RU2633356C1 - Вентильный ветрогенератор постоянного тока - Google Patents
Вентильный ветрогенератор постоянного тока Download PDFInfo
- Publication number
- RU2633356C1 RU2633356C1 RU2016141374A RU2016141374A RU2633356C1 RU 2633356 C1 RU2633356 C1 RU 2633356C1 RU 2016141374 A RU2016141374 A RU 2016141374A RU 2016141374 A RU2016141374 A RU 2016141374A RU 2633356 C1 RU2633356 C1 RU 2633356C1
- Authority
- RU
- Russia
- Prior art keywords
- rotor
- stator
- armature
- wind generator
- phase
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 19
- 238000009423 ventilation Methods 0.000 claims abstract description 10
- 230000000712 assembly Effects 0.000 claims abstract description 3
- 238000000429 assembly Methods 0.000 claims abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 4
- 230000005611 electricity Effects 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910000976 Electrical steel Inorganic materials 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K7/00—Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
- H02K7/18—Structural association of electric generators with mechanical driving motors, e.g. with turbines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
Abstract
Изобретение относится к области электротехники, в частности к электромеханическим преобразователям энергии, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных локальных объектах), в электрическую энергию постоянного тока. Техническим результатом является уменьшение осевых и диаметральных размеров ветрогенератора, снижение потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или ветра) в электрическую энергию постоянного тока, повышение чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока), повышение жесткости конструкции. Вентильный ветрогенератор постоянного тока содержит: статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, при этом статор, магнитопровод якоря и ротор выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образована наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закреплен на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря установлен передний подшипниковый узел, при этом боковая поверхность ротора выполнена с лопатками изогнутой формы, передняя часть ротора выполнена с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закреплены на внутренней поверхности ротора, при этом ротор жестко закреплен на вращающейся оси, установленной в переднем и заднем подшипниковых узлах, задний подшипниковый узел установлен в неподвижной платформе и закреплен от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закреплен на неподвижной платформе. 2 ил.
Description
Изобретение относится к электротехнике, в частности к электромеханическим преобразователям энергии, и может быть использовано, например, в качестве преобразователя механической энергии воздушного потока (например, энергии набегающего воздушного потока при использовании на подвижных локальных объектах, энергии ветра при использовании на неподвижных локальных объектах), в электрическую энергию постоянного тока.
Известен генератор постоянного тока радиальной конструкции (Авиационное оборудование самолетов. Часть 1: учебное пособие для курсантов, обучающихся по специальности «Эксплуатация воздушных судов и организация воздушного движения» / Я.М. Кашин, Г.А. Кириллов, А.В. Ракло; КВВАУЛ им. А.К. Серова. Под общей редакцией Я.М. Кашина. - Краснодар: изд-во КВВАУЛ, 2006 г. - с. 31-37), содержащий корпус, в котором установлены неподвижный статор и вращающийся ротор, закрепленный на валу, установленном в подшипниковых узлах. На статоре размещены постоянные магниты индуктора, создающие магнитное поле. На роторе размещен магнитопровод якоря, в пазы которого уложена обмотка якоря. Индуктируемая в обмотке якоря электродвижущая сила (ЭДС) подается в сеть через щеточно-коллекторный узел. Постоянные магниты индуктора и магнитопровод якоря выполнены радиальными.
Однако технология изготовления такого генератора сложна из-за необходимости штамповки листов магнитопроводов ротора, а стоимость такого генератора велика из-за большого расхода электротехнической стали, связанного с высоким процентом ее отходов при штамповке.
Кроме того, в связи с наличием в такой машине щеточно-коллекторного узла она обладает рядом недостатков, свойственных контактным электрическим машинам: искрение щеток, переходящее в круговой огонь из-за неравномерного их износа, вибрация щеток, их заклинивание и др. Более 40% отказов вращающихся контактных машин приходится на щеточно-коллекторный узел.
Известен также запасной генератор ЛУН-2117.02 типа ГСР-3000 (Самолет Л-39. Часть 2. Авиационное и радиоэлектронное оборудование самолета. М.: «Военное издательство», 1990. - С.6-7), представляющий собой ветрогенератор традиционной (радиальной) конструкции, содержащий электрогенератор постоянного тока и напорную (воздушную) турбину В-910, закрепленную на его валу. Вращение якоря генератора осуществляется напорной турбиной В-910. При отказе основного генератора автоматически открывается люк, напорная турбина с генератором выдвигаются во встречный поток воздуха и генератор вступает в работу. Напорная турбина содержит ступицу, к которой крепятся лопасти.
Недостатком такого генератора являются низкие массогабаритные показатели, а именно: большой осевой размер, который складывается из осевого размера генератора и осевого размера напорной турбины. Кроме того, лопасти напорной турбины при этом должны иметь размах, больший, чем диаметр электрогенератора, иначе воздушный поток, упираясь в торцевую поверхность цилиндрического корпуса генератора, не будет вращать турбину с максимальной скоростью. Следовательно, диаметр ветрогенератора в целом будет равен размаху лопастей, что также ухудшает массогабаритные показатели ветрогенератора в целом.
Из известных технических решений наиболее близким к заявляемому изобретению по технической сущности и принятым авторами за прототип является ветрогенератор (патент РФ №2168062, опубл. 27.05.2001 г.), содержащий ветроколесо и магнитоэлектрический генератор, ротор которого имеет постоянные магниты индуктора и связан с ветроколесом, а статор выполнен из шихтованного магнитопровода с обмотками якоря, при этом генератор имеет два идентичных статора, магнитопроводы которых выполнены в виде плоских колец с установленными на их торцевой части и обращенными друг к другу плоскими обмотками, а ротор выполнен в виде немагнитного диска с вмонтированными в него постоянными магнитами, при этом диск ротора расположен между обмотками якоря, подключенными к трехфазным двухполупериодным выпрямителям. Известный ветрогенератор содержит коммутирующее устройство с возможностью переключения обмоток статоров последовательно или параллельно в зависимости от скорости ветра.
Недостатком такого ветрогенератора также являются низкие массогабаритные показатели, а именно: большой осевой размер, который складывается из осевого размера магнитоэлектрического генератора и осевого размера ветроколеса. Кроме того, размах лопастей ветроколеса известного ветрогенератора существенно превышает диаметр магнитоэлектрического генератора, так как иначе воздушный поток, упираясь в торцевую поверхность корпуса магнитоэлектрического генератора, не будет вращать его ротор с максимальной скоростью. Таким образом, диаметр ветрогенератора в целом равен размаху лопастей, что также ухудшает массогабаритные показатели ветрогенератора в целом.
Кроме того, конструкция ротора известного ветрогенератора вследствие сравнительно большого диаметра лопастей не обеспечивает минимального лобового сопротивления воздушному потоку, а следовательно, потери механической энергии при преобразовании ее в электрическую велики. Вследствие этого чувствительность ветрогенератора к скорости набегающего воздушного потока низка, то есть минимальная скорость набегающего воздушного потока, необходимая для преобразования энергии ветра в механическую энергию вращения ротора, должна быть большой. При низкой скорости набегающего воздушного потока КПД такого ветрогенератора будет низок. В целях устранения этого недостатка в известном ветрогенераторе используется два статора и установлено коммутирующее устройство с возможностью переключения обмоток статора (якоря) последовательно или параллельно в зависимости от скорости ветра. Использование двух статоров и коммутирующего устройства ухудшает массогабаритные показатели и усложняет конструкцию ветрогенератора.
Задачей предлагаемого изобретения является улучшение массогабаритных показателей при одновременном повышении КПД и упрощении конструкции ветрогенератора.
Техническим результатом заявленного изобретения является уменьшение осевых и диаметральных размеров ветрогенератора, снижение потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или ветра) в электрическую энергию постоянного тока, повышение чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока), повышение жесткости конструкции.
Технический результат достигается тем, что в вентильном ветрогенераторе постоянного тока, содержащем статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, статор, магнитопровод якоря и ротор выполняются в форме усеченного конуса, при этом основание статора выполняется в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образуется наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закрепляется на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря устанавливается передний подшипниковый узел, при этом боковая поверхность ротора выполняется с лопатками изогнутой формы, передняя часть ротора выполняется с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закрепляются на внутренней поверхности ротора, при этом ротор жестко закрепляется на вращающейся оси, устанавливаемой в переднем и заднем подшипниковых узлах, задний подшипниковый узел устанавливается в неподвижной платформе и закрепляется от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закрепляется на неподвижной платформе.
Улучшение массогабаритных показателей достигается путем уменьшения осевых и диаметральных размеров ветрогенератора за счет выполнения статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнением боковой поверхности ротора с лопатками изогнутой формы, жестким закреплением постоянных магнитов индуктора на внутренней поверхности ротора.
Выполнение статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнение боковой поверхности ротора с лопатками изогнутой формы позволяет не устанавливать ветроколесо (или напорную турбину) для приведения ротора во вращение. В связи с этим осевые и диаметральные размеры всего ветрогенератора в целом уменьшаются, что приводит к улучшению массогабаритных показателей, а именно к уменьшению габаритных размеров, а соответственно, уменьшению расхода электротехнических материалов на изготовление ветрогенератора, а соответственно, и массы всего ветрогенератора.
Повышение КПД ветрогенератора достигается путем снижения потерь энергии при преобразовании механической энергии (например, энергии набегающего воздушного потока или энергии ветра) в электрическую энергию постоянного тока за счет выполнения статора, магнитопровода якоря и ротора в форме усеченного конуса, выполнения боковой поверхности ротора с лопатками изогнутой формы, выполнения передней части ротора с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора. Вследствие выполнения ротора в форме усеченного конуса, а передней части ротора - с обтекателем и вентиляционными отверстиями лобовое сопротивление ротора набегающему воздушному потоку уменьшается. Вентиляционные отверстия препятствуют перегреву ветрогенератора, что также повышает его КПД.
Повышение КПД ветрогенератора достигается также путем повышения чувствительности ветрогенератора к скорости набегающего воздушного потока (уменьшение минимально необходимой для генерирования напряжения скорости набегающего воздушного потока) за счет выполнения ротора и магнитопровода якоря в форме усеченного конуса, выполнения внешней поверхности ротора с лопатками изогнутой формы, а передней части ротора - с обтекателем и вентиляционными отверстиями. Выполнение ротора в форме усеченного конуса с лопатками изогнутой формы на его боковой поверхности при выборе оптимального угла раствора конуса позволяет обеспечить со-направление продольной составляющей отраженного потока с набегающим потоком воздуха, а это в свою очередь позволяет снизить минимально необходимую для производства электроэнергии скорость воздушного потока.
Упрощение конструкции ветрогенератора достигается за счет выполнения основания статора в форме неподвижной платформы, жестко закрепленной на штанге-держателе, жестким закреплением на неподвижной платформе трехфазного двухполупериодного выпрямителя и магнитопровода якоря, в пазы которого уложена трехфазная обмотка якоря, закреплением магнитопровода якоря одной торцевой стороной на неподвижной платформе, выполнением ротора в форме усеченного конуса, выполнением боковой поверхности ротора с лопатками изогнутой формы. Выполнение боковой поверхности ротора с лопатками изогнутой формы позволяет избежать дополнительного изготовления ветроколеса или напорной турбины. Описанная конструкция обеспечивает возможность жесткого закрепления всех элементов ротора на оси вне корпуса (статора). Собранный таким образом вне корпуса (статора) ротор целиком устанавливается в корпус (статор) и закрепляется в нем, при этом исключается необходимость сборки ротора (закрепления на нем постоянных магнитов индуктора) внутри корпуса (статора), что существенно упрощает процесс сборки ветрогенератора, упрощая технологию его изготовления.
Повышение надежности конструкции достигается за счет повышения ее жесткости путем выполнения ротора, ступицы и лопаток напорной турбины единым агрегатом: выполнением боковой поверхности ротора с лопатками изогнутой формы, а передней части ротора - с обтекателем, жестким закреплением ротора на вращающейся оси, устанавливаемой в переднем и заднем подшипниковых узлах. Кроме того, повышение жесткости конструкции достигается за счет выполнения механического соединения всех элементов ротора (постоянных магнитов индуктора, корпуса ротора с лопатками и обтекателем) между собой.
Повышение надежности достигается также закреплением заднего подшипникового узла, установленного в платформе, от перемещения в осевом направлении упорной шайбой.
На фиг. 1 представлен общий вид предлагаемого вентильного ветрогенератора постоянного тока в разрезе; на фиг. 2 - электрическая схема предлагаемого вентильного ветрогенератора постоянного тока.
Вентильный ветрогенератор постоянного тока содержит статор с магнитопроводом 4 якоря, в пазы которого уложена трехфазная обмотка 5 якоря, подключенная к трехфазному двухполупериодному выпрямителю 14, и ротор 1 с постоянными магнитами 2 индуктора. Статор, магнитопровод 4 якоря и ротор 1 выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы 12, жестко закреплено на штанге-держателе 13, а боковая поверхность статора образована наружной стороной магнитопровода 4 якоря с пазами, в которые уложена трехфазная обмотка 5 якоря, при этом магнитопровод 4 якоря одной торцевой стороной жестко закреплен на неподвижной платформе 12, а на противоположной торцевой стороне магнитопровода 4 якоря установлен передний подшипниковый узел 9, при этом боковая поверхность ротора 1 выполнена с лопатками 3 изогнутой формы, передняя часть ротора 1 выполнена с обтекателем 6 и вентиляционными отверстиями 7, расположенными вокруг обтекателя 6 по окружности с центром на оси симметрии ротора 1, а постоянные магниты 2 индуктора жестко закреплены на внутренней поверхности ротора 1, при этом ротор 1 жестко закреплен на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, задний подшипниковый узел 10 установлен в неподвижной платформе 12 и закреплен от перемещения в осевом направлении упорной шайбой 11, а трехфазный двухполупериодный выпрямитель 14 жестко закреплен на неподвижной платформе 12.
Ротор 1, боковая поверхность которого выполнена с лопатками 3 изогнутой формы, образует воздушную турбину. Жестко закрепленный на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, ротор 1 может свободно вращаться.
Обтекатель 6 ротора 1 служит для направления набегающего воздушного потока через вентиляционные отверстия 7 во внутреннюю полость ветрогенератора для его охлаждения. Штанга-держатель 13 предназначена для закрепления ветрогенератора, например, на подвижном локальном объекте.
Вентильный ветрогенератор постоянного тока (ВВГПТ) работает следующим образом. Механическая энергия вращения поступает в ВВГПТ от набегающего воздушного потока. При движении подвижного локального объекта набегающий воздушный поток разделяется на два контура. Воздушный поток первого воздушного контура, который обтекает внешнюю поверхность ротора 1, жестко закрепленного на вращающейся оси 8, установленной в переднем 9 и заднем 10 подшипниковых узлах, воздействует на лопатки 3 изогнутой формы и приводит ротор 1 во вращение. Воздушный поток второго воздушного контура, направленный обтекателем 6 ротора 1 через вентиляционные отверстия 7 во внутреннюю полость ветрогенератора, охлаждает расположенные во внутренней полости ветрогенератора узлы (передний 9 и задний 10 подшипниковые узлы, постоянные магниты 2 индуктора, магнитопровод 4 с трехфазной обмоткой 5 якоря, трехфазный двухполупериодный выпрямитель 14).
При вращении ротора 1 с жестко закрепленными на его внутренней поверхности постоянными магнитами 2 индуктора магнитный поток постоянных магнитов 2 индуктора взаимодействует с трехфазной обмоткой 5 якоря, уложенной в пазы магнитопровода 4 якоря, жестко закрепленного одной торцевой стороной на неподвижной платформе 12, которая жестко закреплена на штанге-держателе 13.
В результате этого взаимодействия в трехфазной обмотке 5 якоря генератора наводится трехфазная система ЭДС, которая выпрямляется трехфазным двухполупериодным выпрямителем 14 и подается в сеть.
Упорная шайба 11 удерживает подшипниковый узел 10 от перемещения в осевом направлении.
Claims (1)
- Вентильный ветрогенератор постоянного тока, содержащий статор с магнитопроводом якоря, в пазы которого уложена трехфазная обмотка якоря, подключенная к трехфазному двухполупериодному выпрямителю, и ротор с постоянными магнитами индуктора, отличающийся тем, что статор, магнитопровод якоря и ротор выполнены в форме усеченного конуса, при этом основание статора выполнено в форме неподвижной платформы, жестко закрепленной на штанге-держателе, а боковая поверхность статора образована наружной стороной магнитопровода якоря с пазами, в которые уложена трехфазная обмотка якоря, при этом магнитопровод якоря одной торцевой стороной жестко закреплен на неподвижной платформе, а на противоположной торцевой стороне магнитопровода якоря установлен передний подшипниковый узел, при этом боковая поверхность ротора выполнена с лопатками изогнутой формы, передняя часть ротора выполнена с обтекателем и вентиляционными отверстиями, расположенными вокруг обтекателя по окружности с центром на оси симметрии ротора, а постоянные магниты индуктора жестко закреплены на внутренней поверхности ротора, при этом ротор жестко закреплен на вращающейся оси, установленной в переднем и заднем подшипниковых узлах, задний подшипниковый узел установлен в неподвижной платформе и закреплен от перемещения в осевом направлении упорной шайбой, а трехфазный двухполупериодный выпрямитель жестко закреплен на неподвижной платформе.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016141374A RU2633356C1 (ru) | 2016-10-20 | 2016-10-20 | Вентильный ветрогенератор постоянного тока |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016141374A RU2633356C1 (ru) | 2016-10-20 | 2016-10-20 | Вентильный ветрогенератор постоянного тока |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2633356C1 true RU2633356C1 (ru) | 2017-10-12 |
Family
ID=60129471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016141374A RU2633356C1 (ru) | 2016-10-20 | 2016-10-20 | Вентильный ветрогенератор постоянного тока |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2633356C1 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2688925C1 (ru) * | 2018-03-22 | 2019-05-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Стабилизированный вентильный аксиально-конический ветрогенератор постоянного тока |
RU2689211C1 (ru) * | 2018-03-22 | 2019-05-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Стабилизированный вентильный аксиально-радиальный ветрогенератор постоянного тока |
RU2736326C1 (ru) * | 2020-03-11 | 2020-11-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Бесконтактный двухпакетный ветрогенератор постоянного тока |
RU2738435C1 (ru) * | 2020-03-11 | 2020-12-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Вентильный ветрогенератор постоянного тока |
RU2789817C1 (ru) * | 2022-08-22 | 2023-02-10 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Асинхронизированный синхронный аксиально-радиальный ветрогенератор переменного тока |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3244719A1 (de) * | 1982-12-03 | 1984-06-07 | GST Gesellschaft für Systemtechnik mbH, 4300 Essen | Windgenerator |
SU1737161A1 (ru) * | 1988-05-24 | 1992-05-30 | Предприятие П/Я М-5356 | Отвод центробежного насоса |
RU2168062C1 (ru) * | 1999-12-07 | 2001-05-27 | Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева" | Ветрогенератор |
RU2245458C1 (ru) * | 2003-06-16 | 2005-01-27 | Воронежский государственный технический университет | Ветроэлектрогенератор |
RU71386U1 (ru) * | 2007-05-31 | 2008-03-10 | Александр Петрович Богила | Ветроэнергетическая установка с вертикальным ротором |
US20110187120A1 (en) * | 2003-05-30 | 2011-08-04 | Northern Power Systems, Inc. | Wind Turbine/Generator Set Having A Stator Cooling System Located Between Stator Frame and Active Coils |
US8426995B2 (en) * | 2011-11-02 | 2013-04-23 | General Electric Company | Wind turbine generator and wind turbine |
JP5679603B2 (ja) * | 2012-09-27 | 2015-03-04 | インドゥストリア メタルルヒカ ぺスカルモナ エス.エー.アイ.シー. ワイ エフ. | 風力駆動機械 |
-
2016
- 2016-10-20 RU RU2016141374A patent/RU2633356C1/ru active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3244719A1 (de) * | 1982-12-03 | 1984-06-07 | GST Gesellschaft für Systemtechnik mbH, 4300 Essen | Windgenerator |
SU1737161A1 (ru) * | 1988-05-24 | 1992-05-30 | Предприятие П/Я М-5356 | Отвод центробежного насоса |
RU2168062C1 (ru) * | 1999-12-07 | 2001-05-27 | Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева" | Ветрогенератор |
US20110187120A1 (en) * | 2003-05-30 | 2011-08-04 | Northern Power Systems, Inc. | Wind Turbine/Generator Set Having A Stator Cooling System Located Between Stator Frame and Active Coils |
RU2245458C1 (ru) * | 2003-06-16 | 2005-01-27 | Воронежский государственный технический университет | Ветроэлектрогенератор |
RU71386U1 (ru) * | 2007-05-31 | 2008-03-10 | Александр Петрович Богила | Ветроэнергетическая установка с вертикальным ротором |
US8426995B2 (en) * | 2011-11-02 | 2013-04-23 | General Electric Company | Wind turbine generator and wind turbine |
EP2590304A2 (en) * | 2011-11-02 | 2013-05-08 | GE Wind Energy GmbH | Wind turbine generator and wind turbine |
JP5679603B2 (ja) * | 2012-09-27 | 2015-03-04 | インドゥストリア メタルルヒカ ぺスカルモナ エス.エー.アイ.シー. ワイ エフ. | 風力駆動機械 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2688925C1 (ru) * | 2018-03-22 | 2019-05-23 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Стабилизированный вентильный аксиально-конический ветрогенератор постоянного тока |
RU2689211C1 (ru) * | 2018-03-22 | 2019-05-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Стабилизированный вентильный аксиально-радиальный ветрогенератор постоянного тока |
RU2736326C1 (ru) * | 2020-03-11 | 2020-11-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Бесконтактный двухпакетный ветрогенератор постоянного тока |
RU2738435C1 (ru) * | 2020-03-11 | 2020-12-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Вентильный ветрогенератор постоянного тока |
RU2789817C1 (ru) * | 2022-08-22 | 2023-02-10 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный технологический университет" (ФГБОУ ВО "КубГТУ") | Асинхронизированный синхронный аксиально-радиальный ветрогенератор переменного тока |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2633356C1 (ru) | Вентильный ветрогенератор постоянного тока | |
US8461730B2 (en) | Radial flux permanent magnet alternator with dielectric stator block | |
US11705797B2 (en) | Electromagnetic generator and method of using same | |
WO2011095066A1 (zh) | 一种用于垂直轴盘式电机的磁悬浮支撑结构 | |
WO1998044620A1 (fr) | Generateur a aimant permanent | |
CN211089408U (zh) | 一种无人机用外转多级并串永磁无铁芯电机 | |
US10027189B2 (en) | Electric rotating machine | |
EP3352347B1 (en) | Permanent magnet (pm) brushless machine with outer rotor | |
US20110049902A1 (en) | Air cooled brushless wind alternator | |
JP5759618B2 (ja) | 水力発電装置 | |
KR101435112B1 (ko) | 판상 구조를 갖는 발전기 | |
EP3726711B1 (en) | Brushless motor-generator | |
RU2623214C1 (ru) | Аксиальная многофазная двухвходовая бесконтактная электрическая машина-генератор | |
RU2538101C2 (ru) | Дискообразный инверсионный генератор и ветроэнергетическое генерирующее оборудование, включающее его | |
RU2658316C1 (ru) | Многофазный ветрогенератор переменного тока | |
US11108311B2 (en) | Brushless motor-generator having a spherical stator and spherical windings with displaced poles | |
RU2546892C1 (ru) | Вертикально-осевая ветроустановка | |
CN108539944B (zh) | 盘式永磁同步排风机电机 | |
US9194373B2 (en) | Air cooling of wind turbine generator | |
WO2011113143A1 (en) | Components for generators, their use and stator mounting | |
RU2605204C1 (ru) | Безвальный генератор | |
CN109687675B (zh) | 一种轴向结构双凸极电机 | |
CN107528442B (zh) | 航空内装式永磁起动发电机 | |
WO2012121685A2 (ru) | Тихоходный многополюсный синхронный генератор | |
US9331535B1 (en) | Radial flux alternator |