RU2680285C2 - Станция для снижения давления и сжижения газа - Google Patents
Станция для снижения давления и сжижения газа Download PDFInfo
- Publication number
- RU2680285C2 RU2680285C2 RU2015139854A RU2015139854A RU2680285C2 RU 2680285 C2 RU2680285 C2 RU 2680285C2 RU 2015139854 A RU2015139854 A RU 2015139854A RU 2015139854 A RU2015139854 A RU 2015139854A RU 2680285 C2 RU2680285 C2 RU 2680285C2
- Authority
- RU
- Russia
- Prior art keywords
- gas
- station
- pressure
- devices
- liquefied
- Prior art date
Links
- 239000007789 gas Substances 0.000 claims abstract description 167
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 66
- 239000003345 natural gas Substances 0.000 claims abstract description 33
- 230000006835 compression Effects 0.000 claims abstract description 32
- 238000007906 compression Methods 0.000 claims abstract description 32
- 238000001816 cooling Methods 0.000 claims abstract description 20
- 238000010438 heat treatment Methods 0.000 claims abstract description 11
- 238000009833 condensation Methods 0.000 claims abstract description 10
- 230000005494 condensation Effects 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 8
- 230000008569 process Effects 0.000 claims abstract description 6
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 4
- 239000003507 refrigerant Substances 0.000 claims description 23
- 239000000203 mixture Substances 0.000 claims description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 239000012530 fluid Substances 0.000 claims description 7
- 229930195733 hydrocarbon Natural products 0.000 claims description 5
- 150000002430 hydrocarbons Chemical class 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 238000001179 sorption measurement Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 5
- 230000009467 reduction Effects 0.000 abstract description 4
- 238000011084 recovery Methods 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 27
- 239000003949 liquefied natural gas Substances 0.000 description 17
- 239000007788 liquid Substances 0.000 description 15
- 230000010354 integration Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000013529 heat transfer fluid Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0212—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0232—Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0242—Waste heat recovery, e.g. from heat of compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0284—Electrical motor as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0296—Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/90—Hot gas waste turbine of an indirect heated gas for power generation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
Изобретение относится к обработке природных газов. Станция для снижения давления газа и для сжижения природного газа содержит турбодетандер (12), устройство для утилизации механической работы, произведенной в процессе снижения давления газа, систему охлаждения, содержащую устройства для сжатия (С1, С2, С3), устройство для конденсации (14) сжижаемого газа, снабженное ответвлением трубопровода (09) вниз по потоку от турбодетандера (12), устройство для утилизации тепла (Q), производимого устройствами для сжатия (С1, С2, С3; С) системы охлаждения, которые связаны с устройствами (10; 40; 110) для нагрева газа выше по потоку от турбодетандера (12). Система охлаждения содержит компрессоры и/или детандеры с радиальным потоком газа. Техническим результатом является утилизация энергии расширения газа и предотвращение образования льда внутри труб станций. 8 з.п. ф-лы, 5 ил.
Description
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к станции для снижения давления газа и для сжижения газа, в частности, природного газ. Таким образом, областью техники, к которой относится настоящее изобретение, является обработка газов, в частности, природных газов, для производства сжиженного природного газа.
УРОВЕНЬ ТЕХНИКИ
Сжиженный природный газ используется в различных областях. В основном, он применяется в качестве топлива для транспортных средств, в частности, грузовых автомобилей. Дизельное топливо, обычно используемое для таких транспортных средств, действительно может быть заменено сжатым газом или сжиженным природным газом. По сравнению с использованием баллонов со сжатым газом, использование сжиженного газа имеет преимущество в отношении объема и веса, так как, с одной стороны, природный газ сжиженный путем охлаждения, занимает значительно меньший объем, чем то же количество газообразного природного газа, а, с другой стороны, теплоизоляция криогенных резервуаров значительно легче, чем оболочка газовых баллонов. Следовательно, транспортные средства приобретают гораздо больше автономности. Кроме того, сжиженный природный газ является чистым источником энергии, который ограничивает выбросы таких мелкодисперсных частиц, как сажа и так далее.
Сжиженный природный газ также могут применять для малых газовых электростанций или для снабжения небольших сетей в сельской местности.
Газопроводы - это трубопроводы, предназначенные для транспортировки газообразных материалов под давлением. Большинство газопроводов передают природный газ между зонами его добычи и потребления или экспорта. От установок по очистке на газовых месторождениях газ транспортируется под высоким давлением (от 16 бар до более чем 100 бар) к пунктам газоснабжения, где для последующего использования он должен быть доведен до гораздо меньшего давления.
С этой целью газ проходит через станции для понижения давления газа, в которых давление снижается путем расширения посредством понижающего клапана или детандера. Достигаемое таким образом снижение давления сопровождается выделением энергии, которая в случае понижающего клапана теряется.
Известны системы расширения газа, использующие в качестве хладагента природный газ, поступающий в станции для снижения давления, которые могут быть описаны как разомкнутый цикл (циклы Линде, Сольве или Клода). В этих системах применяют тот факт, что природный газ находится под высоким давлением. Природный газ расширяется в понижающем клапане и во время этого расширения небольшая часть газа сжижается. Полученная жидкость собирается, а холодный природный газ низкого давления, выходящий из понижающего клапана, передается в трубу низкого давления станции для понижения давления. Такие системы имеют преимущество сравнительной простоты, но так как температура, полученная на выходе из понижающего клапана, зависит от состава газа, а природный газ имеет переменный состав, то газы, сжижаемые этими системами, в основном, представляют собой такие тяжелые газы, как пропан и бутан, но не метан. Этот способ сжижения газа также известен как "флашинг".
Весь газ, поступающий в станцию для понижения давления и проходящий через понижающий клапан или детандер, охлаждается во время происходящего падения давления. При этом газ продолжает содержать воду и углекислый газ в количестве порядка около одной сотни мг/м3 или одного процента. На этапе расширения может возникнуть явление конденсации, которое способно вызывать образование льда (кристаллогидратов), которые могут закупоривать трубы. Следовательно, необходимо очищать поток газа от воды и углекислого газа, содержащихся в природном газе, для предотвращения их превращения в лед в трубах, которое вызывает проблемы при транспортировке природного газа в процессе его обработки на станциях для снижения давления газа.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Целью настоящего изобретения является, в частности, предложить устройства, позволяющие сжижать газ, в частности, природный газ, на площадке станции для снижения давления газа путем контроля состава получаемого сжиженного газа. Предпочтительно, что станция согласно изобретению позволяет утилизировать энергию расширения газа, возникающую вследствие разницы давления газа между входом и выходом станции для снижения давления газа, с целью производства доли сжиженного природного газа, избегая образования льда внутри труб этих станций. Еще более предпочтительно то, что станция является легкой при использовании и имеет простую конструкцию.
С этой целью в настоящем изобретении предлагается станция для снижения давления и сжижения газа, в частности, природного газа, содержащая:
- турбодетандер,
- устройство для утилизации механической работы, проделанной при снижении давления газа,
- систему охлаждения, включающую устройства для сжатия, и
- устройство для конденсации сжижаемого газа.
Кроме того, согласно изобретению эта станция содержит устройство для утилизации тепла, которое производится устройствами для сжатия системы охлаждения, которая связана с устройством для нагрева потока газа перед его входом в турбодетандер.
Следовательно, такая станция обеспечивает интеграцию нагрева природного газа перед его расширением и охлаждение хладагента с экономией значительного количества энергии и/или газа для производства сжиженного (природного) газа.
Поток (природного) газа в газообразной форме всегда содержится между трубой высокого давления и трубой низкого давления, которые связаны со станцией для снижения давления. Из расчета объема природного газа 100 м3, поступающего в станцию, к примеру, от 5 м3 до 15 м3, превращаются в сжиженный природный газ. В данном случае энергия может быть извлечена во время расширения газа между двумя уровнями давления с целью последующего использования для превращения небольшой части (от 5% до 15%) (природного) газа в сжиженный (природный) газ.
Нагрев газа происходит, например, на входе в станцию для снижения давления (иначе говоря, в потоке газа до входа в турбодетандер) теплом, которое выделяется устройствами для сжатия, используемыми для сжижения газа. Газ, идущий из трубы высокого давления к трубе низкого давления, нагревается перед поступлением в станцию для снижения давления так, что он находится на выходе из указанной станции с температурой выше, чем температура застывания воды.
Для оптимизации описываемой в данном документе станции и извлечения максимального количества энергии предусмотрено, что сначала газ высокого давления направляется в турбодетандер, а затем по потоку от этого турбодетандера, а часть расширившегося газа удаляется, чтобы быть направленным к устройствам конденсации. При этом предусматривается, что эти устройства для конденсации снабжаются газом с помощью ответвления трубопровода, находящегося вниз по потоку от турбодетандера.
Согласно первому варианту реализации изобретения, станция содержит замкнутый контур между устройством конденсации, устройствами для сжатия и устройствами для нагрева природного газа. Этот замкнутый контур позволяет объединить систему охлаждения (компрессор и охладитель) для сжижения газа с теплообменником, приводя к термической интеграции между снижением давления газа и выработкой сжиженного газа.
Согласно второму варианту реализации изобретения, станция содержит первый замкнутый контур между устройствами для сжатия, устройством для конденсации и по меньшей мере одним промежуточным теплообменником, а также второй замкнутый контур, возможно, использующий теплоноситель, отличный от используемого в первом замкнутом контуре, между по меньшей мере одним промежуточным теплообменником и устройством для нагрева газа.
Предлагаемое в данном документе изобретение, включающее эти два варианта его реализации, является станцией с промежуточной системой, которая может быть приравнена к замкнутому контуру, возможно, двойному, делая возможным охлаждение доли газа перед сжижением. Преимуществом независимой системы замкнутого контура является то, что она позволяет достичь значительно более низких температур, поскольку она не связана со снижением давления в станции для снижения давления газа. Благодаря этой системе состав сжиженного газа по отношению к поступающему газу почти не меняется в связи с тем, что изменение в состоянии достигается прямым охлаждением внутри теплообменника, предназначенного для выполнения этой операции вместо традиционной системы «флашинга».
В частном случае варианта реализации изобретения устройство для утилизации механической работы, которая проделана при снижении давления газа, связано с устройством для превращения механической работы в электрическую энергию. В данном варианте реализации изобретения устройство для утилизации механической работы, проделанной при снижении давления газа, может быть механически присоединено к электрическому генератору, а устройства для сжатия предпочтительно приводятся в движение двигателем, снабжаемым электрической энергией при помощи электрического генератора.
В другом варианте реализации изобретения станции для снижения давления и сжижения газа устройство для утилизации механической работы, проделанной при снижении давления газа, механически связано с устройствами для сжатия. Для приведения в движение устройств для сжатия газа может быть дополнительно предусмотрен вспомогательный двигатель.
Следовательно, в пределах такой станции имеется интеграция контура охлаждения сжижаемого газа и предварительного нагрева газа на входе в турбодетандер.
Согласно изобретению сжиженный природный газ может производиться на станции за счет узла охлаждения, содержащего систему хладагента с использованием взаимозаменяемых азота и/или смеси углеводородов.
Согласно изобретению система охлаждения, применяемая в станции, может, например, содержать теплообменник и/или испаритель типа алюминиевого пластинчато-ребристого теплообменника.
В частном случае варианта реализации изобретения система охлаждения содержит компрессоры и/или детандеры с радиальным потоком газа.
По другому варианту реализации изобретения станция содержит устройство для очистки природного газа низкого давления от воды и углекислого газа путем адсорбции и/или абсорбции. Указанное устройство установлено до входа в устройство для конденсации газа.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Подробности и преимущества настоящего изобретения станут более понятны из следующего далее описания приведенных в сносках схематических графических материалов, в которых:
На фиг. 1 проиллюстрирован самый общий схематический вид станции согласно настоящему изобретению,
На фиг. 2 проиллюстрирован более детальный схематический вид, демонстрирующий первый вариант реализации изобретения,
На фиг. 3 проиллюстрирован вид второго варианта реализации изобретения, похожий на вид, проиллюстрированный на фиг. 2,
На фиг. 4 проиллюстрирован вид третьего варианта реализации настоящего изобретения, похожий на виды, проиллюстрированные на фиг. 2 и 3, и
На фиг. 5 проиллюстрирован вид четвертого варианта реализации настоящего изобретения, похожий на виды, проиллюстрированные на фиг. 2-4.
ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ РЕАЛИЗАЦИИ ИЗОБРЕТЕНИЯ
На фиг. 1 схематически проиллюстрирован трубопровод газа 2, транспортирующий газ, например, природный газ, состоящий, в основном, из метана под высоким давлением, к примеру, порядка от 60 до 100 бар (повсеместно в настоящей заявке примеры и цифровые значения являются иллюстративными и не имеющими ограничительного характера). Станция для снижения давления газа, называемая PLD (английский акроним для "Pressure Let Down" или по-французски "baisse de pression" [снижение давления]), проиллюстрированная на фиг. 1, дает возможность подвести трубу 4, предназначенную для снабжения коммунальной сети, или подобной ей, газом (природным газом, чтобы снова использовать предыдущий пример), обычно под давлением в несколько бар.
Узел для производства сжиженного газа 6 связан со станцией для снижения давления PLD газа. Станция снабжается из газопровода 2 по направлению потока газа в станции для снижения давления PLD газа, который проходит через узел очистки 8. В нем производится очистка газа перед его поступлением в узел для производства сжиженного газа 6, чтобы освободить газ от посторонних примесей, которые обычно обнаруживаются в "сыром" газе. На выходе из узла для производства сжиженного газа 6 получается сжиженный природный газ LNG, который, например, хранится в хранилище (на фиг. 1 не проиллюстрирован).
Когда газ расширяется в станции для снижения давления PLD газа, он производит механическую работу WM. Предлагаемое в настоящем изобретении решение является утилизацией всей или части этой работы в любой форме, механической или электрической, например, для снабжения узла для производства сжиженного газа 6, который требует энергии для перевода газа из газообразного состояния в жидкое. Поскольку утилизируемой энергии недостаточно для производства сжиженного газа, представляется возможным снабжать узел для производства сжиженного газа от дополнительного источника энергии, например, электрической энергией, схематически представленной как "WE" на фиг. 1. И наконец, в узле производства сжиженного газа 6 обычно имеется компрессор (не проиллюстрирован на фиг. 1) или другое устройство, которое выделяет тепло, представленное просто как Q на фиг. 1. Предлагаемым оригинальным решением является использование этого количества тепла Q для нагрева газа, поступающего в станцию для снижения давления PLD газа. Действительно, при расширении газ охлаждается. При этом имеется риск падения его температуры ниже температуры застывания воды и, следовательно, образования льда, который может привести к частичному или полному закупориванию соответствующего трубопровода. Можно ограничить риск льдообразования и закупоривания путем нагрева газа перед его расширением.
На фиг. 2 более подробно проиллюстрирован первый вариант реализации изобретения путем реализации общей схемы, проиллюстрированной на фиг. 1.
На фиг. 2, а также на последующих фигурах, обозначения фиг. 1 повторно применяют для обозначения подобных элементов.
Так, можно снова обнаружить на фиг. 2 газопровод 2, который снабжает станцию для снижения давления PLD газа, чтобы подать газ низкого давления в трубу 4. Кроме того, узел для производства сжиженного газа 6 обеспечивает подачу сжиженного газа LNG.
В станции для снижения давления PLD газ, поступающий из газопровода 2, проходит через трубы G2 и G3. Он нагревается в каждой из этих труб устройством для предварительного нагрева газа 10. После этих устройств для предварительного нагрева трубы G4 и G5 собираются в одну трубу G6, которая снабжает газом турбодетандер 12. Покидая турбодетандер, газ расширяется и может вернуться в трубу 4 прямо через трубу G7.
Узел для производства сжиженного газа 6 преимущественно содержит испаритель 14. Газ, снабжающий узел для производства сжиженного газа 6, поступает из ответвления G9 трубы G7 перед поступлением к клапану 16, где достигается дополнительное снижение давления газа. Газ передается по трубе G10 к узлу очистки 8, который производит очистку газа, например, путем абсорбции или предпочтительно путем адсорбции. Очищенный газ транспортируется через G11 к предконденсатору 18 перед его введением через G12 в испаритель 14. После испарителя получается сжиженный газ, который проходит через трубу L1 к контрольному клапану 20 и затем через трубу L2, чтобы попасть в хранилище сжиженного природного газа LNG.
При этом достигается взаимодействие между турбодетандером 12 станции для снижения давления PLD газа и узлом для производства сжиженного газа 6. По этому варианту реализации изобретения, проиллюстрированному на фиг. 2, энергию, извлекаемую в процессе расширения газа в станции PLD, применяют в форме электрической энергии в узле для производства сжиженного газа 6. Тепло, произведенное в узле для производства сжиженного газа 6, применяют для нагрева газа, поступающего в станцию PLD, иначе говоря, газа в потоке до входа в турбодетандер 12.
На фиг. 2 проиллюстрировано, что турбодетандер 12, в первую очередь, связан с генератором G. Следовательно, механическая энергия извлекается в турбодетандере 12, чтобы далее быть преобразованной в электрическую энергию. Полученное таким образом электричество затем питает двигатель М, который приводит в движение компрессоры С1, С2 и С3, каждый из которых составляет стадию устройства для сжатия. Таким путем осуществляется электрическое взаимодействие между станцией для снижения давления и узлом производства сжиженного газа.
Чтобы оптимизировать количество механической энергии, извлекаемой в турбодетандере 12, газ, предназначенный для снабжения трубы низкого давления 4, и газ, предназначенный для снабжения узла для производства сжиженного газа 6, другими словами, газы, которые должны быть сжижены, попадают в этот турбодетандер 12.
Термическая интеграция достигается с помощью замкнутого контура системы управления с обратной связью, которая описывается ниже. Для этого описания мы предлагаем далее следовать движению хладагента в данном контуре. В качестве примера, не имеющего ограничительного характера, используемая жидкость может быть азотом или же смесью углеводородов.
Жидкий хладагент поступает в компрессор С1 по трубе R1 и покидает его по трубе R2. Затем он поступает в первое устройство предварительного нагрева 10, чтобы нагреть газ, который поступает из газопровода 2 и который предназначен для снабжения турбодетандера 12 станции для снижения давления PLD газа. Затем жидкий хладагент направляется через трубу R3 к охладителю 22 для достижения контроля над температурой жидкого хладагента перед тем, как он направляется к узлу сжатия по трубе R4. Затем жидкий хладагент сжимается вторым компрессором С2 и после этого направляется через R5 ко второму устройству предварительного нагрева 10 перед транспортировкой через R6 ко второму охладителю 22, и через R7 достигает третьей стадии сжатия компрессорного узла. Третий охладитель 22, соединенный с третьим компрессором С3 через трубу R8, позволяет контролировать температуру жидкости, покидающей узел сжатия.
Труба R9 приносит жидкий хладагент к противоточному теплообменнику 24, и затем жидкий хладагент направляется через R10 к детандеру 26. Детандер механически соединен с двигателем М и с узлом сжатия. Покидая детандер 26, жидкость затем направляется (R11) к испарителю 14 узла производства сжиженного газа 6, где она поглощает калории из той части природного газа, которую требуется сжижать, чтобы получить сжиженный природный газ (LNG). Покидая испаритель 14, жидкость транспортируется (R12) к предконденсатору 18 перед достижением, через R13, противоточного теплообменника 24, который в направлении потока связан с первым компрессором С1 узла сжатия.
Как выясняется из этого описания, используется для того, чтобы достичь термической интеграции между узлом для производства сжиженного газа и станцией для снижения давления газа. Это достигается, в частности, путем утилизации калорий, извлекаемых жидким хладагентом во время сжатия жидкости, чтобы затем использовать их для нагрева природного газа, поступающего в станцию для снижения давления PLD газа.
Вспомогательные элементы цикла хладагента в данном документе подробно не описываются. Например, можно обнаружить емкость 28, которую применяют обычным образом как расширительный сосуд для жидкого хладагента.
На фиг. 3 проиллюстрирован вариант реализации изобретения, который повторно использует определенные обозначения предшествующих фигур для указания сходных элементов. В сравнении с вариантом реализации изобретения, проиллюстрированном на фиг. 2. по этому варианту получается другая форма термической интеграции. Предлагается включить в состав станции замкнутый контур воды под давлением (или другой теплообменной жидкости, такой, как, например, термическое масло), чтобы извлечь тепло сжатия и направить его выше по потоку от турбодетандера. Например, на этой линии может быть установлен воздухоохладитель для регулирования производительности охлаждающего устройства на нужды контура сжатия. Для обеспечения циркуляции теплообменной жидкости (вода под давлением) используется объемный насос, и в этот контур может быть обычным образом интегрирован расширительный сосуд.
На фиг. 3 можно распознать контур хладагента между узлом сжатия с его тремя компрессорами C1, С2 и С3 и узлом производства сжиженного газа 6 с его испарителем 14. Этот контур проиллюстрирован в упрощенном виде. Хладагент успешно проходит через три стадии устройства для сжатия, и после каждой стадии проходит через устройство для предварительного нагрева 10. Затем контур хладагента проходит через противоточный теплообменник 24 перед поступлением в детандер 26 и затем в испаритель 14, снова проходит через противоточный теплообменник 24 и возвращается назад к первой стадии сжатия и к ее компрессору С1.
Главное отличие от первого варианта реализации изобретения, проиллюстрированного на фиг. 2, заключается в том, что устройства для предварительного нагрева 10 не передают напрямую калории, извлеченные на стадиях сжатия природному газу, а наоборот, они передают их другой теплообменной жидкости как, например, вода под давлением. Таким образом образуется второй контур хладагента, который параллельно проходит через три устройства для предварительного нагрева 10 для снабжения устройства для предварительного нагрева 110, которое переносит калории, поступающие со стадий сжатия к природному газу, поступающему в станцию PLD. Таким образом, эти устройства для предварительного нагрева 10 образуют промежуточные теплообменники. Между устройствами для предварительного нагрева 10 и устройством для предварительного нагрева 110 можно отметить наличие объемного насоса 142, который обеспечивает возможность циркуляции теплообменной жидкости в соответствующем контуре, так же как и в охладителе 122 для контроля температуры теплообменной жидкости в этом контуре. Для специалиста в данной области техники совершенно понятно, что расширительная емкость 144 успешно интегрируется в этот контур хладагента.
Что касается фиг. 4, то на ней проиллюстрирована упрощенная версия первого варианта реализации изобретения, который проиллюстрирован на фиг. 2. Здесь так же, как и в целом в настоящей заявке, уже использованные обозначения используются повторно для указания подобных элементов для упрощения понимания прочитанного.
В этом упрощенном варианте реализации изобретения заметно, что узел сжатия имеет только одну стадию с единственным компрессором С. Природный газ затем нагревается в единственном устройстве для предварительного нагрева 10, которое позволяет прямой обмен калориями, поступающими из компрессора, с природным газом, который поступает в станцию PLD выше по потоку от турбодетандера 12.
В данном варианте реализации изобретения контур хладагента использует, например, смесь углеводородов и азота в качестве теплообменной жидкости. Эта смесь сжимается компрессором С, приводимым в движение электрическим двигателем М (электрически соединенным с генератором G турбодетандера 12 станции PLD). Затем жидкость охлаждается в контакте с природным газом в устройстве для предварительного нагрева 10 на входе в турбодетандер 12 (уместно заметить, что здесь также можно было бы предусмотреть другой контур хладагента между устройством предварительного нагрева 10 и природным газом, как на предшествующей фигуре).
Охладитель 22 (воздушный охладитель) может быть введен в контур для регулирования производительности охлаждения на нужды контура сжатия. Теплообменная жидкость затем посылается через теплообменник 214, например, типа PHFE (английский акроним для Plate Fin Heat Exchanger - пластинчато-ребристый теплообменник или по-французски "echangeur de chaleur a plaques et ailettes" [plate and fin heat exchanger - пластинчато-ребристый теплообменник]), где она охлаждается и конденсируется во время первого прохождения. Затем она расширяется, проходя через клапан 246, где по эффекту Джоуля-Томпсона (охлаждения газа при его расширении) она частично испаряется, вновь вызывая снижение своей температуры. Она снова проходит (2-й проход) через теплообменник 214, испаряется и нагревается в контакте с природным газом, который должен сжижаться, и со смесью хладагентов, которая должна конденсироваться. После второго прохода, покидая теплообменник 214, теплообменная жидкость (например, смесь углеводородов и азота) возвращается в компрессор С.
По варианту реализации изобретения, проиллюстрированному на фиг. 5, в сравнении с вариантами реализации изобретения, которые были проиллюстрированы на предшествующих фигурах, между станцией для снижения давления газа и узлом для производства сжиженного газа достигается механическая интеграция (фиг. 5) вместо электрической интеграции (фиг. 2-4).
Действительно, принимая во внимание вариант реализации изобретения, проиллюстрированный на фиг. 2, где турбодетандер 12 приводит в движение генератор G, который производит электричество, которое, в свою очередь, потребляется двигателем М, на фиг. 5 предлагается механически соединить турбодетандер 12 с компрессорами C1, С2 и С3 устройства сжатия узла для производства сжиженного газа 6.
Кажется излишним описывать в данном документе различные элементы станции для снижения давления газа, которые аналогичны проиллюстрированным на фиг. 2. Аналогично этому можно снова обнаружить похожий контур хладагента узла для производства сжиженного газа и термическую интеграцию этого производственного узла со станцией для снижения давления газа.
Также на фиг. 5 проиллюстрирован двигатель М, который применяют в этом случае как дополнительный источник энергии (соответствует WE на фиг. 1), чтобы регулировать энергию, необходимую для узла производства сжиженного газа, учитывая энергию, производимую на площадке станции для снижения давления газа.
В качестве весьма наглядного примера можно привести, в частности, уже описанное в различных вариантах реализации изобретения, что количество (вес) газа, проходящего через узел для производства сжиженного газа 6, составляет где-то около 5-20% от количества (веса) газа, проходящего через станцию для снижения давления PLD газа, а остальной газ (от 80% до 95%) снабжает трубу 4.
Системы, описанные выше, позволяют осуществлять полный контроль производства сжиженного природного газа. Состав этого газа может контролироваться. Это не зависит от разницы давлений внутри станции для снижения давления газа.
Кроме того, предварительный нагрев газа, поступающего в станцию для снижения давления, делает возможным предотвратить проблемы обледенения и закупорки трубопровода.
Утилизация энергии происходит на станции для снижения давления газа, а более точно, в ее турбодетандере. Эта утилизация оптимизируется пропусканием всего газового потока через турбодетандер, другими словами как газа, который предназначен для расширения в газообразной форме, так и газа, предназначенного для сжижения.
Настоящее изобретение не ограничивается предпочтительными вариантами реализации изобретения, которые описаны выше в качестве примеров, не имеющих ограничительного характера. Это также относится к вариантам реализации изобретения, доступным специалистам в данной области техники в пределах объема формулы изобретения, приведенной ниже.
Claims (14)
1. Станция для снижения давления газа и для сжижения газа, в частности природного газа, содержащая:
- турбодетандер (12),
- устройство для утилизации механической работы, произведенной в процессе снижения давления газа,
- систему охлаждения, содержащую устройства для сжатия (С1, С2, С3), и
устройство для конденсации (14) сжижаемого газа, снабженное ответвлением трубопровода (09) вниз по потоку от турбодетандера (12),
- устройство для утилизации тепла (Q), производимого устройствами для сжатия (С1, С2, С3; С) системы охлаждения, которые связаны с устройствами (10; 40; 110) для нагрева газа выше по потоку от турбодетандера (12), отличающаяся тем, что система охлаждения содержит компрессоры и/или детандеры с радиальным потоком газа.
2. Станция по п. 1, отличающаяся тем, что содержит замкнутый контур между устройством для конденсации (14), устройствами для сжатия (С1, С2, С3; С) и устройствами (10; 40) для нагрева газа.
3. Станция по п. 1, отличающаяся тем, что содержит первый замкнутый контур между устройствами для сжатия (С1, С2, С3), устройством для конденсации (14) и по меньшей мере одним промежуточным теплообменником (10), а также второй замкнутый контур, возможно, использующий другую теплообменную жидкость, отличную от используемой в первом замкнутом контуре, между по меньшей мере одним промежуточным теплообменником (10) и устройством (110) для нагрева газа.
4. Станция по п. 1, отличающаяся тем, что содержит устройство для преобразования (G) механической работы в электрическую энергию, которое связано с устройством для утилизации механической работы, производимой в процессе снижения давления газа.
5. Станция по п. 4, отличающаяся тем, что устройство для утилизации механической работы, производимой в процессе снижения давления газа, механически связано с электрическим генератором (G), и в котором устройства для сжатия (С1, С2, С3) приводятся в движение двигателем (М), снабжаемым электрической энергией электрическим генератором (G).
6. Станция по п. 1, отличающаяся тем, что устройство для преобразования механической работы, производимой в процессе снижения давления газа, механически связано с устройствами для сжатия (С1, С2, С3; С).
7. Станция по п. 6, отличающаяся тем, что предусмотрен вспомогательный двигатель (М) для приведения в движение устройств для сжатия (С1, С2, С3).
8. Станция по п. 1, отличающаяся тем, что система охлаждения использует хладагент, выбираемый из азота и/или смеси углеводородов.
9. Станция по п. 1, отличающаяся тем, что содержит устройство для очистки (8, 36) природного газа путем адсорбции и/или абсорбции, установленное в потоке газа до входа в устройство для конденсации (14) газа.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1300380A FR3002311B1 (fr) | 2013-02-20 | 2013-02-20 | Dispositif de liquefaction de gaz, notamment de gaz naturel |
FR1300380 | 2013-02-20 | ||
PCT/FR2014/050349 WO2014128408A2 (fr) | 2013-02-20 | 2014-02-20 | Station d'abaissement de pression d'un gaz et de liquéfaction du gaz |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2015139854A RU2015139854A (ru) | 2017-03-30 |
RU2680285C2 true RU2680285C2 (ru) | 2019-02-19 |
Family
ID=48170651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015139854A RU2680285C2 (ru) | 2013-02-20 | 2014-02-20 | Станция для снижения давления и сжижения газа |
Country Status (10)
Country | Link |
---|---|
US (1) | US20160003528A1 (ru) |
EP (1) | EP2959242B1 (ru) |
JP (1) | JP2016513230A (ru) |
CN (1) | CN105209841A (ru) |
BR (1) | BR112015019856A2 (ru) |
ES (1) | ES2870082T3 (ru) |
FR (1) | FR3002311B1 (ru) |
MX (1) | MX2015010736A (ru) |
RU (1) | RU2680285C2 (ru) |
WO (1) | WO2014128408A2 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2770777C1 (ru) * | 2021-05-07 | 2022-04-21 | Публичное акционерное общество энергетики и электрификации "Мосэнерго" | Способ сжижения, хранения и газификации природного газа "мосэнерго-турбокон" |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10295252B2 (en) * | 2015-10-27 | 2019-05-21 | Praxair Technology, Inc. | System and method for providing refrigeration to a cryogenic separation unit |
FR3049341B1 (fr) * | 2016-03-23 | 2019-06-14 | Cryostar Sas | Systeme de traitement d'un gaz issu de l'evaporation d'un liquide cryogenique et d'alimentation en gaz sous pression d'un moteur a gaz |
RU2694566C1 (ru) * | 2019-02-14 | 2019-07-16 | Юрий Васильевич Белоусов | Система ожижения природного газа на компрессорной станции магистрального газопровода |
CZ2019618A3 (cs) * | 2019-10-04 | 2020-12-16 | Siad Macchine Impianti S.P.A. | Zařízení pro zpracování zemního plynu |
RU2738531C1 (ru) * | 2020-02-21 | 2020-12-14 | Игорь Анатольевич Мнушкин | Интегрированная установка захолаживания природного газа |
IT202100026921A1 (it) * | 2021-10-20 | 2023-04-20 | Gruppo Soc Gas Rimini S P A | Impianto di trattamento di gas, in particolare gas naturale, proveniente da una rete di trasporto |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3608323A (en) * | 1967-01-31 | 1971-09-28 | Liquid Air Canada | Natural gas liquefaction process |
RU2002176C1 (ru) * | 1990-10-22 | 1993-10-30 | Арсланбек Харисович Юлбердин | Способ сжижени газа и устройство дл его осуществлени |
RU2137067C1 (ru) * | 1997-07-17 | 1999-09-10 | Закрытое акционерное общество "Криогенная технология" | Установка ожижения природного газа |
EP1892457A1 (de) * | 2006-08-24 | 2008-02-27 | Eberhard Otten | Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere von Erdgas |
WO2010036121A2 (en) * | 2008-09-24 | 2010-04-01 | Moss Maritime As | Method and system for handling gas |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4220009A (en) * | 1977-01-20 | 1980-09-02 | Wenzel Joachim O M | Power station |
NO20026189D0 (no) * | 2002-12-23 | 2002-12-23 | Inst Energiteknik | System for kondensering ved ekspansjon av ubehandlet brönnström fra et gass- eller gasskondensatfelt til havs |
US6694774B1 (en) * | 2003-02-04 | 2004-02-24 | Praxair Technology, Inc. | Gas liquefaction method using natural gas and mixed gas refrigeration |
US7065974B2 (en) * | 2003-04-01 | 2006-06-27 | Grenfell Conrad Q | Method and apparatus for pressurizing a gas |
US8601833B2 (en) * | 2007-10-19 | 2013-12-10 | Air Products And Chemicals, Inc. | System to cold compress an air stream using natural gas refrigeration |
SG11201504193VA (en) * | 2013-01-24 | 2015-08-28 | Exxonmobil Upstream Res Co | Liquefied natural gas production |
-
2013
- 2013-02-20 FR FR1300380A patent/FR3002311B1/fr not_active Expired - Fee Related
-
2014
- 2014-02-20 EP EP14711813.7A patent/EP2959242B1/fr active Active
- 2014-02-20 RU RU2015139854A patent/RU2680285C2/ru active
- 2014-02-20 MX MX2015010736A patent/MX2015010736A/es unknown
- 2014-02-20 WO PCT/FR2014/050349 patent/WO2014128408A2/fr active Application Filing
- 2014-02-20 ES ES14711813T patent/ES2870082T3/es active Active
- 2014-02-20 US US14/768,783 patent/US20160003528A1/en not_active Abandoned
- 2014-02-20 JP JP2015557507A patent/JP2016513230A/ja active Pending
- 2014-02-20 CN CN201480009656.8A patent/CN105209841A/zh active Pending
- 2014-02-20 BR BR112015019856A patent/BR112015019856A2/pt not_active Application Discontinuation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3608323A (en) * | 1967-01-31 | 1971-09-28 | Liquid Air Canada | Natural gas liquefaction process |
RU2002176C1 (ru) * | 1990-10-22 | 1993-10-30 | Арсланбек Харисович Юлбердин | Способ сжижени газа и устройство дл его осуществлени |
RU2137067C1 (ru) * | 1997-07-17 | 1999-09-10 | Закрытое акционерное общество "Криогенная технология" | Установка ожижения природного газа |
EP1892457A1 (de) * | 2006-08-24 | 2008-02-27 | Eberhard Otten | Verfahren und Vorrichtung zur Speicherung von Brenngas, insbesondere von Erdgas |
WO2010036121A2 (en) * | 2008-09-24 | 2010-04-01 | Moss Maritime As | Method and system for handling gas |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2770777C1 (ru) * | 2021-05-07 | 2022-04-21 | Публичное акционерное общество энергетики и электрификации "Мосэнерго" | Способ сжижения, хранения и газификации природного газа "мосэнерго-турбокон" |
Also Published As
Publication number | Publication date |
---|---|
ES2870082T3 (es) | 2021-10-26 |
RU2015139854A (ru) | 2017-03-30 |
EP2959242A2 (fr) | 2015-12-30 |
CN105209841A (zh) | 2015-12-30 |
JP2016513230A (ja) | 2016-05-12 |
WO2014128408A3 (fr) | 2015-07-16 |
EP2959242B1 (fr) | 2021-03-31 |
WO2014128408A2 (fr) | 2014-08-28 |
BR112015019856A2 (pt) | 2017-07-18 |
FR3002311A1 (fr) | 2014-08-22 |
US20160003528A1 (en) | 2016-01-07 |
FR3002311B1 (fr) | 2016-08-26 |
MX2015010736A (es) | 2016-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2680285C2 (ru) | Станция для снижения давления и сжижения газа | |
CN103215093B (zh) | 小型撬装式氮膨胀天然气液化系统及其方法 | |
RU2541360C1 (ru) | Способ производства сжиженного природного газа и комплекс для его реализации | |
US8555672B2 (en) | Complete liquefaction methods and apparatus | |
CN110701870B (zh) | 一种利用lng冷能的空分装置和方法 | |
CA2775449C (en) | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams | |
US20140083132A1 (en) | Process for liquefaction of natural gas | |
CN103162512B (zh) | 一种等压分离制取氧氮的空分装置 | |
US20110132032A1 (en) | Liquid air method and apparatus | |
CN103148676B (zh) | 一种等压分离制取氧氮的空分装置 | |
CN115898578B (zh) | 利用低温空气冷能燃气电站的碳捕集系统及运行方法 | |
CN104930815A (zh) | 适用于海上的天然气液化及ngl回收系统及应用 | |
CA3003614A1 (en) | Systems and methods for lng refrigeration and liquefaction | |
CN111852601A (zh) | 一种lng冷能co2工质循环发电系统及发电方法 | |
CN114961899A (zh) | 带碳捕集功能的lng动力船余热和冷能综合利用系统 | |
CN210829420U (zh) | 一种lng冷能co2工质循环发电系统 | |
JP2004150685A (ja) | 窒素製造設備及びタービン発電設備 | |
RU2665088C1 (ru) | Способ получения сжиженного природного газа в условиях газораспределительной станции | |
US10557414B1 (en) | Combined cycle energy recovery method and system | |
CN221879513U (zh) | 一种基于lng冷能梯级利用和余热回收的储能系统 | |
CN114658546B (zh) | 一种面向工程应用的液态空气储能系统及方法 | |
RU2784139C1 (ru) | Установка получения сжиженного природного газа (варианты) | |
CN116878218A (zh) | 一种工业尾气提纯液化二氧化碳的方法与装置 | |
CN116357423A (zh) | 基于富氧燃烧碳捕集的lng动力船能量综合利用系统 | |
CN118188074A (zh) | 耦合lng冷能和湿烟气余热的多联产系统及工作方法 |