, 1984. 528 с.). Они имеют низкие литейные свойства, поэтому эти сплавы практически не используются для получения фасонных отливок.
Известен сплав на основе алюминия, раскрытый в патенте RU 2245388 (публ. 27.01.2005). Этот сплав содержит цинк, магний и никель, и характеризуется структурой, представляющей собой матрицу, образованную твердым раствором алюминия с равномерно распределенными в нем дисперсными вторичными выделениями фазы-упрочнителя, и частицами алюминидов никеля кристаллизационного происхождения, равномерно распределенными в матрице. При этом количество алюминидов никеля составляет 5,3-7,0 об. %, матрица в качестве дисперсных частиц содержит 6-10 об. % частиц фазы Т, являющихся метастабильными модификациями фазы Т (Al2Mg3Zn3), а температура равновесного солидуса материала составляет не менее 540°С.
Из этого сплава можно получать отливки с улучшенным сочетанием механических свойств и технологичности (при фасонном литье и обработке давлением). Однако этот сплав содержит дорогостоящую добавку никеля в количестве 3,2-5 масс. %, что затрудняет его широкое промышленное использование. Кроме того, никель повышает плотность сплава, что снижает его удельную прочность.
Известен сплав на основе алюминия, раскрытый в патенте US 4126448 (21.11.1978). Этот сплав содержит 2-8% Са, 1,5-15% Zn, до 2% Mg, Si, Mn, и до 2% других элементов. Структура этого сплава содержит дисперсную эвтектику Al-Ca-Zn, а сам сплав обладает сверхпластичностью и предназначен для получения деформированных полуфабрикатов. Недостатком этого сплава является низкая прочность: σв=182 МПа; σ0.2=162 МПа. Второй недостаток данного сплава состоит в том, что он не предназначен для получения фасонных отливок.
Наиболее близким к предложенному является сплав, на основе алюминия, раскрытый в патенте RU 2478132, публ. 27.03.2013. Этот сплав содержит 7-12% Zn, 2-5% Са, 2,2-3,8% Mg, 0,02-0,25% Zr, при этом его твердость составляет не менее 150 HV. Техническим результатом является создание нового высокопрочного сплава, способного к термическому упрочнению после термической обработки, включающей закалку. В частных случаях сплав может быть выполнен в виде фасонных отливок, в которых достигается следующий уровень прочности: σв>450 МПа. σ0,2>400 МПа. Главным недостатком данного сплава является то, что для достижения высокого комплекса механических свойств необходимо проводить термическую обработку отливок, включающую закалку (режим Т6). Вторым недостатком является отсутствие в его составе железа (в приведенном примере сплавы готовили на основе алюминия высокой чистоты марки А99). Эти недостатки обуславливают достаточно высокую стоимость отливок.
Техническим результатом изобретения является создание нового высокопрочного экономнолегированного алюминиевого сплава, предназначенного для получения фасонных отливок, содержащего не менее 0,4% железа и не требующего термической обработки.
Технический результат достигается за счет того, что сплав на основе алюминия, содержащий цинк, магний и кальций, дополнительно содержит железо при следующих концентрациях компонентов, мас. %:
Цинк 5-6
Магний 1,2-1,8
Кальций 0,6-1,4
Железо 0,4-0,7
Алюминий Остальное
Изобретение поясняется чертежом, где на фиг. 1 показан натурный вид отливки типа прутковой заготовки по ГОСТ 1583-93 из заявляемого сплава, на фиг. 2 показаны образцы для испытания на одноосное растяжение по ГОСТ 1497-84 из заявляемого сплава, на фиг. 3 показана микроструктура заявляемого сплава в отливке, на фиг. 4 показан натурный вид фасонных разнотолщинных отливок из заявляемого сплава.
Диапазоны концентраций цинка и магния обосновываются необходимостью обеспечения количества этих элементов в результате кристаллизации в твердом алюминиевом растворе не менее 3% Zn и не менее 1% Mg, а количество образующейся фазы Т (Al2Mg3Zn3) было незначительно и не должно отрицательно влиять на механические и литейные свойства сплава.
Концентрации цинка менее 5 мас. % будет недостаточно для обеспечения высоких механических свойств, концентрация выше 6 мас. % приведет к излишне высокому количеству эвтектики Al-Ca-Zn, что скажется на формировании иглообразных включений фазы Al3Fe за счет меньшего количества эвтектики Al-Ca-Fe, а также на на повышении количества фазы Т (Al2Mg3Zn3), что приведет к снижению механических и литейных свойств.
Концентрация магния ниже 1,2 мас. % приведет к снижению механических свойств из-за уменьшения его количества в твердом алюминиевом растворе в результате кристаллизации. Концентрация магния выше 1,8 мас. % скажется на повышении количества фазы Т (Al2Mg3Zn3), что приведет к снижению механических и литейных свойств.
Диапазоны концентраций кальция и железа обосновываются необходимостью получения в результате кристаллизации дисперсной эвтектики Al-Ca-Fe, что позволит повысить литейные свойства и избежать образования иглообразных включений фазы Al3Fe.
Концентрация кальция ниже 0,6 мас. % будет недостаточной для полного связывания железа в эвтектические тройные соединения, входящих в дисперсную эвтектику Al-Ca-Fe, и, к тому же, приведет к снижению литейных свойств. Концентрация кальция выше 1,4 мас. % приведет к излишне высокому количеству эвтектики Al-Ca-Zn, что может сказаться на меньшем количестве цинка в алюминиевом твердом растворе и снижению механических свойств соответственно.
Концентрация железа менее 0,4 мас. % приведет к формированию эвтектики Al-Ca-Zn, что приведет к меньшему количеству цинка в алюминиевом твердом растворе и снижению механических свойств соответственно. К тому же достижение такой концентрации возможно лишь при использовании дорогостоящего сырья высокой чистоты. Концентрация железа выше 0,7 мас. % приведет к формированию иглообразных включений фазы Al3Fe, что отрицательно скажется на механических свойствах.
В частном исполнении сплав может быть выполнен в виде отливок, обладающих в состоянии после литья (т.е. без выполнения термической обработки) следующими свойствами на растяжение: временное сопротивление (σв) - не менее 320 МПа, предел текучести (σ0,2) - не менее 210 МПа, относительное удлинение (δ) не менее 5%.
Сущность изобретения состоит в следующем.
Предлагаемый сплав сконструирован таким образом, чтобы получить в литом состоянии структуру, состоящую из первичных кристаллов алюминиевого твердого раствора, в который входит не менее 3% Zn и не менее 1% Mg и частицы фаз эвтектического происхождения, которые содержат кальций и железо.
Наличие легирующих элементов в заявленных пределах позволяет обеспечить высокий уровень технологических и механических свойств, в частности при испытаниях на растяжение: временного сопротивления (σв), предела текучести (σ0,2), относительного удлинения (δ).
ПРИМЕР 1.
Были приготовлены 6 сплавов в виде прутковой заготовки с массивной прибыльной частью (согласно ГОСТ 1583-93), полученных литьем в графитовую изложницу (Фиг. 1). Составы сплавов указаны в табл. 1. Сплавы готовили в электрической печи сопротивления в графитошамотных тиглях из алюминия марки А7 (99.7%), цинка марки Ц0 (99,9%), магния марки Мг90 (99,9%), металлического кальция (99,9%) и лигатуры Al - 10% Fe.
Отливки не подвергали термической обработке. Механические свойства на растяжение определяли на точеных образцах согласно ГОСТ 1497-84 (Фиг. 2). Экспериментальные значения приведены в табл. 2. Микроструктура сплава №3 показывает наличие дисперсных интерметаллидных частиц кальций- и железосодержащих фаз (Фиг. 3).
Из табл. 2 видно, что только заявляемый сплав (составы 2-4) обеспечивает требуемые значения механических свойств (σв, σ0,2 и δ). В сплаве 1 прочность намного ниже требуемого уровня. Сплав 5 отличается хрупкостью и низкими значениями σв и σ0,2. Сплав 6 (прототип) имеет существенно более низкие значения пластичности и прочностных свойств, чем заявляемый сплав.
прототип
1 см. табл. 1, прототип
ПРИМЕР 2.
Сплав 3 и 5 были получены в виде фасонных разнотолщинных отливок (фиг. 4). Плавку проводили аналогично методике, указанной в примере 1. Заливку осуществляли в стальную разъемную изложницу, полуформы которой скреплялись струбцинами. Отливки из сплава 5 проявили трещины, а микроструктура содержала иглообразные включения фазы Al3Fe. Сплав 4 проявил хорошую формозаполняемость, отсутствовали видимые и микроструктурные дефекты. Микроструктура состояла из компактных интерметаллидных фаз на основе алюминия с железом и кальцием.
Claims (3)
- Литейный сплав на основе алюминия, содержащий цинк, магний и кальций, отличающийся тем, что он дополнительно содержит железо при следующих концентрациях компонентов, мас. %:
-
Цинк 5-6 Кальций 0,6-1,4 Магний 1,2-1,8 Железо 0,4-0,7 Алюминий остальное, - при этом в состоянии после литья он имеет следующие механические свойства на растяжение: временное сопротивление (σв) - не менее 320 МПа, предел текучести (σ0,2) - не менее 210 МПа, относительное удлинение (δ) - не менее 5%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018133627A RU2691476C1 (ru) | 2018-09-24 | 2018-09-24 | Высокопрочный литейный алюминиевый сплав с добавкой кальция |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018133627A RU2691476C1 (ru) | 2018-09-24 | 2018-09-24 | Высокопрочный литейный алюминиевый сплав с добавкой кальция |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2691476C1 true RU2691476C1 (ru) | 2019-06-14 |
Family
ID=66947522
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018133627A RU2691476C1 (ru) | 2018-09-24 | 2018-09-24 | Высокопрочный литейный алюминиевый сплав с добавкой кальция |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2691476C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2829404C1 (ru) * | 2024-02-12 | 2024-10-30 | Акционерное общество "Завод алюминиевых сплавов" | Вторичный деформируемый алюминиевый сплав с добавкой кальция |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4126448A (en) * | 1977-03-31 | 1978-11-21 | Alcan Research And Development Limited | Superplastic aluminum alloy products and method of preparation |
JPS5456011A (en) * | 1977-10-12 | 1979-05-04 | Sumitomo Light Metal Ind | Aluminium alloy for consumable anode |
WO1981002025A1 (en) * | 1980-01-10 | 1981-07-23 | Taiho Kogyo Co Ltd | Aluminum-based alloy bearing |
EP1241275A1 (en) * | 1999-10-05 | 2002-09-18 | Gosudarstvennoe Predpriyatie Vserossiisky Nauchnoissledovarelsky Institut Aviatsionnykh Materialov | Highly resistant aluminum-based alloy and article made from said alloy |
RU2478132C1 (ru) * | 2012-01-23 | 2013-03-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Высокопрочный сплав на основе алюминия с добавкой кальция |
-
2018
- 2018-09-24 RU RU2018133627A patent/RU2691476C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4126448A (en) * | 1977-03-31 | 1978-11-21 | Alcan Research And Development Limited | Superplastic aluminum alloy products and method of preparation |
JPS5456011A (en) * | 1977-10-12 | 1979-05-04 | Sumitomo Light Metal Ind | Aluminium alloy for consumable anode |
WO1981002025A1 (en) * | 1980-01-10 | 1981-07-23 | Taiho Kogyo Co Ltd | Aluminum-based alloy bearing |
EP1241275A1 (en) * | 1999-10-05 | 2002-09-18 | Gosudarstvennoe Predpriyatie Vserossiisky Nauchnoissledovarelsky Institut Aviatsionnykh Materialov | Highly resistant aluminum-based alloy and article made from said alloy |
RU2478132C1 (ru) * | 2012-01-23 | 2013-03-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Высокопрочный сплав на основе алюминия с добавкой кальция |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2829404C1 (ru) * | 2024-02-12 | 2024-10-30 | Акционерное общество "Завод алюминиевых сплавов" | Вторичный деформируемый алюминиевый сплав с добавкой кальция |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100236496B1 (ko) | 항공기 외피용 내충격성 알루미늄기 합금 박판 제품 및 그 제조 방법 | |
JP2022115991A (ja) | アルミニウム系合金 | |
US20090068053A1 (en) | High strength and high ductility magnesium alloy and its preparation method | |
WO2011011744A2 (en) | Improved 5xxx aluminum alloys and wrought aluminum alloy products made therefrom | |
NZ205764A (en) | Aluminium alloys containing lithium,magnesium and zinc and uses thereof | |
US20150376740A1 (en) | Aluminum-magnesium-lithium alloys, and methods for producing the same | |
JPH02190434A (ja) | 強度、靭性および腐食に関する改良された組合せを有するアルミニウム合金製品 | |
KR102414064B1 (ko) | 고강도 알루미늄 합금 | |
US6074501A (en) | Heat treatment for aluminum casting alloys to produce high strength at elevated temperatures | |
RU2478132C1 (ru) | Высокопрочный сплав на основе алюминия с добавкой кальция | |
CN108456836A (zh) | 一种铝锂合金及其制备方法 | |
US20210262063A1 (en) | High-strength and high-toughness high-magnesium aluminum alloy and preparation method thereof | |
US11149332B2 (en) | Aluminum alloy with additions of magnesium and at least one of chromium, manganese and zirconium, and method of manufacturing the same | |
CN109811210A (zh) | 基于金属型重力铸造工艺的高强韧高模量铝合金材料及其制备 | |
RU2691476C1 (ru) | Высокопрочный литейный алюминиевый сплав с добавкой кальция | |
RU2484168C1 (ru) | Высокопрочный экономнолегированный сплав на основе алюминия | |
RU2419663C2 (ru) | Высокопрочный сплав на основе алюминия | |
RU2713526C1 (ru) | Высокопрочный литейный алюминиевый сплав с добавкой кальция | |
RU2639903C2 (ru) | Деформируемый термически неупрочняемый сплав на основе алюминия | |
Sigworth et al. | Factors influencing the mechanical properties of B206 alloy castings | |
RU2741874C1 (ru) | Литейный алюминиево-кальциевый сплав на основе вторичного сырья | |
JP2004516385A (ja) | 構造材に用いる非時効硬化性アルミニウム合金 | |
RU2691475C1 (ru) | Литейный алюминиевый сплав с добавкой церия | |
KR100323300B1 (ko) | 은 무함유 저가의 고강도용 알루미늄 주조합금 및 그 제조방법 | |
CN106756362A (zh) | 一种耐热的镁合金及制备方法 |