RU2683637C1 - Method for reducing mercury content in ecosystems - Google Patents
Method for reducing mercury content in ecosystems Download PDFInfo
- Publication number
- RU2683637C1 RU2683637C1 RU2018108256A RU2018108256A RU2683637C1 RU 2683637 C1 RU2683637 C1 RU 2683637C1 RU 2018108256 A RU2018108256 A RU 2018108256A RU 2018108256 A RU2018108256 A RU 2018108256A RU 2683637 C1 RU2683637 C1 RU 2683637C1
- Authority
- RU
- Russia
- Prior art keywords
- mercury
- plants
- ecosystems
- ecosystem
- hydrogen sulfide
- Prior art date
Links
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 229910052753 mercury Inorganic materials 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000011591 potassium Substances 0.000 claims abstract description 11
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 11
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 5
- 239000011707 mineral Substances 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims abstract description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 5
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims abstract description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910000037 hydrogen sulfide Inorganic materials 0.000 claims abstract description 4
- 239000011593 sulfur Substances 0.000 claims abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 4
- 231100000167 toxic agent Toxicity 0.000 claims abstract 2
- 239000003440 toxic substance Substances 0.000 claims abstract 2
- 230000000249 desinfective effect Effects 0.000 claims 1
- 239000002689 soil Substances 0.000 abstract description 4
- 231100000701 toxic element Toxicity 0.000 abstract description 3
- 230000035558 fertility Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000004659 sterilization and disinfection Methods 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 18
- LPSWFOCTMJQJIS-UHFFFAOYSA-N sulfanium;hydroxide Chemical compound [OH-].[SH3+] LPSWFOCTMJQJIS-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 235000010755 mineral Nutrition 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241000543691 Lactarius deliciosus Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- PFRUBEOIWWEFOL-UHFFFAOYSA-N [N].[S] Chemical compound [N].[S] PFRUBEOIWWEFOL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- RYXHOMYVWAEKHL-UHFFFAOYSA-N astatine atom Chemical compound [At] RYXHOMYVWAEKHL-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000000090 biomarker Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000004098 cellular respiration Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- -1 hydrogen sulfide Chemical compound 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- OCVXZQOKBHXGRU-UHFFFAOYSA-N iodine(1+) Chemical compound [I+] OCVXZQOKBHXGRU-UHFFFAOYSA-N 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000008635 plant growth Effects 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000021749 root development Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003813 thin hair Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01C—PLANTING; SOWING; FERTILISING
- A01C21/00—Methods of fertilising, sowing or planting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09C—RECLAMATION OF CONTAMINATED SOIL
- B09C1/00—Reclamation of contaminated soil
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/09—Bromine; Hydrogen bromide
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B43/00—Obtaining mercury
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/24—Earth materials
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Soil Sciences (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Geology (AREA)
- Medicinal Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Remote Sensing (AREA)
- Inorganic Chemistry (AREA)
- Food Science & Technology (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Environmental Sciences (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
Изобретение относится к области экологии и может найти применение при мониторинге экосистем и выявлении растений биоиндикаторов ртути.The invention relates to the field of ecology and may find application in monitoring ecosystems and identifying plants with bio-indicators of mercury.
Известен способ, при котором проводят с помощью галогенов снижение содержания ртути. Галогены химические вещества (хлор, бром, йод, астат и др.), молекулы, которых взаимодействуют с ртутью, образуя соли (Евразийское патентное ведомство, патент WO №020397, опубликован 30.10.2014, заявка №201101597, в которую входит патент США по заявке 2007051239 - МПК: (INT.CL) ВO1В 53/64, С01В 7/09).There is a method in which a halogen reduction of mercury is carried out. Halogens are chemicals (chlorine, bromine, iodine, astatine, etc.), molecules that interact with mercury to form salts (Eurasian Patent Office, patent WO No. 020397, published October 30, 2014, application No. 201101597, which includes US patent for Application 2007051239 - IPC: (INT.CL) BO1B 53/64, C01B 7/09).
Однако данное техническое решение достаточно сложное, причем направлено на снижение ртути в атмосфере.However, this technical solution is quite complex, and is aimed at reducing mercury in the atmosphere.
В качестве ближайшего аналога выбран способ, при котором снижают содержание ртути с помощью смешивания ртутьсодержащих отходов с измельченным серным колчеданном (патент №2519203, опубликован 10.04.2012, Бюл. №16, МПК: С22В 43/09, С22В 7/00, В09В 3/00).As the closest analogue, a method was selected in which the mercury content is reduced by mixing mercury-containing waste with crushed sulfur pyrite (patent No. 2519203, published April 10, 2012, Bull. No. 16, IPC: С22В 43/09, С22В 7/00, В09В 3 / 00).
Техническое решение способа - прототипа недостаточно эффективно для снижения ртути в экосистемах, в частности в растениях, а направлено на снижение в ртутьсодержащих отходах.The technical solution of the prototype method is not effective enough to reduce mercury in ecosystems, in particular in plants, and is aimed at reducing mercury-containing wastes.
Технический результат - снижение ртути в растениях и выявление растений - индикаторов ртути.The technical result is the reduction of mercury in plants and the identification of plants - indicators of mercury.
Техническое решение заявленного объекта заключается в том, что выявляют растения - индикаторы ртути и при содержании в них более 0,1 мг/кг опрыскивают сероводородной минеральной водой, в которую добавляют 1-2% гумата калия от общего объема минеральной воды 250-300 л/гаThe technical solution of the claimed object is that mercury indicator plants are detected and when they contain more than 0.1 mg / kg, they are sprayed with hydrogen sulfide mineral water, to which 1-2% of potassium humate from the total volume of mineral water is added to 250-300 l / ha
Способ осуществляется следующим образом.The method is as follows.
Из всех тяжелых металлов ртуть является самым токсичным элементов для окружающей среды. При ее увеличении более 0.1 мг/кг нарушаются обмены веществ в растительном сообществе, которые вызывают ингибирование клеточного дыхания, фотосинтеза, газового объема, снижение ферментативной активности. Ртуть сильно связывается с азотом серы в аминокислотах, которые входят в состав многих биоорганизмов, в том числе и растений. Ртуть более 0,1 мг/кг задерживает рост растений, появление всходов и развитие корней, значительно снижает их продуктивность. Большая часть ртути депонируется гуминовыми веществами, содержащимися в гумате калия.Of all the heavy metals, mercury is the most toxic element to the environment. With its increase of more than 0.1 mg / kg, metabolism in the plant community is disrupted, which causes inhibition of cellular respiration, photosynthesis, gas volume, and a decrease in enzymatic activity. Mercury is strongly associated with sulfur nitrogen in amino acids, which are part of many bioorganisms, including plants. Mercury greater than 0.1 mg / kg delays plant growth, emergence of seedlings and root development, significantly reduces their productivity. Most of the mercury is deposited with humic substances contained in potassium humate.
Сероводородная вода («Серноводская» Северо-Кавказского месторождения) содержит (мг/л): калий (К) 6,6; натрий (Na) - 85,5; магний (Mg) - 34,2; кальций (Са) - 52,4; фторит (F) - 1; хлорид (CL) - 115,8; сульфат (S04) - 242; гидрокарбонат (НСО3) - 366,1; природный йод (I) - 0.6.Hydrogen sulfide water (Sernovodskaya North-Caucasian field) contains (mg / l): potassium (K) 6.6; sodium (Na) - 85.5; magnesium (Mg) 34.2; calcium (Ca) - 52.4; fluorite (F) - 1; chloride (CL) - 115.8; sulfate (S0 4 ) - 242; bicarbonate (HCO 3 ) 366.1; natural iodine (I) - 0.6.
Гумат калия, как полифункциональное органическое соединение, повышает проницаемость клеточных мембран и способствует накоплению калия, кремния и других жизненно важных микроэлементов, необходимых для почвы и растений экосистемы в первоначальный период роста и весеннего отрастания. Накопление ртути в тканях корней ингибирует поглощение ионов калия растениями. Следовательно, гумат калия снижает содержание ртути, поставляя часть элемента калия в корневую систему. Особенно тонкие корни растений в большей степени, чем крупные, накапливают ртуть и играют роль барьеров. Некоторые растения, имеющие волоски на листьях, более интенсивно сорбируют ртуть, имеющуюся в воздухе. Поэтому опрыскивание растений предлагаемой смесью обеспечивает резкое снижение токсичностью ртутью экосистем. Для некоторых видов растений установлена склонность ртути образовывать нерастворимые соединения с богатыми источниками серы, таких как сероводородная вода. Кроме того, кальций в сероводородной воде (52,5 мг/л) снижает кислотность почв, которые способны аккумулировать ртуть.Potassium humate, as a multifunctional organic compound, increases the permeability of cell membranes and contributes to the accumulation of potassium, silicon and other vital trace elements necessary for the soil and ecosystem plants in the initial period of growth and spring regrowth. The accumulation of mercury in root tissues inhibits the absorption of potassium ions by plants. Therefore, potassium humate reduces the mercury content by supplying part of the potassium element to the root system. Especially thin plant roots, to a greater extent than large ones, accumulate mercury and play the role of barriers. Some plants with hairs on the leaves more actively absorb the mercury in the air. Therefore, spraying plants with the proposed mixture provides a sharp reduction in the toxicity of mercury ecosystems. For some plant species, the tendency of mercury to form insoluble compounds with rich sources of sulfur, such as hydrogen sulfide, has been established. In addition, calcium in hydrogen sulfide water (52.5 mg / l) reduces the acidity of soils that can accumulate mercury.
Пример 1. Образцы растений (листья и стебли отдельно) подвергали анализу на содержание тяжелых металлов, в том числе и ртуть, физическим методом Оже- спектрометром. В большинстве случаев ртуть накапливается в листьях, как органов дыхания. Исследовали растения 3-х семейств экосистемы: злаковые, бобовые и масличные. Из всех изучаемых растений максимальное количество ртути обнаружено у масличных культур: озимый рыжик, гвизоция аббисинская и крамбе аббисинская, имеющих на листьях тонкие волоски. При обнаружении ртути, превышающие допустимые пределы (санитарная норма для органических веществ 0,02-0.03%) у растений - индикаторов, участок опрыскивали сероводородной водой из расчета 250 л/га с добавлением 2,5 кг гумата калия.Example 1. Plant samples (leaves and stems separately) were analyzed for the content of heavy metals, including mercury, by the physical method of an Auger spectrometer. In most cases, mercury accumulates in the leaves, like respiratory organs. We studied plants of 3 ecosystem families: cereals, legumes and oilseeds. Of all the plants studied, the maximum amount of mercury was found in oilseeds: winter saffron milk cap, Abbisin guisotia and Abbisin krambe with thin hairs on the leaves. If mercury was found that exceeded the permissible limits (sanitary norm for organic substances 0.02-0.03%) in indicator plants, the site was sprayed with hydrogen sulfide water at a rate of 250 l / ha with the addition of 2.5 kg of potassium humate.
Пример 2. Растения-индикаторы, накапливающие максимальное количество ртути (масличные культуры) опрыскивали сероводородной водой в количестве 300 л/га. Гумат калия в количестве 6 кг/га добавляли в минеральную воду как в первом примере.Example 2. Indicator plants that accumulate the maximum amount of mercury (oilseeds) were sprayed with hydrogen sulfide water in an amount of 300 l / ha. Potassium humate in an amount of 6 kg / ha was added to mineral water as in the first example.
Результаты опытов сведены в таблицу 1The results of the experiments are summarized in table 1
Анализируя полученные данные, можно констатировать, что масличные культуры могут быть индикаторами по накоплению ртути. Используя природные источники сырья, можно снизить содержания токсических элементов в экосистеме и одновременно повысить плодородие почв.Analyzing the data obtained, it can be stated that oilseeds can be indicators of mercury accumulation. Using natural sources of raw materials, it is possible to reduce the content of toxic elements in the ecosystem and at the same time increase soil fertility.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018108256A RU2683637C1 (en) | 2018-03-06 | 2018-03-06 | Method for reducing mercury content in ecosystems |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018108256A RU2683637C1 (en) | 2018-03-06 | 2018-03-06 | Method for reducing mercury content in ecosystems |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2683637C1 true RU2683637C1 (en) | 2019-03-29 |
Family
ID=66090182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018108256A RU2683637C1 (en) | 2018-03-06 | 2018-03-06 | Method for reducing mercury content in ecosystems |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2683637C1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA6499U (en) * | 2004-09-10 | 2005-05-16 | Univ Do Nat | Method of testing the soil pollution with mercury |
RU2519203C1 (en) * | 2012-12-13 | 2014-06-10 | Анатолий Николаевич Шумицкий | Method of neutralisation of household and industrial mercury-containing wastes |
CN106358553A (en) * | 2016-09-08 | 2017-02-01 | 常州大学 | Method for applying phosphate fertilizer to reduce content of mercury in rice grains of heavy mercury polluted rice field |
CN106385925A (en) * | 2016-09-08 | 2017-02-15 | 常州大学 | Nitrogen fertilizer applying method for reducing Hg content of rice grains in heavy mercury pollution type rice field |
-
2018
- 2018-03-06 RU RU2018108256A patent/RU2683637C1/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UA6499U (en) * | 2004-09-10 | 2005-05-16 | Univ Do Nat | Method of testing the soil pollution with mercury |
RU2519203C1 (en) * | 2012-12-13 | 2014-06-10 | Анатолий Николаевич Шумицкий | Method of neutralisation of household and industrial mercury-containing wastes |
CN106358553A (en) * | 2016-09-08 | 2017-02-01 | 常州大学 | Method for applying phosphate fertilizer to reduce content of mercury in rice grains of heavy mercury polluted rice field |
CN106385925A (en) * | 2016-09-08 | 2017-02-15 | 常州大学 | Nitrogen fertilizer applying method for reducing Hg content of rice grains in heavy mercury pollution type rice field |
Non-Patent Citations (1)
Title |
---|
БЕКУЗАРОВА С.А. Растения-индикаторы загрязнения почв тяжелыми металлами//Успехи современной науки, 2017, том 1, N 9. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bonanomi et al. | Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels | |
Keller et al. | Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium-contaminated agricultural soils: a pot experiment | |
Bengtsson et al. | Influence of aluminium on phosphate and calcium uptake in beech (Fagus sylvatica) grown in nutrient solution and soil solution | |
Cao et al. | Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation | |
Molina-Herrera et al. | Synergistic and antagonistic interactions among organic amendments of contrasted stability, nutrient availability and soil organic matter in the regulation of C mineralisation | |
Mindari et al. | Efficiency of various sources and doses of humic acid on physical and chemical properties of saline soil and growth and yield of rice | |
Prietzel et al. | Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in Southern Germany | |
Di Lonardo et al. | Biochar-based nursery substrates: The effect of peat substitution on reduced salinity | |
Hannachi et al. | Effects of cultivation on chemical and biochemical properties of dryland soils from southern Tunisia | |
Hejazi Mehrizi et al. | The effects of some humic substances and vermicompost on phosphorus transformation rate and forms in a calcareous soil | |
Ciećko et al. | The magnesium content in plants in soil contaminated with cadmium. | |
Emilia et al. | Use of biostimulants to improve salinity tolerance in agronomic crops | |
Ratanaprommanee et al. | Chemical characterization of leonardite and its potential use as soil conditioner and plant growth enhancement | |
RU2683637C1 (en) | Method for reducing mercury content in ecosystems | |
DE3921805A1 (en) | Composition for fertilisation, soil improvement and protection of waterways | |
Shruthi et al. | The benefits of gypsum for sustainable management and utilization of acid soils | |
Rolka | Effect of soil contamination with cadmium and application of neutralizing substances on the yield of oat (Avena sativa L.) and the uptake of cadmium by this crop | |
Ma et al. | Recalcification stabilizes cadmium but magnifies phosphorus limitation in wastewater-irrigated calcareous soil | |
de Souza Oliveira Filho et al. | Changes in soil phosphorus pools induced by drainage in tropical peatlands: Evidence in monoculture and intercropping long-term systems | |
Sousa et al. | Wrack composed by Fucus spp, Ascophyllum nodosum and Pelvetia canaliculata limits metal uptake and restores the redox homeostasis of barley plants grown in Cu-contaminated soils | |
Dambrine | Soil acidity and acidification | |
Matichenkov et al. | Detoxification of organic sludge from water-treatment plants by active forms of Ca and Si | |
RU2582352C1 (en) | Method for biological treatment of soil | |
Urminská et al. | The effect of the selected remediation medium on the cadmium bioavailability in the selected ecosystem in the Southwestern locality of Slovakia | |
Swarnalatha et al. | Leaf litter breakdown and nutrient release in three tree plantations compared with a natural degraded forest on the coromandel coast (Puducherry, India) |