[go: up one dir, main page]

RU2662486C2 - Однофазные и многофазные материалы на основе оксида циркония - Google Patents

Однофазные и многофазные материалы на основе оксида циркония Download PDF

Info

Publication number
RU2662486C2
RU2662486C2 RU2015138785A RU2015138785A RU2662486C2 RU 2662486 C2 RU2662486 C2 RU 2662486C2 RU 2015138785 A RU2015138785 A RU 2015138785A RU 2015138785 A RU2015138785 A RU 2015138785A RU 2662486 C2 RU2662486 C2 RU 2662486C2
Authority
RU
Russia
Prior art keywords
zirconium oxide
material based
vol
materials
phase
Prior art date
Application number
RU2015138785A
Other languages
English (en)
Other versions
RU2015138785A (ru
Inventor
Майнхард КУНТЦ
Килиан ФРИДЕРИХ
Лукас ГОТТВИК
Андреас МОРХАРДТ
Юлианэ ЭРЛИХ
Original Assignee
Керамтек Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Керамтек Гмбх filed Critical Керамтек Гмбх
Publication of RU2015138785A publication Critical patent/RU2015138785A/ru
Application granted granted Critical
Publication of RU2662486C2 publication Critical patent/RU2662486C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/082Cosmetic aspects, e.g. inlays; Determination of the colour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • A61C5/77Methods or devices for making crowns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0048Connecting the upper structure to the implant, e.g. bridging bars
    • A61C8/005Connecting devices for joining an upper structure with an implant member, e.g. spacers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/50Preparations specially adapted for dental root treatment
    • A61K6/58Preparations specially adapted for dental root treatment specially adapted for dental implants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/811Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising chromium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/813Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising iron oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/818Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising zirconium oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/822Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising rare earth metal oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K6/00Preparations for dentistry
    • A61K6/80Preparations for artificial teeth, for filling teeth or for capping teeth
    • A61K6/802Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics
    • A61K6/824Preparations for artificial teeth, for filling teeth or for capping teeth comprising ceramics comprising transition metal oxides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/38Materials or treatment for tissue regeneration for reconstruction of the spine, vertebrae or intervertebral discs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/765Tetragonal symmetry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Plastic & Reconstructive Surgery (AREA)
  • Dentistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Dental Preparations (AREA)
  • Dental Prosthetics (AREA)
  • Prostheses (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к получению спечённого керамического материала и может быть использовано в стоматологической и медицинской технике. В предложенном материале на основе оксида циркония содержание тетрагонального оксида циркония находится между от 94 и 96 об.% и тетрагональная фаза химически стабилизирована. В качестве химических стабилизаторов использованы Sm2O3 и/или Gd2O3 или смесь указанных оксидов и доля Sm2O3 и Gd2O3 находится между 1 и 5 мол.% в каждом случае относительно содержания оксида циркония. В нем также содержится второй основной компонент в объемном количестве между 4 и 6% об., который состоит из алюмината стронция или алюмината лантана с относительной долей более чем 80%. Технический результат изобретения – повышение стойкости к гидротермальному старению и достижение оптимальных механических свойств в сочетании с пониженной твёрдостью. 3 н. и 7 з.п. ф-лы, 7 ил.

Description

Изобретение относится к получению и применению однофазных и многофазных материалов на основе оксида циркония. Прежде всего, изобретение относится к однофазным поликристаллическим материалам на основе оксида циркония, а также к спеченным формованным изделиям из подобного материала, которые могут найти применение в медицинской практике в качестве имплантов или зубных протезов.
Керамика на основе оксида циркония является биологически совместимым материалом, который можно изготавливать традиционными стандартизованными методами. Керамический материал обладает механическими свойствами и стойкостью к гидротермальному старению, допускающими возможность его бездефектной послеобжиговой обработки и применения в соответствующих сферах и средах. Превалирующей областью применения керамических материалов на основе оксида циркония является биокерамика. К второстепенным сферам применения указанных материалов относится, например, протезирование зубов (промежуточные элементы, мостики и коронки), стоматологические импланты, опорные зубы и импланты для позвоночного столба (соединительные/дистанцирующие элементы), а также общие сферы применения, в которых необходимо использовать техническую керамику, пригодную для бездефектной послеобжиговой обработки, например для машинной обработки, в частности шлифования, фрезерования и сверления.
На рынке сбыта стоматологической продукции керамические материалы в связи с присущей им химической стабильностью, а также их механическими, физическими и в особенности оптическими характеристиками, позволяющими обеспечивать отличную эстетику, превосходят обычные металлические материалы.
Общей тенденцией в сфере стоматологических керамических материалов является использование цельнокерамических систем. Однако керамические материалы в настоящее время довольно часто продолжают наносить на металлические каркасы в качестве облицовки.
Стоматологические керамические материалы можно классифицировать в зависимости от метода их получения и содержащейся в них кристаллической фазы. В принципе различают металлокерамические и цельнокерамические системы.
Металлокерамические системы впервые появились в 1960 году. Для эстетически приемлемой реставрации зубов (придания им внешнего вида, характерного для естественных зубов) облицовочную керамику наносят на металлический каркас. Типичные облицовочные материалы состоят из полевошпатовых стекол, обычно основанных на кристаллах лейцита. Введение кристаллов лейцита (KAlSi2O6) в структуру полевошпатового стекла обусловливает оптимальные значения коэффициентов термического расширения каркаса и облицовки. Кристаллы лейцита образуются в результате инконгруентного плавления природного полевого шпата в температурном интервале от 1150 до 1530°C. Варьирование содержания кристаллов лейцита в стекле позволяет целенаправленно регулировать коэффициент термического расширения и приводить его в соответствие с термическими свойствами металлического каркаса. Типичное содержание кристаллов лейцита в полевошпатном стекле обычно составляет от 15 до 25% об. Коэффициент термического расширения подобного материала ниже, чем у металла, благодаря чему нанесенная облицовка после охлаждения обжимает металлический каркас.
В типичных случаях для уменьшения пористости конечного изделия облицовочные керамические материалы спекают под вакуумом. Основанные на кристаллах лейцита стекла (называемые также стоматологическим фарфором) в связи с наличием в них стеклянной фазы обладают наихудшими механическими свойствами из всех используемых в стоматологии керамических материалов, в частности наиболее низкими показателями прочности и трещиностойкости. До 2005 года 50% всех операций по реставрации зубов выполняли с использованием металлокерамических систем.
В течение последних тридцати лет доступными являются цельнокерамические системы, которые не содержат металла. Технология изготовления подобных систем постоянно совершенствуется (например, горячее прессование, шликерное литье, компьютеризированная CAD/CAM-обработка). Основным отличием цельнокерамических систем от металлокерамических систем является гораздо более высокое содержание кристаллической фазы, составляющее от 35 до 100% об. Подобные системы отличаются лучшими механическими свойствами, однако обладают меньшей прозрачностью, что негативно отражается на требуемой эстетике. Существует множество факторов, оказывающих влияние на долговечность цельнокерамических систем, например оральная среда, колебания показателя рН в диапазоне от кислых до щелочных значений, циклические нагрузки или экстремальные пиковые нагрузки во время жевания. Цельнокерамические системы с повышенным содержанием стеклянной фазы нередко подвержены коррозионному растрескиванию, являющемуся причиной их выхода из строя. В связи с гидротермальным старением керамических материалов Y-TZP при низких температурах (керамическим материалом Y-TZP называют стабилизированный иттрием поликристаллический диоксид циркония тетрагональной модификации со 100% об. кристаллической фазы) они подлежат тестированию в соответствии со стандартами, предусматривающими оценку долговечности в условиях человеческого организма и при воздействии циклических нагрузок.
Цельнокерамические системы классифицируют главным образом в зависимости от методов их получения (например, горячего прессования, сухого прессования, спекания, шликерного литья или CAD/CAM-обработки).
При горячем прессовании, прежде всего, используют основанные на кристаллах лейцита стекла с содержанием кристаллической фазы в диапазоне от 35 до 45% об. Прочность основанных на кристаллах лейцита стекол составляет около 150 МПа, что почти в два раза превышает прочность основанных на кристаллах лейцита стекол металлокерамических систем. Многократное нагревание может обусловливать кристаллизацию лейцита и повышение прочности.
В настоящее время для горячего прессования используют новый стеклокерамический материал. Он состоит из основанного на дисиликате лития стекле с содержанием кристаллической фазы 65% об. Рентгенографическими методами исследования данного материала помимо наличия дисиликата лития (Li2Si2O5) обнаруживают присутствие других кристаллических фаз, например, метасиликата лития (Li2SiO3) и кристобалита (SiO2). Прочность материала по сравнению со стеклами, основанными на кристаллах лейцита, почти в два раза выше и составляет около 250 МПа.
Методы сухого прессования и спекания цельнокерамических систем используют с начала 90-х годов. Указанные методы реализуют компьютеризированно с учетом сопровождающей спекание усадки пресс-изделия. В качестве материала каркаса используют керамические материалы на основе оксида алюминия и оксида циркония с содержанием кристаллической фазы 100% об., причем на материал каркаса дополнительно наносят облицовку из стеклокерамики. Керамические материалы на основе оксида алюминия обладают прочностью при изгибе, составляющей около 600 МПа, а также отличным поведением in-vivo.
Технологию шликерного литья используют с 90-х годов. При этом из кристаллических фаз методом шликерного литья формируют пористое сырое изделие, которое затем спекают и пропитывают основанным на лантане стеклом. На рынке стоматологической продукции доступны следующие стеклокерамические материалы: оксид алюминия (Al2O), шпинель (MgAl2O4) и композит 12Ce-TZP/Al2O3. Пропитанный стеклом оксид алюминия обладает механическими свойствами, сопоставимыми со свойствами стеклокерамики на основе дисиликата лития, однако отличается несколько более низкой прозрачностью. Пропитанная стеклом шпинель по сравнению с основанной на дисиликате лития стеклокерамикой обладает гораздо более высокой прозрачностью и сопоставимыми механическими свойствами. Пропитанный стеклом композит оксид циркония/оксид алюминия характеризуется максимальными показателями прочности и трещиностойкости среди всех стоматологических керамических материалов, получаемых методом шликерного литья.
Разработанную фирмой Duret компьютеризированную CAD/CAM-обработку керамических блоков, соответственно промежуточных элементов, осуществляют с начала 70-х годов. В то время данным методом выполняли обработку плотно спеченных промежуточных элементов. В настоящее время этот метод используют главным образом для обработки предварительно спеченных промежуточных элементов.
Стеклокерамика пригодна для CAD/CAM-обработки в плотно спеченном состоянии благодаря ее чрезвычайно хорошей обрабатываемости. Ранее использовали типичные стекла на основе слюдяных кристаллов, что было обусловлено их идеальной обрабатываемостью. В настоящее время используют полевошпатные стекла с кристаллами санидина, лейцита или дисиликата лития. Однако при CAD/CAM-обработке плотно спеченных стеклокерамических материалов наблюдается сильный износ рабочих инструментов. Наличие поверхностных дефектов может негативно влиять на поведение керамического материала in-vivo.
Стеклокерамические материалы в общем случае чрезвычайно хорошо поддаются обработке. Однако в связи с разными коэффициентами термического расширения кристаллов и стеклянной матрицы в процессе остывания стеклокерамического материала вдоль границы раздела фаз возникают микротрещины. Кроме того, кристаллические фазы обладают чрезвычайно высокой склонностью к расслаиванию вдоль кристаллографической плоскости (001). В связи с этим кристаллические фазы должны характеризоваться отсутствием преимущественной ориентации стеклянной структуры. Обусловленная воздействием рабочего инструмента трещина проходит вдоль плоскостей спайности или вдоль границы раздела фаз кристаллов и стеклянной матрицы. Вследствие этого в процессе обработки трещина постоянно меняет направление, и из заготовки выкрашиваются лишь небольшие участки поверхности. Подобный механизм усиления известен также под названием «отклонение трещины».
Начиная с 2001 года осуществляют CAD/CAM-обработку предварительно спеченных промежуточных элементов из оксида циркония. Подобная обработка протекает легче, быстрее и сопровождается менее существенным износом рабочего инструмента по сравнению с послеобжиговой обработкой плотно спеченных промежуточных элементов из оксида циркония. Однако выполненные заготовки подлежат последующему плотному спеканию. Флуктуации усадки спекания, которые приводят к отклонениям от заданных размеров, а также необходимость последующего ручного устранения дефектов зубным техником обусловливают высокий риск повреждения оксида циркония. Почти все промежуточные элементы из оксида циркония выполняют из сырья фирмы Tosoh. Оксид циркония в качестве материала каркаса обладает непревзойденными до последнего времени механическими свойствами. Однако в связи с необходимостью дополнительного использования облицовочной керамики на границе раздела между каркасом и облицовкой часто возникают трещины, обусловленные фазовым превращением тетрагональной фазы оксида циркония. Некоторое время тому назад были опубликованы результаты соответствующих трехлетних и пятилетних исследований in-vivo. Итогом этих исследований является отличный процент успеха при низком проценте безотказной эксплуатации в случае осложнений, например поражения кариесом или откалывания облицовки. При этом актуальной тенденцией однозначно является оптимизация композиционных материалов на основе оксида циркония/оксида алюминия с целью повышения их стойкости к гидротермальному старению и улучшения механических свойств.
С учетом вышеизложенного в основу настоящего изобретения была положена задача предложить улучшенный керамический материал на основе оксида циркония, в частности, пригодный для использования в сфере стоматологической керамики, который обладал бы оптимальными механическими свойствами в сочетании с пониженной твердостью, а также повышенной толерантностью к повреждению и возможностью переработки традиционными методами.
Указанная задача согласно изобретению решается благодаря материалу и спеченному формованному изделию, представленным в независимых пунктах формулы изобретения.
В соответствии с этим предлагаемый в изобретении материал на основе оксида циркония содержит оксид циркония, от 70 до 100% об. которого находится в виде тетрагональной фазы, причем тетрагональная фаза оксида циркония химически стабилизирована и причем в качестве химических стабилизаторов указанный материал содержит оксиды редкоземельных элементов.
Согласно изобретению термин «материал» используют для обозначения готового спеченного керамического материала. Таким образом, описываемые в изобретении составы в отсутствие иных указаний относятся к керамическому спеченному изделию.
Изобретение относится к однофазным или многофазным керамическим материалам на основе тетрагонального оксида циркония. Тетрагональную фазу оксида циркония стабилизируют благодаря использованию оксидов редкоземельных элементов в качестве добавок. К предпочтительным оксидам редкоземельных элементов относится оксид церия (СеО2), особенно предпочтительно оксид самария (Sm2O3) и оксид гадолиния (Gd2O3). Фаза оксида циркония является основным компонентом, объемное содержание которого в материале в принципе составляет от 70 до 100%.
В особенно предпочтительном варианте предлагаемый в изобретении материал на основе оксида циркония содержит от 94 до 99,9% об. оксида циркония (ZrO2) и от 0,1 до 6% об. термодинамически стабильного алюмината. Подобный материал в последующем описании называют композиционным материалом.
В особенно предпочтительном варианте осуществления изобретения объемное содержание оксида циркония составляет около 95% об. в пересчете на общий объем материала. Вторым основным компонентом материала является термодинамически стабильный алюминат, предпочтительно алюминат стронция или алюминат лантана, объемное содержание которого составляет около 5% об. Второй основной компонент особенно предпочтительно более чем на 80% об. состоит из алюмината стронция или алюмината лантана.
В другом особенно предпочтительном варианте объемное содержание оксида циркония в материале на основе оксида циркония составляет от 98 до 99,9%, то есть в техническом отношении речь идет о преимущественно однофазном материале.
Неожиданно было обнаружено, что рецептуры предлагаемого в изобретении материала особенно пригодны для послеобжиговой обработки, причиняющей лишь незначительный ущерб этому материалу, то есть его свойства почти не ухудшаются и при неблагоприятных условиях выполнения послеобжиговой обработки.
Предлагаемую в изобретении спеченное формованное изделие изготавливают из предлагаемого в изобретении материала на основе оксида циркония в соответствии с обычной известной технологией переработки керамических материалов. При этом выполняют, например, следующие основные технологические операции:
a) введение порошковой смеси заданного состава в воду, причем с целью предотвращения седиментации при необходимости используют разжижители,
b) гомогенизацию в диссольвере (быстроходной мешалке),
c) размол (измельчение и гомогенизацию) в бисерной мельнице, сопровождаемый увеличением удельной поверхности порошковой смеси,
d) возможное добавление органических связующих веществ,
e) распылительную сушку с формированием обладающего определенными свойствами сыпучего гранулята,
f) увлажнение гранулята водой и при необходимости другими добавками, облегчающими прессование,
g) аксиальное прессование, изостатическое прессование блоков или формование с приданием конфигурации, близкой к окончательной, выполняемые в соответствии с технологией литья керамических материалов под давлением,
h) выполняемую резанием переработку блоков в сырое или предварительно спеченное состояние с одновременным учетом сопровождающей спекание усадки, причем в результате подобной переработки в основном формируется окончательный контур,
i) спекание (спекание можно выполнять также трехступенчатым методом, причем на первой ступени осуществляют предварительный обжиг до теоретической плотности около 97%, при котором закрываются оставшиеся наружные остаточные поры, на второй ступени выполняют горячее изостатическое прессование при высокой температуре и высоком давлении газа, приводящее к практически полному окончательному уплотнению, и на третьей ступени выполняют так называемый белый обжиг, посредством которого устраняют возникший при горячем изостатическом прессовании дисбаланс ионов кислорода в керамическом материале),
j) послеобжиговую обработку, выполняемую путем шлифования и полирования оснащенным алмазом рабочим инструментом.
Предлагаемый в изобретении материал на основе оксида циркония можно использовать, например, для изготовления спеченных формованных изделий и искусственных зубных протезов, для стоматологической реставрации (мостики, коронки, вкладки, накладки), для изготовления штифтов, фиксируемых в основании зуба, имплантов, опорных зубов, соединительных/дистанцирующих элементов позвоночного столба, а также одномыщелковых и двухмыщелковых элементов коленных суставов. Предпочтительным является применение указанного материала в сфере зубного протезирования и стоматологической реставрации. Особенно предпочтительным является применение указанного материала для реставрации больших коренных зубов.
Содержание химических стабилизаторов в предлагаемом в изобретении материале на основе оксида циркония составляет от 10 до 15% мол., предпочтительно от 11 до 13% мол. (в случае оксида церия (CeO2)), и от 1 до 5% мол., предпочтительно от 2,5 до 3,5% мол. (в случае оксида самария (Sm2O3) и оксида гадолиния (Gd2O3)), соответственно в пересчете на количество оксида циркония. Суммарное содержание химических стабилизаторов в указанном материале, включающем одну или несколько добавок, то есть химических стабилизаторов, составляет менее 15% мол., предпочтительно менее 14% мол., причем предпочтительным стабилизатором является оксид церия (CeO2) и особенно предпочтительными стабилизаторами являются оксид самария (Sm2O3) и оксид гадолиния (Gd2O3).
В случае использования в качестве химического стабилизатора оксида церия (CeO2) средний размер структурных элементов оксида циркония составляет от 0,5 до 1,5 мкм, предпочтительно от 0,5 до 1,0 мкм. Неожиданно было обнаружено, что использование оксида гадолиния (Gd2O3) и оксида самария (Sm2O3) способствует существенному уменьшению размера структурных элементов оксида циркония. При этом размер структурных элементов оксида циркония предпочтительно находится в диапазоне от 0,1 до 0,3 мкм, особенно предпочтительно от 0,1 до 0,2 мкм. Таким образом, согласно предпочтительному варианту осуществления изобретения спеченная формованная деталь содержит кристаллы оксида циркония со средним размером от 0,1 и 1,5 мкм, предпочтительно от 0,1 до 0,4 мкм, особенно предпочтительно от 0,1 до 0,3 мкм.
Согласно другому варианту осуществления изобретения оксид циркония дополнительно может содержать растворимые компоненты. Растворимыми компонентами могут быть, например, хром (Cr), железо (Fe), магний (Mg), кальций (Са), титан (Ti), иттрий (Y), церий (Се), лантаниды и/или ванадий (V). Указанные компоненты, во-первых, могут выполнять функцию окрашивающих добавок, а во-вторых, функцию способствующих спеканию агентов. Растворимые компоненты могут быть встроены в кристаллическую решетку или, находясь в форме соединений, могут быть осаждены например, в граничной фазе смешанных кристаллов.
Сопротивление разрушению спеченного формованного изделия из предлагаемого в изобретении материала на основе оксида циркония предпочтительно составляет более или равно 500 МПа, особенно предпочтительно более или равно 800 МПа.
Неожиданно было обнаружено, что тип и количество химического стабилизатора оказывает значительное влияние на твердость материала на основе оксида циркония, а также на трещиностойкость.
Преимущества предлагаемого в изобретении нового материала по сравнению с материалами уровня техники количественно оценивают по более высокому показателю так называемой толерантности к повреждению. Толерантность к повреждению является механической характеристикой материала, позволяющей оценивать его противодействие причиняемому извне повреждению. На практике повреждение может быть нанесено материалу, например, при его абразивной обработке оснащенным алмазом рабочим инструментом.
Для измерения толерантности к повреждению испытуемой образец в лабораторных условиях повреждают посредством воздействующего с определенной нагрузкой алмазного керна, используемого для определения твердости по Виккерсу. В зоне вдавливания керна возникают трещины, то есть в данном месте происходит ослабление испытуемого образца. Для количественного определения ослабления измеряют остаточное разрушающее напряжение, соответственно остаточную прочность в данном месте. Чем выше остаточная прочность материала после определенного ослабления, тем более высокой толерантностью к повреждению он характеризуется.
Для детализированной оценки толерантности к повреждению серию испытуемых образцов повреждают при варьируемой воздействующей нагрузке. Затем получают графическую характеристику материала (зависимость остаточной прочности от воздействующей нагрузки). Для подтверждения более высокой толерантности того или иного материала к повреждению по сравнению с материалами уровня техники выполняют сравнение соответствующих графических характеристик (см. Фиг. 5 и 6).
Неожиданно было обнаружено, что толерантность к повреждению материала на основе оксида циркония определяется типом химического стабилизатора.
Изобретение более подробно поясняется с помощью приведенных ниже графических данных и серий испытаний, не ограничивающих объема изобретения.
Фиг. 1 - диаграмма, показывающая зависимость твердости спеченных формованных деталей из оксида циркония от используемого химического стабилизатора.
Фиг. 2 - диаграмма, показывающая зависимость трещиностойкости спеченных формованных деталей из оксида циркония от используемого химического стабилизатора.
Фиг. 3 - зависимость размера структурных элементов от используемого химического стабилизатора.
Фиг. 4 - микроструктура в зависимости от используемого химического стабилизатора.
Фиг. 5 - остаточная прочность после повреждения, нанесенного в условиях определения HV50, в зависимости от используемого химического стабилизатора.
Фиг. 6 - характеристические кривые толерантности к повреждению предлагаемого в изобретении материала на основе оксида циркония, предлагаемого в изобретении композиционного материала и сравнительного керамического материала Y-TZP.
Фиг. 7 - стойкость к гидротермальному старению в зависимости от используемого химического стабилизатора.
Серия опытов 1: Твердость в зависимости от химического стабилизатора (Фиг. 1)
На Фиг. 1 показаны результаты, полученные в серии опытов, выполненных с использованием предлагаемых в изобретении химических стабилизаторов. Испытанию подвергают следующие химические стабилизаторы: оксид иттрия (Y2O3), оксид церия (СеО2), оксид самария (Sm2O3) и оксид гадолиния (Gd2O3), а также предлагаемый в изобретении композиционный материал из оксида циркония, усиленного гексаалюминатом стронция. При этом неожиданно выясняется, что достигаемая при цериевой стабилизации твердость гораздо ниже по сравнению с иттриевой стабилизацией. В случае использования оксида самария и оксида гадолиния происходит лишь незначительное снижение твердости, в то время как в случае оксида самария твердость существенно уменьшается. Твердость определяют по Виккерсу (HV10) с использованием усилия, составляющего 98,07 Н.
Для предлагаемого в изобретении применения в сфере стоматологии желательны более низкие значения твердости. В зоне расположения больших коренных зубов зубной протез из часто используемого керамического материала Y-TZP может контактировать с естественными зубами. Твердость по Виккерсу материала Y-TZP (HV10) составляет около 1250 единиц. В связи с тем, что естественные зубы (зубная эмаль) содержат кристаллы гидроксилапатита, они обладают гораздо более низкой твердостью по Виккерсу, составляющей около 400 единиц (HV10). Подобная разница в значениях твердости, например, при обусловленном стрессом бруксизме (скрежетании зубами) может приводить к значительному истиранию естественных зубов. Снижению твердости материала на основе оксида циркония способствует также бездефектная послеобжиговая обработка. Таким образом, другой предпочтительный вариант осуществления изобретения относится к материалу на основе оксида циркония, содержащему стабилизаторы, которые снижают твердость указанного материала, причем твердость по Виккерсу спеченного изделия из материала на основе оксида циркония составляет менее 1250 единиц (HV10), предпочтительно менее 900 единиц (HV10).
Серия опытов 2: Трещиностойкость в зависимости от химического стабилизатора (Фиг. 2)
На Фиг. 2 представлены результаты серии опытов, которые показывают влияние химического стабилизатора на трещиностойкость материала на основе оксида циркония. Неожиданно выясняется, что использование в качестве химических стабилизаторов оксида церия (CeO2), оксида самария (Sm2O3) и оксида гадолиния (Gd2O3) обеспечивает значительное повышение трещиностойкости. Трещиностойкость предлагаемых в изобретении материалов определяют посредством вдавливания индентора по Виккерсу (HV10). При вдавливании индентора в предлагаемые в изобретении материалы, стабилизированные оксидом церия, трещины не образуются. При вдавливании индентора в предлагаемые в изобретении материалы, стабилизированные оксидом самария (Sm2O3) и оксидом гадолиния (Gd2O3), трещины не образуются или наблюдается лишь незначительное трещинообразование. Материалы на основе оксида циркония, для которых характерно отсутствие трещинообразования при вдавливании индентора, являются высоковязкими материалами. Определяемая экстраполяцией трещиностойкость подобных материалов составляет 15 МПа*м^0,5. Область экстраполированных значений на Фиг. 2 расположена выше штриховой линией, которой соответствует трещиностойкость 13,4 МПа*м^0,5. Этому значению соответствует максимальная трещиностойкость, измеренная указанным выше методом.
Серия опытов 3: Размер структурных элементов и микроструктура в зависимости от химического стабилизатора (Фиг. 3 и 4)
На Фиг. 3 и 4 показано влияние химического стабилизатора на размер структурных элементов предлагаемого в изобретении материала на основе оксида циркония. Структуру материалов оценивают с помощью растрового электронного микроскопа. Размер зерен определяют в соответствии с методом секущих (определение размера по средней длине секущей для структурной фазы). Неожиданно выясняется, что использование оксида гадолиния и оксида самария способствует формированию более тонкой микроструктуры материала. В случае использования оксида самария средний размер структурных элементов составляет 0,16 мкм. В случае использования оксида гадолиния средний размер структурных элементов составляет 0,24 мкм. Для микроструктуры предлагаемого в изобретении материала на основе оксида циркония, стабилизированного оксидом гадолиния, характерно образование крупных зерен (см. Фиг. 4). Отдельные крупные зерна, присутствующие в кубической фазе оксида циркония, способствуют некоторому повышению прозрачности предлагаемого в изобретении материала по сравнению со стандартным стоматологическим материалом Y-TZP.
Серия опытов 4 Толерантность к повреждению в зависимости от химических стабилизаторов (Фиг. 5)
На Фиг. 5 показана остаточная прочность предлагаемых в изобретении материалов на основе оксида циркония, содержащих разные стабилизаторы. Вдоль оси абсцисс указаны снабженные разными стабилизаторами материалы. На оси ординат отложена остаточная прочность (в МПа) предлагаемых в изобретении материалов после HV50-повреждения.
Из приведенных на Фиг. 5 данных однозначно следует, что остаточная прочность предлагаемых в изобретении композиционных материалов на основе оксида циркония в несколько раз превышает остаточную прочность сравнительного материала (стандартного стоматологического материала Y-TZP).
Серия опытов 5 Характеристические кривые толерантности к повреждению предлагаемого в изобретении материала на основе оксида циркония и предлагаемого в изобретении композиционного материала в сравнении с материалами уровня техники (Фиг. 6)
На Фиг. 6 показана остаточная прочность в зависимости от повреждения (в данном случае от усилия вдавливания индентора, используемого для определения твердости по Виккерсу, которую варьируют в диапазоне от 3 до 500 Н) для разных материалов, а именно материала ZTA (упрочненной цирконием алюмооксидной керамики), материала Y-TZP (стабилизированного иттрием поликристаллического оксида циркония), предлагаемого в изобретении материала на основе оксида циркония (Sm-TZP) и предлагаемого в изобретении композиционного материала (диоксида циркония, усиленного гексаалюминатом стронция). Усилиям вдавливаниям индентора, отложенным вдоль оси абсцисс в логарифмическом масштабе, соответствуют отложенные вдоль оси ординат значения остаточной прочности в МПа.
Новые предлагаемые в изобретении материалы в отличие от известных из уровня техники материалов при одной и той же исходной прочности характеризуются гораздо более высокой толерантностью к повреждению под действием варьируемой нагрузки.
Серия опытов 6 Стойкость к гидротермальному старению в зависимости от химического стабилизатора (Фиг. 7)
На Фиг. 7 показана стойкость предлагаемых в изобретении материалов на основе оксида циркония к гидротермальному старению в зависимости от используемого стабилизатора. При этом методом рентгеновской дифрактометрии до и после старения полированных спеченных формованных деталей измеряют количество содержащейся в них моноклинной фазы. Выдержку в гидротермальной атмосфере осуществляют в автоклаве при температуре 134°C и давлении 2,2 бар. Длительность выдержки составляет 10 часов.
Неожиданно выясняется, что предлагаемый в изобретении материал, стабилизированный оксидом церия (СеО2), не подвержен гидротермальному старению. Предлагаемые в изобретении материалы, стабилизированные оксидом самария (Sm2O3) и оксидом гадолиния (Gd2O3), характеризуются незначительной гидротермальной стабильностью, которая, однако, существенно превышает гидротермальную стабильность сравнительного материала Y-TZP.
Таким образом, материал на основе оксида циркония согласно особенно предпочтительному варианту осуществления изобретения отличается повышенной стойкостью к гидротермальному старению. Повышенная стойкость к гидротермальному старению проявляется в том, что количество моноклинного оксида циркония в пересчете на общее количество оксида циркония после выдержки материала в гидротермальной атмосфере в автоклаве при температуре 134°C и давлении 2,2 бар в течение 10 часов составляет менее 17% об., предпочтительно менее 10% об., особенно предпочтительно менее 5% об.
Ниже еще раз указываются преимущества предлагаемого в изобретении материала на основе оксида циркония.
- возможность получения предлагаемого в изобретении материала на основе оксида циркония и предлагаемых в изобретении спеченных формованных изделий известными методами, обычно используемыми в технологии керамических материалов,
- возможность выполнения трехступенчатого спекания (предварительного обжига, горячего изостатического прессования, «белого обжига»), благодаря чему достигают более высокой прочности,
- отсутствие гидротермального старения благодаря использованию в качестве химического стабилизатора оксида церия (СеО2),
- возможность осуществления бездефектной, в частности механической послеобжиговой, обработки плотно спеченных или частично спеченных промежуточных изделий,
- возможность более легкой послеобжиговой обработки благодаря меньшей твердости материала (соответственно меньший износ рабочего инструмента),
- более низкая твердость материала, а следовательно, в частности, гораздо меньшее истирание в зоне больших коренных зубов,
- возможность применения в виде цельной анатомической системы, то есть облицовка в зоне больших коренных зубов не требуется, что означает экономию дополнительных расходов для пациента и уменьшение опасности частичного откалывания облицовки,
- оптимальная дентальная эстетика,
- компенсация отсутствующей упругости (амортизирующего, соответственно пружинящего действия зубов при жевании) в случае полной реставрации зубов с использованием импланта, то есть гораздо меньшее повышение напряжения при жевании;
- материал на основе оксида циркония можно использовать для изготовления промежуточных элементов, соответственно блоков для CAD/CAM-обработки в предварительно спеченном или плотно спеченном состоянии,
- возможность применения спеченных формованных изделий в качестве зубных протезов, для реставрации зубов (мостики, коронки, вкладки, накладки), в качестве штифтов, фиксируемых в основании зуба, имплантов и опорных зубов,
- возможность применения для изготовления соединительных элементов позвоночного столба, медицинских инструментов и так далее.

Claims (10)

1. Материал на основе оксида циркония, отличающийся тем, что содержание тетрагонального оксида циркония находится между 94 и 96% об. и тетрагональная фаза химически стабилизирована, причем в нем содержатся в качестве химических стабилизаторов Sm2O3 и/или Gd2O3 или смеси из указанных оксидов и доля Sm2O3 и Gd2O3 находится между 1 и 5% мол., в каждом случае относительно содержания оксида циркония, и причем в нем содержится второй основной компонент в объемном количестве между 4 и 6% об., который состоит из алюмината стронция или алюмината лантана с относительной долей более чем 80% об.
2. Материал на основе оксида циркония по п. 1, отличающийся тем, что общее содержание химических стабилизаторов составляет менее 15% мол.
3. Материал на основе оксида циркония по п. 1, отличающийся тем, что оксид циркония содержит растворимые компоненты, в частности, одно или несколько соединений элементов хрома (Cr), железа (Fe), магния (Mg), кальция (Са), титана (Ti), иттрия (Y), скандия (Sc) и/или ванадия (V).
4. Материал на основе оксида циркония по п. 1, отличающийся тем, что кристаллы оксида циркония имеют средний размер между 0,1 и 1,5 мкм.
5. Материал на основе оксида циркония по п. 1, отличающийся тем, что твердость материала на основе оксида циркония составляет менее 1250 (HV10).
6. Материал на основе оксида циркония по п. 1, отличающийся тем, что его сопротивление разрушению составляет более или равно 500 МПа.
7. Материал на основе оксида циркония по п. 1, отличающийся тем, что его толерантность к повреждению, соответственно, остаточная прочность после вдавливания индентора по Виккерсу HV50 составляет более 500 МПа.
8. Материал на основе оксида циркония по одному из пп. 1-7, отличающийся тем, что он обладает повышенной стойкостью к гидротермальному старению, причем доля моноклинного оксида циркония от общего содержания оксида циркония после выдержки в гидротермальной атмосфере в автоклаве, при 134°С и давлении 2,2 бар и цикле, составляющем 10 часов, составляет менее 17% об., предпочтительно менее 10% об., особенно предпочтительно менее 5% об.
9. Применение плотно спеченного или частично спеченного формованного изделия из материала на основе оксида циркония по одному из пп. 1-8 в качестве полуфабриката, который можно подвергать бездефектной механической обработке.
10. Применение спеченного формованного изделия из материала на основе оксида циркония по одному из пп. 1-8 в стоматологической и медицинской технике.
RU2015138785A 2013-02-13 2014-02-07 Однофазные и многофазные материалы на основе оксида циркония RU2662486C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013202287.5 2013-02-13
DE102013202287 2013-02-13
PCT/EP2014/052407 WO2014124874A1 (de) 2013-02-13 2014-02-07 Ein- und mehrphasige werkstoffe auf basis von zirkonoxid

Publications (2)

Publication Number Publication Date
RU2015138785A RU2015138785A (ru) 2017-03-20
RU2662486C2 true RU2662486C2 (ru) 2018-07-26

Family

ID=50114340

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015138785A RU2662486C2 (ru) 2013-02-13 2014-02-07 Однофазные и многофазные материалы на основе оксида циркония

Country Status (9)

Country Link
US (1) US10047013B2 (ru)
EP (1) EP2956427B1 (ru)
JP (1) JP2016513058A (ru)
CN (1) CN104995155B (ru)
BR (1) BR112015019352B1 (ru)
CA (1) CA2900426A1 (ru)
DE (1) DE102014202256A1 (ru)
RU (1) RU2662486C2 (ru)
WO (1) WO2014124874A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2816157C1 (ru) * 2023-06-23 2024-03-26 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Беспористый керамический композит на основе оксида циркония

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104876613A (zh) * 2015-04-13 2015-09-02 安徽省含山瓷业股份有限公司 一种高强碳纤维增强氧化锆陶瓷基复合材料及其制备方法
CN108349817A (zh) * 2015-11-10 2018-07-31 陶瓷技术有限责任公司 抗热冲击的复合材料
DE102015122864A1 (de) 2015-12-28 2017-06-29 Degudent Gmbh Verfahren zur Herstellung eines Rohlings sowie dentale Restauration
JP6772591B2 (ja) * 2016-06-30 2020-10-21 東ソー株式会社 透光性ジルコニア焼結体及びその製造方法並びにその用途
WO2019068807A1 (de) * 2017-10-04 2019-04-11 Ceramtec Gmbh Teilstabilisierter zirkonoxid-werkstoff mit hoher sinteraktivität
ES2915599T3 (es) * 2019-05-03 2022-06-23 Vita Zahnfabrik H Rauter Gmbh & Co Kg Vitrocerámica de bajo punto de fusión
CN113072378B (zh) * 2020-01-03 2022-07-12 万华化学集团股份有限公司 四方相纳米复合氧化锆粉体及其制备方法和烧结体
CN113101230A (zh) * 2021-03-03 2021-07-13 深圳爱尔创口腔技术有限公司 氧化锆组合物、荧光氧化锆及制备方法和氧化锆牙科制品
CN114538909A (zh) * 2022-03-03 2022-05-27 胡晓荣 一种耐磨耐热瓷器及加工工艺
ES2983170T3 (es) 2022-04-27 2024-10-22 Degudent Gmbh Pieza en bruto y procedimiento para la preparación de la misma

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002911A (en) * 1989-04-07 1991-03-26 Cerametec, Inc. Ceramics with high toughness, strength and hardness
EA011425B1 (ru) * 2005-03-01 2009-02-27 Сен-Гобен Сантр Де Решерш Э Д'Этюд Эропен Спеченный шар на основе диоксида циркония и оксида церия
US20090317767A1 (en) * 2006-10-05 2009-12-24 Wolfgang Burger Material based on a partially stabilized zirconia matrix and process for the preparation and use of the material
US20110254181A1 (en) * 2010-04-16 2011-10-20 Ivoclar Vivadent Ag Composite Ceramic Material Comprising Zirconia

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316964A (en) 1980-07-14 1982-02-23 Rockwell International Corporation Al2 O3 /ZrO2 ceramic
JPS59162099A (ja) * 1983-03-07 1984-09-12 井伊 勉 長尺図面用製図器具
JPS61201661A (ja) * 1985-03-05 1986-09-06 日立化成工業株式会社 部分安定化ジルコニア焼結体
DE3610041C2 (de) * 1985-03-22 1996-09-05 Noritake Co Ltd Keramik auf Zirkoniumdioxidbasis mit Aluminiumoxid, Spinell, Mullit oder Spinell und Mullit und mit verbesserter hydrothermaler und thermischer Stabilität
GB2206111B (en) * 1987-06-24 1991-08-14 Council Scient Ind Res Sintered ceramic product
US5232878A (en) 1989-06-30 1993-08-03 Hoya Corporation Process for producing inorganic biomaterial
JP2651332B2 (ja) 1992-09-21 1997-09-10 松下電工株式会社 ジルコニア系複合セラミック焼結体及びその製法
JP3505236B2 (ja) * 1994-10-05 2004-03-08 株式会社三徳 酸素吸収・放出能を有する複合酸化物及びその製造法
JPH0833650A (ja) * 1994-07-21 1996-02-06 Shinagawa Refract Co Ltd 歯列矯正用ブラケット及びその製造方法
GB2305430B (en) 1995-09-21 1997-08-27 Matsushita Electric Works Ltd Zirconia based ceramic material and process of making the same
AU2003213529B2 (en) * 2002-07-19 2005-01-20 Panasonic Healthcare Holdings Co., Ltd. ZrO2-AI2O3 composite ceramic material and production method thereof
JP4470378B2 (ja) * 2003-02-28 2010-06-02 住友化学株式会社 ジルコニア焼結体およびその製造方法
AU2004203889B2 (en) 2003-08-22 2006-02-23 Panasonic Healthcare Holdings Co., Ltd. ZrO2-Al2O3 composite ceramic material
US7148167B2 (en) 2003-08-28 2006-12-12 Kyocera Corporation Alumina/zirconia ceramics and method of producing the same
US7928028B2 (en) 2004-03-23 2011-04-19 Panasonic Electric Works Co., Ltd. ZrO2-Al2O3 composite ceramic material and production method therefor
WO2006091613A2 (en) 2005-02-24 2006-08-31 Rutgers, The State University Of New Jersey Nanocomposite ceramics and process for making the same
DE102008042015A1 (de) 2008-09-12 2010-03-18 Robert Bosch Gmbh Zweitphasenverstärkte keramische Zusammensetzung und Verfahren zu deren Herstellung
JP5285486B2 (ja) * 2009-03-30 2013-09-11 三菱重工業株式会社 遮熱コーティング用材料、遮熱コーティング、タービン部材及びガスタービン
FR2946337B1 (fr) 2009-06-03 2011-08-05 Saint Gobain Ct Recherches Produit fritte a base d'alumine et de zircone
US9630883B2 (en) 2009-12-16 2017-04-25 Ceramtec Gmbh Ceramic composite material consisting of aluminium oxide and zirconium oxide as the main constituents, and a dispersoid phase
CN102712542A (zh) 2009-12-28 2012-10-03 松下电器产业株式会社 氧化锆-氧化铝复合陶瓷材料的制造方法、氧化锆-氧化铝复合造粒粉、氧化锆珠
GB201111549D0 (en) 2011-07-06 2011-08-24 Nobel Biocare Services Ag Composite ceramic for dental implants
JP6333254B2 (ja) 2012-08-20 2018-05-30 セラムテック ゲゼルシャフト ミット ベシュレンクテル ハフツングCeramTec GmbH 酸化ジルコニウムベースの複合材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002911A (en) * 1989-04-07 1991-03-26 Cerametec, Inc. Ceramics with high toughness, strength and hardness
EA011425B1 (ru) * 2005-03-01 2009-02-27 Сен-Гобен Сантр Де Решерш Э Д'Этюд Эропен Спеченный шар на основе диоксида циркония и оксида церия
US20090317767A1 (en) * 2006-10-05 2009-12-24 Wolfgang Burger Material based on a partially stabilized zirconia matrix and process for the preparation and use of the material
US20110254181A1 (en) * 2010-04-16 2011-10-20 Ivoclar Vivadent Ag Composite Ceramic Material Comprising Zirconia

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2816157C1 (ru) * 2023-06-23 2024-03-26 Федеральное государственное бюджетное учреждение науки Федеральный исследовательский центр "КОМИ научный центр Уральского отделения Российской академии наук" Беспористый керамический композит на основе оксида циркония
RU2838117C1 (ru) * 2024-03-14 2025-04-11 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Керамический материал и способ его получения
RU2841561C1 (ru) * 2024-07-24 2025-06-09 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Керамический материал и способ его получения

Also Published As

Publication number Publication date
EP2956427B1 (de) 2019-04-10
EP2956427A1 (de) 2015-12-23
CN104995155A (zh) 2015-10-21
WO2014124874A1 (de) 2014-08-21
DE102014202256A1 (de) 2014-08-14
CN104995155B (zh) 2018-11-13
US20150376067A1 (en) 2015-12-31
CA2900426A1 (en) 2014-08-21
US10047013B2 (en) 2018-08-14
JP2016513058A (ja) 2016-05-12
BR112015019352A2 (pt) 2017-07-18
BR112015019352B1 (pt) 2021-05-04
RU2015138785A (ru) 2017-03-20

Similar Documents

Publication Publication Date Title
RU2662486C2 (ru) Однофазные и многофазные материалы на основе оксида циркония
RU2640853C2 (ru) Композитный материал на основе оксида циркония
Samodurova et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics
Piconi et al. Alumina-and zirconia-based ceramics for load-bearing applications
Elias et al. Mechanical properties of alumina-zirconia composites for ceramic abutments
Rao et al. An overview on Zirconia
KR20180101787A (ko) 복합 소결체 및 이의 제조 방법
Zhang et al. Effect of alumina addition on mechanical behavior and fracture properties of all-ceramics zirconia dental materials
KR20200086265A (ko) 인성을 향상시킨 치과용 제품
Mohamed et al. BIAXIAL FLEXURAL STRENGTH OF UN-SHADED AND SHADEDMONOLITHIC TRANSLUCENT ZIRCONIA
Denti Comparative study of three yttria-stabilized zirconia formulations in colored vs natural shades
Aivazi et al. Effect of alumina addition to zirconia nano-composite on low temperature degradation process and biaxial strength
Kim et al. Improving Fracture Resistance of 5Y-PSZ-Based Three-Unit Bridge Prostheses.
Kosmač The effect of dental grinding and sandblasting on the biaxial flexural strength and Weibull modulus of tetragonal zirconia
Alsulami Influence of the coefficient of thermal expansion mismatch on the bond strength of bi-layered all ceramic system
WO2003035014A1 (de) System zur herstellung einer verblendkeramik
Abu-Naba'a et al. Mechanical Properties of Four CAD-CAM Esthetic Ceramic Systems Used for Monolithic Restorations: A Comparative In Vitro Study
Mohammad Mechanical and physical properties of porcelain fused to zirconia and full contour zirconia materials subjected to various surface treatments
JP2025097970A (ja) 歯科用ミルブランク、その作製方法、並びにその使用
Vatanasak et al. The comparison of the surface roughness and surface morphology of sintered and chairside polished monolithic zirconia implant crown
EP4245286A1 (en) Zirconia dental mill blank, manufacturing method therefor, method for manufacturing dental zirconia ceramic prosthesis, and method for manufacturing article composed of zirconia composite ceramic
Dhaded THE CERAMIC STEEL-MONOLITHIC VS VENEERED.
Shah USE OF ZIRCONIA IN DENTISTRY.
Abdelaal Effect of post-processing heat treatment on flexural strength of zirconia for dental applications
George et al. Zirconia–the ceramic steel