RU2667240C1 - Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины - Google Patents
Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины Download PDFInfo
- Publication number
- RU2667240C1 RU2667240C1 RU2017136230A RU2017136230A RU2667240C1 RU 2667240 C1 RU2667240 C1 RU 2667240C1 RU 2017136230 A RU2017136230 A RU 2017136230A RU 2017136230 A RU2017136230 A RU 2017136230A RU 2667240 C1 RU2667240 C1 RU 2667240C1
- Authority
- RU
- Russia
- Prior art keywords
- horizontal wellbore
- formation
- oil
- saturated
- pipe string
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 37
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 60
- 238000007789 sealing Methods 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 239000004576 sand Substances 0.000 claims abstract description 15
- 238000002347 injection Methods 0.000 claims abstract description 10
- 239000007924 injection Substances 0.000 claims abstract description 10
- 230000008878 coupling Effects 0.000 claims abstract description 9
- 238000010168 coupling process Methods 0.000 claims abstract description 9
- 238000005859 coupling reaction Methods 0.000 claims abstract description 9
- 238000005553 drilling Methods 0.000 claims abstract description 9
- 239000000463 material Substances 0.000 claims abstract description 4
- 238000011001 backwashing Methods 0.000 claims abstract 2
- 239000012530 fluid Substances 0.000 claims description 12
- 238000005488 sandblasting Methods 0.000 claims description 10
- 238000005086 pumping Methods 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract 1
- 238000005065 mining Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000002386 leaching Methods 0.000 description 6
- 238000011010 flushing procedure Methods 0.000 description 3
- 230000000737 periodic effect Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 244000309464 bull Species 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- -1 for example Substances 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/267—Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B34/00—Valve arrangements for boreholes or wells
- E21B34/06—Valve arrangements for boreholes or wells in wells
- E21B34/10—Valve arrangements for boreholes or wells in wells operated by control fluid supplied from outside the borehole
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/11—Perforators; Permeators
- E21B43/114—Perforators using direct fluid action on the wall to be perforated, e.g. abrasive jets
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Earth Drilling (AREA)
Abstract
Изобретение относится к способам гидравлического разрыва в горизонтальном стволе скважины. Способ включает бурение горизонтального ствола скважины, определение нефтенасыщенных интервалов пласта, вскрытого горизонтальным стволом скважины, спуск и крепление хвостовика, поинтервальное выполнение группы перфорационных с помощью гидропескоструйного перфоратора, выполнение гидравлического разрыва пласта (ГРП) с образованием разветвленных трещин с последующим креплением трещины проппантом и удаление проппанта из горизонтального ствола скважины. В процессе спуска хвостовика в горизонтальный ствол скважины его оборудуют муфтой-кольцом, выполненным из разбуриваемого материала, после крепления хвостовика в горизонтальном стволе скважины на устье скважины на нижний конец колонны труб собирают компоновку снизу вверх, включающую обратный клапан, пропускающий от забоя к устью, перфоратор, перепускной клапан, далее спускают колонну труб в горизонтальный ствол скважины в ближайший от забоя интервал нефтенасыщенного пласта. При этом в процессе спуска колонну труб снабжают герметизирующими втулками, количество которых соответствует количеству нефтенасыщенных интервалов пласта. Через сопла гидромониторного перфоратора выполняют группу перфорационных отверстий в хвостовике напротив нефтенасыщенного интервала пласта. Затем обратной промывкой вымывают из горизонтального ствола скважины отработанную жидкостно-песчаную смесь, далее перемещают колонну труб вниз и устанавливают перепускной клапан посередине нефтенасыщенного интервала пласта, напротив группы перфорационных отверстий, при этом герметизирующая втулка входит в муфту-кольцо. Сбрасывают бросовый элемент в колонну труб, создают гидравлическое давление в колонне труб, при этом втулка перепускного клапана смещается, сжимая пружину, открываются радиальные отверстия перепускного клапана и, не сбрасывая давления закачки, выполняют ГРП с последующим креплением трещин. По окончании крепления трещин проппантом в нефтенасыщенном интервале пласта удаляют проппант из горизонтального ствола скважины, далее перемещают колонну труб вверх до следующего нефтенасыщенного интервала пласта и повторяют вышеописанные операции, начиная с выполнения группы перфорационных отверстий в хвостовике и заканчивая удалением проппанта из горизонтального ствола скважины, по окончании многократного ГРП колонну труб с компоновкой извлекают из горизонтального ствола скважины. Технический результат заключается: в повышении надежности реализации способа; снижении трудоемкости и продолжительности проведения работ; повышении эффективности вымыва проппанта из горизонтального ствола скважины; упрощении конструкции оборудования при реализации способа. 4 ил.
Description
Изобретение относится к нефтегазодобывающей промышленности, в частности к способам гидравлического разрыва в горизонтальном стволе скважины, вскрывшем пласт, сложенный плотным коллектором.
Известен способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины (патент RU №2526062, МПК Е21В 43/267, опубл. 20.08.2014 г. в бюл. №23), включающий формирование трещин последовательно в различных интервалах продуктивного пласта, вскрытого горизонтальным стволом скважины, путем спуска на колонне труб пакера, его установки в скважине, подачи жидкости гидроразрыва через фильтр, установленный в каждой из соответствующих каждому из этих интервалов частей горизонтального ствола, с изоляцией остальных его частей с образованием трещин, крепление трещин закачкой жидкости-носителя с проппантом.
Гидравлический разрыв пласта (ГРП) в горизонтальном стволе скважины производят поинтервально в направлении от забоя к устью со спуском колонны труб. В качестве колонны труб используют колонну гибких труб с разбуриваемым пакером на конце, а посадку разбуриваемого пакера производят перед каждым участком фильтра горизонтального ствола скважины. Формируют трещины, закрепляют их закачкой жидкости-носителя с проппантом. По окончании закачки жидкости-носителя с проппантом в колонку труб закачивают закрепляющий состав из расчета 0,5 м3 закрепляющего состава на 1 м длины фильтра и продавливают его в прискважинную зону пласта в полуторном объеме колонны труб. После чего устье скважины герметизируют устьевым сальником, а затрубное пространство скважины обвязывают с гидроаккумулятором. Затем, не снижая гидравлического давления в колонне труб, приподнимают колонну труб на 1 м, при этом гидроаккумулятор воспринимает скачок гидравлического давления, возникающий в затрубном пространстве скважины, а разбуриваемый пакер герметично отсекает участок фильтра, в котором проведен ГРП. После чего колонну труб извлекают из скважины. Аналогичным образом производят поинтервальный ГРП в следующих участках фильтров горизонтального ствола скважины. По окончании ГРП колонну бурильных труб на устье оснащают сначала разбуриваемым инструментом, а затем гидромониторной насадкой, спускают колонну бурильных труб в скважину и разбуриванием удаляют пакеры от устья к забою. Далее отсекают разбуриваемый инструмент и подачей жидкости в колонну бурильных труб с одновременным ее вращением и перемещением от забоя к устью производят гидромониторную обработку внутренней поверхности фильтров через гидромониторную насадку. Недостатки способа:
- во-первых, низкая надежность реализации способа, обусловленная скачком гидравлического давления, возникающим в затрубном пространстве скважины. Скачок гидравлического давления может привести к разрушению эксплуатационной колонны труб, особенно в скважинах со сроком службы 15 и более лет в связи с износом стенок эксплуатационной колонны труб;
- во-вторых, трудоемкость и продолжительность проведения многократного ГРП, связанная с тем, что необходимо сажать разбуриваемые пакера для отсечения интервала горизонтального ствола скважины после проведения каждого поинтервального ГРП, а затем их разбуривать с использованием колонны бурильных труб. Кроме того, необходимо проводить гидромониторную обработку внутренней поверхности фильтров через гидромониторную насадку;
- в-третьих, низкая эффективность закрепляющего состава в прискважинной зоне пласта, так как после начала эксплуатации скважины закрепляющий состав препятствует протоку продукции в горизонтальный ствол скважины.
Наиболее близким по технической сущности и достигаемому результату является способ многократного ГРП в горизонтальном стволе скважины (патент RU №2539469, МПК Е21В 43/267, опубл. 20.01.2015 г. в бюл. №2), включающий бурение горизонтального ствола скважины, спуск и крепление в горизонтальном стволе скважины хвостовика, оснащенного фильтрами, спуск пакера в скважину на колонне труб с последующей его посадкой в скважине. Формирование трещин напротив фильтров последовательно в различных интервалах продуктивного пласта, вскрытого горизонтальным стволом, подачей жидкости гидроразрыва через фильтр, установленный в каждой из соответствующих каждому из этих интервалов частей горизонтального ствола с изоляцией остальных его частей.
В процессе бурения горизонтального ствола скважины определяют нефтенасыщенные интервалы пласта, вскрытого горизонтальным стволом, спускают и крепят хвостовик в горизонтальном стволе скважины. Спускают колонну труб с пакером в скважину в ближайший к забою нефтенасыщенный интервал пласта. Сажают пакер в хвостовике, при этом нижний конец колонны труб располагают на 1 м ближе к устью от нефтенасыщенного интервала пласта, спускают в колонну труб колонну гибких труб, оснащенную снизу гидропескоструйным перфоратором, снабженным сверху жестким центратором, а снизу - обратным клапаном, пропускающим от забоя к устью так, чтобы гидропескоструйный перфоратор размещался в конце нефтенасыщенного интервала пласта. Герметизируют на устье скважины пространство между колонной труб и колонной гибких труб, на устье скважины готовят жидкостно-песчаную смесь. Производят перемещение колонны гибких труб от забоя к устью на длину нефтенасыщенного интервала пласта, при этом одновременно выполняют группы щелевых перфорационных отверстий длиной 20-30 см и шириной 15 мм с углом фазировки 60° через каждые 1,5 м нефтенасыщенного интервала пласта в хвостовике напротив нефтенасыщенного интервала путем периодического нагнетания жидкостно-песчаной смеси в колонну гибких труб через гидропескоструйный перфоратор. По окончании выполнения группы щелевых перфорационных отверстий в хвостовике напротив нефтенасыщенного интервала пласта выполняют обратную промывку с одновременным перемещением колонны гибких труб от устья к забою на длину нефтенасыщенного интервала пласта. Извлекают колонну гибких труб с гидромониторной насадкой из скважины и выполняют ГРП с образованием разветвленных трещин в нефтенасыщенном интервале пласта с последующим креплением трещины легковесным смолопокрытым проппантом фракции 20/40 меш в концентрации 1400 кг/м3 и заполнением им горизонтального ствола скважины напротив нефтенасыщенного интервала пласта. Производят распакеровку, перемещают колонну труб в направлении от забоя к устью к следующему нефтенасыщенному интервалу пласта. После чего повторяют вышеописанные операции, начиная с посадки пакера и завершая распакеровкой, в остальных нефтенасыщенных интервалах пласта, вскрытых горизонтальным стволом скважины. По окончании проведения ГРП во всех нефтенасыщенных интервалах удаляют проппант из горизонтального ствола скважины. Недостатки способа:
- во-первых, низкая надежность реализации способа, связанная с посадкой и распакеровкой пакера в каждом интервале проведения ГРП, при этом все работы по поинтервальному (многократному) проведению ГРП производятся с одним пакером за один спуск, т.е. без ревизии пакера, что приводит к потере герметичности пакера и невозможности проведения многократного ГРП;
- во-вторых, трудоемкость и продолжительность проведения многократного ГРП, связанная с тем, что сначала с помощью эксцентрично спущенных в горизонтальный ствол скважины двух колонн труб (колонна труб и колонна гибких труб) производится группа перфорированных отверстий хвостовика с помощью гидропескоструйного перфоратора в нефтенасыщенных интервалах пласта, затем эти колонны извлекаются из скважины, а затем вновь спускается колонна труб с пакером для проведения многократного ГРП в горизонтальном стволе скважины, что приводит к удорожанию процесса ГРП, т.е. при реализации способа проводится несколько спуско-подъемов колонн труб в горизонтальный ствол скважины;
- в-третьих, низкая эффективность вымыва проппанта из горизонтального ствола скважины, так как проппант из горизонтального ствола скважины удаляют промывкой по окончании проведения ГРП во всех нефтенасыщенных интервалах, при этом частично проппант остается в горизонтальном стволе, что отрицательно влияет на работу насосного оборудования при дальнейшей эксплуатации скважины;
- в-четвертых, сложность конструкции оборудования при реализации способа, связанная с металлоемкостью используемого оборудования (эксцентричных колонн труб, расположенных в горизонтальном стволе скважины, колонны труб с пакером).
Техническими задачами изобретения являются повышение надежности реализации способа, снижение трудоемкости и продолжительности реализации способа, а также повышение эффективности вымыва проппанта из горизонтального ствола скважины и упрощение конструкции применяемого оборудования при реализации способа.
Поставленные технические задачи решаются способом многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающим бурение горизонтального ствола скважины, определение в процессе бурения горизонтального ствола скважины нефтенасыщенных интервалов пласта, вскрытого горизонтальным стволом скважины, спуск и крепление хвостовика в горизонтальном стволе скважины, поинтервальное выполнение группы перфорационных отверстий в хвостовике напротив нефтенасыщенного интервала пласта с помощью гидропескоструйного перфоратора, выполнение гидравлического разрыва пласта - ГРП с образованием разветвленных трещин в нефтенасыщенном интервале пласта с последующим креплением трещины проппантом и удаление проппанта из горизонтального ствола скважины.
Новым является то, что в процессе спуска хвостовика в горизонтальный ствол скважины его оборудуют муфтой-кольцом, выполненным из разбуриваемого материала, после крепления хвостовика в горизонтальном стволе скважины на устье скважины на нижний конец колонны труб собирают компоновку снизу вверх, включающую обратный клапан, пропускающий от забоя к устью, гидропескоструйный перфоратор, перепускной клапан, далее спускают колонну труб в горизонтальный ствол скважины в ближайший от забоя интервал нефтенасыщенного пласта, при этом в процессе спуска колонну труб снабжают герметизирующими втулками, причем количество герметизирующих втулок соответствует количеству нефтенасыщенных интервалов пласта, вскрытого горизонтальным стволом скважины, расстояния от герметизирующих втулок до муфты-кольца рассчитывают таким образом, чтобы перепускной клапан находился в соответствующем нефтенасыщенном интервале пласта, подлежащем проведению ГРП, при этом соответствующая герметизирующая втулка располагалась в муфте-кольце, через сопла гидромониторного перфоратора периодической закачкой жидкостно-песчаной смеси при ступенчатом перемещении колонны труб с компоновкой выполняют группу перфорационных отверстий в хвостовике напротив нефтенасыщенного интервала пласта, затем обратной промывкой вымывают из горизонтального ствола скважины отработанную жидкостно-песчаную смесь, далее перемещают колонну труб вниз и устанавливают перепускной клапан посередине нефтенасыщенного интервала пласта, напротив группы перфорационных отверстий, выполненных в хвостовике, при этом герметизирующая втулка входит в муфту-кольцо, сбрасывают бросовый элемент в колонну труб, создают гидравлическое давление в колонне труб закачкой жидкости, при этом втулка перепускного клапана смещается, сжимая пружину, при этом открываются радиальные отверстия перепускного клапана и, не сбрасывая давления закачки, выполняют ГРП с образованием разветвленных трещин в нефтенасыщенном интервале пласта с последующим креплением трещин, по окончании крепления трещин проппантом в нефтенасыщенном интервале пласта удаляют проппант из горизонтального ствола скважины, при этом приподнимают колонну труб вверх и обратной промывкой вымывают проппант из горизонтального ствола скважины, далее перемещают колонну труб вверх до следующего нефтенасыщенного интервала пласта и повторяют вышеописанные операции, начиная с выполнения группы перфорационных отверстий в хвостовике и заканчивая удалением проппанта из горизонтального ствола скважины, по окончании многократного ГРП колонну труб с компоновкой извлекают из горизонтального ствола скважины.
На фиг. 1-4 схематично и последовательно изображен предлагаемый способ.
Предлагаемый способ реализуется следующим образом.
Горизонтальный ствол скважины 1 (см. фиг. 1) бурят перпендикулярно минимальному главному напряжению (на фиг. 1-4 не показано). В процессе бурения горизонтального ствола скважины 1 (см. фиг. 1) проведением геофизических исследований, например, гамма-каротажа, определяют нефтенасыщенные интервалы 2'…2n, например три интервала: 2', 2'', 2''' пласта 3, сложенного плотным коллектором и вскрытого горизонтальным стволом скважины 1. Например, в интервалах: 2': 826-832 м, 2'': 740-746 м, 2''': 646-652 м.
В пробуренный горизонтальный ствол скважины 1 спускают хвостовик 4, например, состоящий из колонны труб наружным диаметром 140 мм и толщиной стенки 7 мм. В процессе спуска хвостовика 4 в горизонтальный ствол скважины 1 его оборудуют муфтой-кольцом 5, выполненным из разбуриваемого материала, например чугуна. Осуществляют крепление хвостовика 4, например, цементированием его заколонного пространства (на фиг. 1-4 не показано).
После спуска и крепления хвостовика 4 (см. фиг. 1) в горизонтальном стволе скважины 1 на устье скважины на нижний конец колонны труб 6, например колонну насосно-компрессорных труб наружным диаметром 89 мм по ГОСТ 633-88, собирают компоновку снизу вверх: обратный клапан 7, пропускающий от забоя к устью, гидропескоструйный перфоратор 8, перепускной клапан 9.
Спускают колонну труб 6 в горизонтальный ствол скважины 1, при этом в процессе спуска колонны труб 6 ее снабжают герметизирующими втулками 10', 10''…10n. Количество герметизирующих втулок 10', 10''…10n соответствует количеству нефтенасыщенных интервалов 2', 2''…2''' пласта 3, вскрытого горизонтальным стволом скважины 1, т.е. количество герметизирующих втулок равно трем: 10', 10'', 10'''.
Расстояния от соответствующих герметизирующих втулок 10', 10'', 10''' до муфты-кольца 5 хвостовика подбирают таким образом, чтобы перепускной клапан 9 находился посередине соответствующего нефтенасыщенного интервала 2', 2'', 2''' пласта 3, подлежащего проведению ГРП, а соответствующая герметизирующая втулка 10', 10'', 10''' герметично располагалась в муфте-кольце 5 хвостовика 4.
Спускают колонну труб 6 с компоновкой в ближайший от забоя интервал 2' - 826-832 м нефтенасыщенного пласта 3. Устанавливают сопла 11 гидропескоструйного перфоратора 8 в конец нефтенасыщенного интервала 2' пласта 3, например в интервал 832 м, при этом герметизирующая втулка 10' находится выше муфты-кольца 5 хвостовика 4.
На устье скважины готовят жидкостно-песчаную смесь. Для этого в бункер пескосмесительного агрегата (на фиг. 1-4 не показан), расположенного на устье скважины, из расчета приготовления 1 м3 жидкостно-песчаной смеси добавляют следующие компоненты:
- техническая вода плотностью 1000 кг/м3 | 100% |
- кварцевый песок с концентрацией | 120 кг/м3 |
С помощью насосного агрегата (на фиг. 1-4 не показан) подают жидкостно-песчаную смесь в колонну труб 6. Жидкостно-песчаная смесь по колонне труб 6, внутренние пространства перепускного клапана 9 и гидропескоструйного перфоратора 8 вытекает из сопел 11 гидропескоструйного перфоратора 8 (см. фиг. 1) с большой скоростью и промывает в хвостовике 4 и цементном кольце перфорационные отверстия 12' на отметке 831 м, а в нефтенасыщенном интервале 2' пласта 3 образуются конусообразные щелевые каналы 13' глубиной до 1 м. Далее производят ступенчатое перемещение колонны труб 6 от забоя к устью на длину нефтенасыщенного интервала 2' пласта 3 через каждый 1 м с периодическим нагнетанием жидкостно-песчаной смеси в колонну труб 6 через гидропескоструйный перфоратор 8, выполняют группу перфорационных отверстий 12' и конусообразные щелевые каналы 13' глубиной до 1 м на отметках 831, 830, 829, 828, 827, 826 м. В процессе ступенчатого перемещения колонны труб 6 герметизирующая втулка 10' расположена выше муфты-кольца 5 хвостовика 4.
По окончании выполнения группы щелевых перфорационных отверстий 12' и конусообразных щелевых каналов 13' в хвостовике 4 напротив нефтенасыщенного интервала 2' пласта выполняют обратную промывку с одновременным перемещением колонны труб 6 от устья к забою на длину нефтенасыщенного интервала 2' (826-832 м) пласта 3, например в объеме горизонтальной скважины 1, равном 22 м3. Для этого подают промывочную жидкость, например сточную воду плотностью 1100 кг/м3, в затрубное пространство горизонтального ствола скважины 1 с помощью насосного агрегата (на фиг. 1-4 не показано) через открывшийся обратный клапан 7 по колонне труб 6 на устье скважины и собирают в желобную емкость (на фиг. 1-4 не показано). Таким образом, извлекают отработанную жидкостно-песчаную смесь из горизонтального ствола скважины 1.
Перемещением колонны труб 6 (см. фиг. 2) вниз устанавливают перепускной клапан 9 посередине нефтенасыщенного интервал 2' (826-832 м) пласта 3, т.е. на глубине 829 м, напротив группы перфорационных отверстий 12', выполненных в хвостовике 4, при этом герметизирующая втулка 10' входит в муфту-кольцо 5 и герметизирует затрубное пространство скважины 1.
Сбрасывают бросовый элемент 14, например шар, в колонну труб 6, создают гидравлическое давление, например, 6,0 МПа в колонне труб 6 закачкой жидкости, например сточной воды плотностью 1000 кг/м3.
В результате втулка 15 перепускного клапана 9 смещается, сжимая пружину 16, при этом открываются радиальные отверстия 17 перепускного клапана 9 и, не сбрасывая давления закачки, начинают выполнение ГРП с образованием трещин 18' через группу перфорационных отверстий 12' и конусообразные щелевые каналы 13' (см. фиг. 1 и 2) в нефтенасыщенном интервале 2' пласта с последующим креплением трещины проппантом 19' (см. фиг. 2).
ГРП выполняют по любой известной технологии. Для гидроразрыва при образовании трещин 18' используют любой известный состав, например линейный гель, а крепление производят проппантом, например фракции 20/40 меш в концентрации 600 кг/м3. По окончании крепления трещины 18' проппантом 19' в нефтенасыщенном интервале 2' пласта 3 стравливают давление в колонне труб 6, втулка 15 перепускного клапана 9 за счет возвратной силы пружины 16 возвращается в исходное положение (см. фиг. 1 и 2) и перекрывает изнутри радиальные отверстия 17 перепускного клапана 9.
Далее удаляют проппант 19' из горизонтального ствола скважины 1. Для этого приподнимают колонну труб 6 (см. фиг. 3) вверх, например, на 7 м, при этом герметизирующая втулка 10' выходит из муфты-кольца 5 хвостовика 4 и обратной промывкой вымывают проппант из горизонтального ствола скважины. Для этого подают промывочную жидкость, например сточную воду плотностью 1100 кг/м3, в затрубное пространство горизонтального ствола скважины 1 с помощью насосного агрегата (на фиг. 1-4 не показано) под давлением, например, 10,0 МПа.
Промывочная жидкость через открывшийся обратный клапан 7 (тарелка 20 отходит от седла обратного клапана 7, сжимая пружину 21) вымывает шар 14, например, выполненный из пластмассы, и остатки незакрепленного проппанта 19 из горизонтального ствола скважины 1 по колонне труб 6 в желобную емкость, находящуюся на устье скважины (на фиг. 1-4 не показано).
Повышается эффективность вымыва проппанта из горизонтального ствола скважины, так как вымыв проппанта осуществляется после выполнения ГРП в каждом интервале, что обеспечивает полный вымыв проппанта из горизонтального ствола скважины. Далее перемещают колонну труб 6 (см. фиг. 3) вверх до следующего нефтенасыщенного интервала 2'' пласта 3 и повторяют вышеописанные операции, начиная с выполнения группы перфорационных отверстий 12'' в хвостовике 4 и заканчивая удалением проппанта 19' из горизонтального ствола скважины 1. Аналогичные технологические операции производят в последнем нефтенасыщенном интервале 2''' пласта 3. По окончании многократного ГРП колонну труб 6 с компоновкой извлекают из горизонтального ствола скважины 1 (см. фиг. 4). В итоге в нефтенасыщенных интервалах 2', 2'', 2''' пласта 3, вскрытого горизонтальным стволом скважины 1, выполнены ГРП с образованием соответствующих трещин разрыва 18', 18'', 18''', закрепленных проппантом 19', 19'', 19'''. По окончании работ муфта кольцо 5 может быть разбурена.
Повышается надежность реализации способа, так как исключается применение пакера, а герметизацию в процессе реализации способа обеспечивают герметизирующие втулки 10', 10'', 10''' в контакте с муфтой-кольцом 5, установленным в составе хвостовика 4, причем каждый нефтенасыщенный интервал 2', 2'', 2''' пласта 3, в котором проводится ГРП, герметизирует соответствующая герметизирующая втулка 10', 10'', 10'''.
Снижаются трудоемкость и продолжительность проведения многократного ГРП, что связано с тем, что все работы (выполнение поинтервальной группы перфораций, вымыв жидкостно-песчаной смеси из горизонтального ствола скважины, проведение поинтервального ГРП, вымыв остатков проппанта из горизонтального ствола скважины) производятся за один спуск-подъем оборудования, что удешевляет стоимость проведения способа многократного ГРП в горизонтальном стволе скважины.
Упрощается конструкция оборудования при реализации способа, снижается ее металлоемкость, так как используется только одна колонна труб.
Предлагаемый способ многократного ГРП в горизонтальном стволе скважины позволяет:
- повысить надежность реализации способа;
- снизить трудоемкость и продолжительность проведения работ;
- повысить эффективность вымыва проппанта из горизонтального ствола скважины;
- упростить конструкцию оборудования при реализации способа.
Claims (1)
- Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины, включающий бурение горизонтального ствола скважины, определение в процессе бурения горизонтального ствола скважины нефтенасыщенных интервалов пласта, вскрытого горизонтальным стволом скважины, спуск и крепление хвостовика в горизонтальном стволе скважины, поинтервальное выполнение группы перфорационных отверстий в хвостовике напротив нефтенасыщенного интервала пласта с помощью гидропескоструйного перфоратора, выполнение гидравлического разрыва пласта (ГРП) с образованием разветвленных трещин в нефтенасыщенном интервале пласта с последующим креплением трещины проппантом и удаление проппанта из горизонтального ствола скважины, отличающийся тем, что в процессе спуска хвостовика в горизонтальный ствол скважины его оборудуют муфтой-кольцом, выполненным из разбуриваемого материала, после крепления хвостовика в горизонтальном стволе скважины на устье скважины на нижний конец колонны труб собирают компоновку снизу вверх, включающую обратный клапан, пропускающий от забоя к устью, гидропескоструйный перфоратор, перепускной клапан, далее спускают колонну труб в горизонтальный ствол скважины в ближайший от забоя интервал нефтенасыщенного пласта, при этом в процессе спуска колонну труб снабжают герметизирующими втулками, причем количество герметизирующих втулок соответствует количеству нефтенасыщенных интервалов пласта, вскрытого горизонтальным стволом скважины, расстояния от герметизирующих втулок до муфты-кольца рассчитывают таким образом, чтобы перепускной клапан находился в соответствующем нефтенасыщенном интервале пласта, подлежащем проведению ГРП, при этом соответствующая герметизирующая втулка располагалась в муфте-кольце, через сопла гидромониторного перфоратора периодической закачкой жидкостно-песчаной смеси при ступенчатом перемещении колонны труб с компоновкой выполняют группу перфорационных отверстий в хвостовике напротив нефтенасыщенного интервала пласта, затем обратной промывкой вымывают из горизонтального ствола скважины отработанную жидкостно-песчаную смесь, далее перемещают колонну труб вниз и устанавливают перепускной клапан посередине нефтенасыщенного интервала пласта, напротив группы перфорационных отверстий, выполненных в хвостовике, при этом герметизирующая втулка входит в муфту-кольцо, сбрасывают бросовый элемент в колонну труб, создают гидравлическое давление в колонне труб закачкой жидкости, при этом втулка перепускного клапана смещается, сжимая пружину, при этом открываются радиальные отверстия перепускного клапана и, не сбрасывая давления закачки, выполняют ГРП с образованием разветвленных трещин в нефтенасыщенном интервале пласта с последующим креплением трещин, по окончании крепления трещин проппантом в нефтенасыщенном интервале пласта удаляют проппант из горизонтального ствола скважины, при этом приподнимают колонну труб вверх и обратной промывкой вымывают проппант из горизонтального ствола скважины, далее перемещают колонну труб вверх до следующего нефтенасыщенного интервала пласта и повторяют вышеописанные операции, начиная с выполнения группы перфорационных отверстий в хвостовике и заканчивая удалением проппанта из горизонтального ствола скважины, по окончании многократного ГРП колонну труб с компоновкой извлекают из горизонтального ствола скважины.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017136230A RU2667240C1 (ru) | 2017-10-12 | 2017-10-12 | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017136230A RU2667240C1 (ru) | 2017-10-12 | 2017-10-12 | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2667240C1 true RU2667240C1 (ru) | 2018-09-18 |
Family
ID=63580279
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017136230A RU2667240C1 (ru) | 2017-10-12 | 2017-10-12 | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2667240C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2738059C1 (ru) * | 2020-06-26 | 2020-12-07 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта |
RU2759109C1 (ru) * | 2021-04-11 | 2021-11-09 | Артур Фаатович Гимаев | Способ подготовки нефтяных и газовых скважин с горизонтальным окончанием к эксплуатации |
CN115807654A (zh) * | 2021-09-13 | 2023-03-17 | 中国石油天然气股份有限公司 | 一种水平井快速重复压裂方法 |
CN117267965A (zh) * | 2023-11-21 | 2023-12-22 | 吉林大学 | 多层多分支水平井闭式循环开采干热岩方法 |
WO2025007460A1 (zh) * | 2023-07-03 | 2025-01-09 | 中国石油天然气股份有限公司 | 井下聚能压裂滑套及co2冲击复合压裂方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100044041A1 (en) * | 2008-08-22 | 2010-02-25 | Halliburton Energy Services, Inc. | High rate stimulation method for deep, large bore completions |
RU2401942C1 (ru) * | 2009-06-30 | 2010-10-20 | Олег Павлович Турецкий | Способ гидроразрыва пласта в горизонтальном стволе скважины |
RU2472926C1 (ru) * | 2011-07-20 | 2013-01-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
RU2526062C1 (ru) * | 2013-07-02 | 2014-08-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
RU2539469C1 (ru) * | 2013-12-16 | 2015-01-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
-
2017
- 2017-10-12 RU RU2017136230A patent/RU2667240C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100044041A1 (en) * | 2008-08-22 | 2010-02-25 | Halliburton Energy Services, Inc. | High rate stimulation method for deep, large bore completions |
RU2401942C1 (ru) * | 2009-06-30 | 2010-10-20 | Олег Павлович Турецкий | Способ гидроразрыва пласта в горизонтальном стволе скважины |
RU2472926C1 (ru) * | 2011-07-20 | 2013-01-20 | Открытое акционерное общество "Татнефть" им. В.Д. Шашина | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
RU2526062C1 (ru) * | 2013-07-02 | 2014-08-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
RU2539469C1 (ru) * | 2013-12-16 | 2015-01-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2738059C1 (ru) * | 2020-06-26 | 2020-12-07 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Гидропескоструйный перфоратор для поинтервальной перфорации и гидравлического разрыва пласта |
RU2759109C1 (ru) * | 2021-04-11 | 2021-11-09 | Артур Фаатович Гимаев | Способ подготовки нефтяных и газовых скважин с горизонтальным окончанием к эксплуатации |
CN115807654A (zh) * | 2021-09-13 | 2023-03-17 | 中国石油天然气股份有限公司 | 一种水平井快速重复压裂方法 |
WO2025007460A1 (zh) * | 2023-07-03 | 2025-01-09 | 中国石油天然气股份有限公司 | 井下聚能压裂滑套及co2冲击复合压裂方法 |
CN117267965A (zh) * | 2023-11-21 | 2023-12-22 | 吉林大学 | 多层多分支水平井闭式循环开采干热岩方法 |
CN117267965B (zh) * | 2023-11-21 | 2024-01-16 | 吉林大学 | 多层多分支水平井闭式循环开采干热岩方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2667240C1 (ru) | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины | |
RU2483209C1 (ru) | Способ гидравлического разрыва пласта в скважине | |
RU2601881C1 (ru) | Способ многократного гидравлического разрыва пласта в наклонно направленном стволе скважины | |
RU2539469C1 (ru) | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины | |
WO2015105427A2 (en) | Method and device for cutting, perforating, washing and pulling of casing pipes in a well | |
RU2495996C1 (ru) | Способ разработки обводненного нефтяного месторождения | |
RU2655309C1 (ru) | Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины | |
RU2570157C1 (ru) | Способ увеличения нефтеотдачи залежи, вскрытой горизонтальной скважиной | |
RU2578095C1 (ru) | Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины | |
RU2509884C1 (ru) | Способ разработки обводненного нефтяного месторождения | |
RU2570156C1 (ru) | Способ разработки обводненного нефтяного месторождения | |
RU2526061C1 (ru) | Способ изоляции водопроявляющих пластов при строительстве скважины | |
RU2524800C1 (ru) | Способ разработки неоднородного месторождения наклонными и горизонтальными скважинами | |
RU2510456C2 (ru) | Способ образования вертикально направленной трещины при гидроразрыве продуктивного пласта | |
RU2320849C2 (ru) | Способ строительства и эксплуатации скважин | |
RU2613403C1 (ru) | Способ гидравлического разрыва пласта в горизонтальном стволе скважины | |
RU2191886C2 (ru) | Способ изоляции водопроявляющих пластов | |
RU2560018C1 (ru) | Способ изоляции притока вод в необсаженном горизонтальном участке ствола добывающей скважины | |
RU2564314C1 (ru) | Способ восстановления проходимости открытого горизонтального ствола скважины | |
RU2524089C1 (ru) | Способ строительства нефтедобывающей скважины | |
RU2225938C1 (ru) | Способ эксплуатации нефтяной добывающей скважины | |
RU2509885C1 (ru) | Способ разработки обводненного нефтяного месторождения | |
RU2705643C1 (ru) | Способ интенсификации работы скважины после её строительства | |
RU2444611C1 (ru) | Способ изоляции продуктивного пласта от притока подошвенной воды | |
RU2520033C1 (ru) | Способ строительства горизонтальной нефтедобывающей скважины |