[go: up one dir, main page]

RU2624751C1 - Способ цианистого выщелачивания золота и серебра - Google Patents

Способ цианистого выщелачивания золота и серебра Download PDF

Info

Publication number
RU2624751C1
RU2624751C1 RU2016113976A RU2016113976A RU2624751C1 RU 2624751 C1 RU2624751 C1 RU 2624751C1 RU 2016113976 A RU2016113976 A RU 2016113976A RU 2016113976 A RU2016113976 A RU 2016113976A RU 2624751 C1 RU2624751 C1 RU 2624751C1
Authority
RU
Russia
Prior art keywords
leaching
cyanide
gold
silver
oxidizing agent
Prior art date
Application number
RU2016113976A
Other languages
English (en)
Inventor
Владимир Геннадьевич Лобанов
Евгений Иванович Тимофеев
Фарит Минниахметович Набиуллин
Владимир Борисович Начаров
Александр Витальевич Третьяков
Николай Александрович Филонов
Сергей Валерьевич Миков
Владимир Николаевич Горбут
Ольга Юрьевна Маковская
Александр Михайлович Старков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Общество с ограниченной ответственностью "БЕРЕЗОВСКИЙ РУДНИК"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина", Общество с ограниченной ответственностью "БЕРЕЗОВСКИЙ РУДНИК" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2016113976A priority Critical patent/RU2624751C1/ru
Application granted granted Critical
Publication of RU2624751C1 publication Critical patent/RU2624751C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

Изобретение относится к гидрометаллургии и может быть использовано при выщелачивании металлов из руд, концентратов и хвостов обогащения. Способ может быть использован в процессах переработки сырья благородных металлов, в частности, при цианистом выщелачивании золота и серебра из руд и концентратов. Исходное сырье обрабатывают выщелачивающим раствором, содержащим цианид и окислитель, в качестве которого используют заменители кислорода, например перекись водорода. Окислитель добавляют в количестве, обеспечивающем окислительно-восстановительный потенциал выщелачивающего раствора (-0,3)÷(-0,5) В. Концентрация цианида в выщелачивающем растворе составляет 1-10 г/л. Выщелачивание ведут при температуре 40-60°С. Скорость растворения металлов в результате возрастает в 2-3 раза в сравнении с традиционными режимами. 1 з.п. ф-лы, 3 табл.

Description

Изобретение относится к гидрометаллургии и может быть использовано при выщелачивании благородных металлов из руд, концентратов и хвостов обогащения.
Золото, металл крайне устойчивый к химическому воздействию, растворяется только в том случае, если раствор содержит окислитель и лиганд, связывающий золото в прочный комплекс. Ни один из компонентов по отдельности не эффективен. Сочетание лиганда и окислителя, обеспечивающих селективное растворение ценных компонентов, называется выщелачивающей системой.
Выбор определенной выщелачивающей системы зависит от различных факторов, в том числе от стоимости компонентов, технологичности, безопасности для окружающей среды и коррозии оборудования. Для горнодобывающих процессов основным фактором выбора часто является селективность, с которой выщелачивающая система воздействует на перерабатываемое сырье, и инертность в отношении технологического оборудования.
Для выщелачивания золота и серебра из минерального и вторичного сырья известно и в разной мере апробировано множество систем лиганд/окислитель: тиомочевина и тиоцианат с ионами трехвалентного железа, сульфит, тиосульфат натрия, сульфат меди (II) и аммиак в сочетании с кислородом, хлорид и гипохлорит натрия, бромат, бромид натрия и бром, йодид и йод и др.
В практической металлургии для извлечения золота из руд и концентратов наиболее широко используется система, представляющая собой сочетание цианида натрия (калия) в качестве лиганда с воздухом (кислородом) в качестве окислителя. Термодинамической основой предпочтительного применения цианидов является исключительная прочность образующихся комплексов. Даже сравнительно низкий окислительный потенциал кислорода в водных растворах (+0,4 В) при атмосферном давлении достаточен для окисления и перевода золота в цианистый комплекс.
Чрезвычайно низкая растворимость кислорода в водных растворах ограничивает кинетику цианистого выщелачивания, в т.ч. при высоких концентрациях цианида и при нагревании. Вследствие дисперсности и повышенной вязкости пульпы растворимость кислорода в ней еще более понижена, а диффузия к поверхности частиц золота затруднена. При переработке сульфидных концентратов частицы минералов заметно окисляются, на что расходуется кислород, а процесс растворения золота замедляется дополнительно. Поэтому при выщелачивании пульп особое значение приобретает непрерывное насыщение их кислородом.
Для увеличения скорости выщелачивания цианистые растворы насыщают кислородом под давлением из баллонов или проводят процесс в автоклавном режиме (1. Масленицкий И.Н., Чугаев Л.Г. и др. Металлургия благородных металлов. - М.: Металлургия, 1987 г., 366 с.).
Известны способы кучного выщелачивания золотосодержащих руд цианистыми растворами с повышенной концентрацией окислителя в растворе, достигаемой предварительным накислороживанием выщелачивающих растворов перед цианированием (2. Барченков В.В. Технология извлечения благородных металлов из руд и концентратов с применением активированного угля. - Улан-Удэ: 1997. - С. 68-70. 3. Фазлуллин М.И. Кучное выщелачивание благородных металлов. - М.: Академия горных наук, 2001. - С. 215-221, 441-448).
Среди способов интенсификации процессов выщелачивания весьма привлекательны способы с применением ультразвуковых воздействий. Ультразвуковая обработка позволяет освобождать поверхность рудных частиц от всевозможных минеральных покрытий, снижать диффузионные сопротивления в растворах, ускорять обновление растворов вокруг частиц, интенсивно накислороживать растворы и, в ряде случаев, существенно сокращать длительность выщелачивания (4. Черных С.И., Рыбакова О.И., Лебедев Н.М., Жирнова Т.И. К вопросу изучения влияния ультразвука, магнитных полей и электрического тока на флотацию золота. Цветная металлургия 6, 2003, с. 15).
Отмеченные приемы интенсификации цианирования сопряжены с дополнительными затратами, аппаратурно усложняют процесс и, вместе с тем, ускоряют выщелачивание незначительно.
Более радикальная интенсификация достигается при использовании альтернативных растворимых и нерастворимых окислителей.
Известен способ кучного выщелачивания золота, включающий обработку минерального сырья выщелачивающим раствором в два этапа; при этом на втором этапе используют раствор, содержащий цианид и перекись водорода, причем концентрация цианида натрия достигает 0,1%, а количественное соотношение цианида и перекиси водорода составляет от 5:1 до 10:1 (5. Патент РФ 2361076).
Данный способ рекомендуется для кучного выщелачивания золота и предполагает использование доступного окислителя. В указанном диапазоне соотношений концентраций цианида и перекиси достигается весьма существенное ускорение выщелачивания.
Наиболее близким к предлагаемому является способ выщелачивания золота из руд цианистыми растворами с применением заменителей кислорода, таких как перекись натрия, перекись бария, озон, бромистый цианид (6. Стрижко Л.С. Металлургия золота и серебра. - М.: МИСИС, 2001. - С. 39). Перекись натрия и бромистый цианид хорошо растворимы в водных растворах. Их применение позволяет резко повысить окислительный потенциал системы в сравнении с кислородом. Озон растворяется в меньшей степени, но его исключительно высокая окисляющая способность также способствует интенсификации цианирования. Перекись бария плохо растворима, но, с некоторой скоростью, разлагается с выделением кислорода, чем и способствует повышению скорости выщелачивания.
Недостатком указанного способа является недостаточное ускорение процесса.
Настоящее изобретение направлено на увеличение скорости выщелачивания золота и серебра и сокращение продолжительности процесса.
Технический результат заключается в создании оптимального значения окислительного потенциала выщелачивающей системы, достигаемого совокупным повышением концентраций цианида, перекиси водорода и нагревом выщелачивающего раствора, обуславливающих, в итоге, ускорение процесса цианирования.
Указанная задача достигается при использовании способа извлечения золота и серебра из руд и концентратов, включающего обработку исходного сырья выщелачивающим раствором, содержащим цианид и окислитель, отличающегося тем, что окислитель добавляют в количестве, обеспечивающем окислительно-восстановительный потенциал выщелачивающего раствора положительнее - 0,3÷-0,5 В, концентрация цианида в выщелачивающем растворе составляет 1-10 г/л, а выщелачивание ведут при температуре 40-60°С. В частном случае в качестве окислителя используют перекись водорода с концентрацией в выщелачивающем растворе 1-3 г/л.
Как отмечено выше, ускорение процесса цианистого выщелачивания благородных металлов достигается повышением концентраций участвующих в реакции реагентов в выщелачивающем растворе - цианида и окислителя, а также интенсификацией перемешивания и повышением температуры. В традиционных режимах цианирования лимитирующим фактором растворения золота и серебра является концентрация кислорода (окислителя) в выщелачивающих растворах. В этих условиях повышение концентрации только цианида положительного эффекта не приносит. Повышение температуры ускоряет собственно химическую реакцию, но по известным физическим законам сопровождается резким снижением растворимости кислорода в выщелачивающем растворе. По указанной причине на практике процесс ведут без целевого нагрева.
В способах, предусматривающих использование альтернативных, более действенных окислителей, авторы усматривают и обсуждают ускорение процесса в целом, достигаемого только повышением окислительного потенциала выщелачивающей системы. Появляющаяся при этом возможность и целесообразность дополнительного ускорения процесса за счет двух других факторов - концентрации цианида и температуры не используется.
При анализе выщелачивающей системы следует обратить внимание на двойственную роль окислителя. Целевое назначение кислорода и альтернативных окислителей - акцептировать электроны, донором которых является окисляемое золото.
Figure 00000001
Чем активнее окислитель, чем выше его окисляющая способность и концентрация в выщелачивающем растворе, тем большей скорости окисления следует ожидать. Вместе с тем, при достаточном окислительном потенциале, например в присутствии перекиси водорода, помимо золота, может окисляться и цианид:
Figure 00000002
Приведенная реакция является химической основой широко используемого метода обезвреживания сбросных цианистых растворов (7. Патент США N 3617567).
Таким образом, само по себе введение более сильного, чем кислород, окислителя, являясь основой ускорения цианистого выщелачивания, имеет ограничение. Вполне очевидно, что ограничивающим фактором является окислительно-восстановительный потенциал (ОВП) выщелачивающей системы. Этот параметр должен обеспечивать интенсификацию окисления золота (реакция 1), но быть меньше значения, при котором становится возможным окислительное разложение цианида (реакция 2).
Окислительные потенциалы известных и отмеченных выше окислителей и их предельные концентрации различны. В практическом применении критерием является значение ОВП, являющееся производным от значения стандартного ОВП окислителя и его концентрации в выщелачивающей системе. Значения стандартных значений ОВП полуреакций окисления золота и циан-иона, а также ОВП, характеризующие окислительный потенциал кислорода, перекиси, бромат-иона, озона, приведены в таблице.
Figure 00000003
Из приведенных данных следует, что:
- термодинамически в цианистом растворе золото окислить легче, чем циан-ион;
- кислород по значению ОВП значительно уступает альтернативным окислителям.
Специальные исследования показали, что независимо от вида используемого окислителя, но при разных концентрациях, окислительное разложение цианида наблюдается при достижении ОВП -0,3÷-0,5 В. Очевидно, что при цианировании концентрация альтернативного окислителя должна быть меньше, чем та, при которой достигается данный ОВП.
При выборе альтернативного окислителя предпочтение следует отдавать перекиси водорода, как наиболее доступного и экологически нейтрального реагента. Опыты показали, что при замене кислорода перекисью при прочих равных условиях наблюдается ускорение растворения золота в 1,5-2 раза. Заметное окисление цианида начинается при концентрации перекиси 3-5 г/л; это соответствует значению ОВП - 0,4 В.
Чрезмерно высокий ОВП озона и высокая стоимость исключает его использование, а перекись бария плохо растворима и фактическое ускорение процесса при использовании данного окислителя существенно меньше, чем при использовании перекиси водорода или бромата.
Повышенная до допустимого уровня концентрация окислителя предоставляет возможности дополнительно ускорить процесс выщелачивания использованием более концентрированных по цианиду растворов. Исследованиями установлено, что в растворах с концентрацией NaCN от 1 до 10 г/л при использовании разных окислителей скорость выщелачивания золота возрастает еще в 1,3-1,5 раза. Использование более высоких концентраций цианида положительного эффекта не оказывает.
При использовании альтернативного окислителя становится целесообразным для ускорения процесса использовать еще один технологический фактор - нагревать пульпу. В соответствии с известными физико-химическими законами скорость большинства химических превращений резко возрастает при повышении температуры. Целевые опыты подтвердили, что при прочих равных условиях цианистое выщелачивание золота и, особенно, серебра при нагревании с 20 до 50°С протекает в 2-3 раза интенсивнее. Чрезмерное повышение температуры технологически неприемлемо и экономически неоправданно. При температуре выше 60°С наблюдается интенсивное испарение растворов и усиливается нежелательная реакция разложения цианида.
Примером реализации предлагаемого способа служат результаты цианистого выщелачивания гравитационных концентратов на опытном участке ООО «Березовский рудник».
Исходный концентрат после усреднения содержал 130 г/т золота и 85 г/т серебра. Золото преимущественно свободное, серебро - металлическое и сульфидное. Крупность исходного материала - 2 мм. Основные минеральные составляющие: пирит (более 90%), галенит, халькопирит, кварц, техногенное железо.
Порции концентрата массой по 300 кг измельчали в мельнице периодического действия в цианистом растворе в течение 1 часа и перемешивали в реакторе с механической мешалкой еще 5 часов. Суммарная продолжительность цианирования при Ж:Т=3:1 и рН=10-11 составила 6 часов.
В опыте по базовому способу окислителем служил кислород воздуха. Ранее установлено, что при указанных условиях базового способа извлечение золота и серебра в раствор достигало 98% и 25% соответственно. Причиной низкого извлечения серебра является его сульфидная форма, весьма устойчивая к воздействию цианистых растворов.
В качестве альтернативного окислителя использовали перекись водорода, перекись натрия, бромат калия, перекись бария, а также кислород из баллона. Расход указанных реагентов контролировали по величине потенциала инертного индикаторного электрода в паре с хлор-серебряным электродом сравнения. При использовании кислорода интенсивность продувки составляла 1 кг/ч.
В опытах с повышенной температурой использовали предварительно нагретые растворы, а по ходу процесса температуру поддерживали автоматически с помощью внешнего источника тепла.
По ходу опытов отбирали пробы растворов, в которых методом атомной адсорбции определяли содержание золота, серебра и цианида. С учетом полученных данных рассчитывали извлечение металлов в раствор и степень разложения цианида. По итогам опытов сопоставляли продолжительность цианирования (Тд), достаточную для достижения указанного выше извлечения золота (98%) в раствор в разных условиях. Данный показатель использовали в качестве критерия скорости. В опытах варьировали типом и концентрациями окислителя, концентрацией цианида и температуры. Условия опытов и результаты приведены в таблицах. Значения потенциалов приведены в отношении к нормальному водородному электроду.
В первой серии опытов проводили цианирование с различными окислителями, расход которых соответствовал указанному значению ОВП.
Figure 00000004
Во второй серии опытов оценили совокупное влияние концентрации перекиси водорода, цианида реагентов и температуры на скорость выщелачивания золота. При этом сравнили степень выщелачивания серебра. В способе прототипа рассмотрели вариант использования в качестве окислителя перекиси бария.
Figure 00000005
При повышенной концентрации перекиси (5 г/л) основная часть цианида окислилась, а извлечение золота не превысило 75%.
Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения за счет повышенного окислительного потенциала выщелачивающей системы, в частности при использовании перекиси водорода, повышенной концентрации цианида и нагрева позволяет увеличить скорость выщелачивания золота и серебра в раствор в 2-3 раза по сравнению со способом прототипа. В рекомендуемом диапазоне параметров выщелачивающая система удовлетворительно сохраняет свои функциональные свойства, цианид не разрушается.

Claims (2)

1. Способ цианистого выщелачивания золота и серебра из руд и концентратов, включающий обработку исходного сырья выщелачивающим раствором, содержащим цианид и окислитель, в качестве которого используют заменители кислорода, отличающийся тем, что окислитель добавляют в количестве, обеспечивающем окислительно-восстановительный потенциал выщелачивающего раствора в диапазоне (-0,3)÷(-0,5) В, концентрация цианида в выщелачивающем растворе составляет 1-10 г/л, а выщелачивание ведут при температуре 40-60°C.
2. Способ по п. 1, отличающийся тем, что в качестве окислителя используют перекись водорода с концентрацией в выщелачивающем растворе 1-3 г/л.
RU2016113976A 2016-04-11 2016-04-11 Способ цианистого выщелачивания золота и серебра RU2624751C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016113976A RU2624751C1 (ru) 2016-04-11 2016-04-11 Способ цианистого выщелачивания золота и серебра

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016113976A RU2624751C1 (ru) 2016-04-11 2016-04-11 Способ цианистого выщелачивания золота и серебра

Publications (1)

Publication Number Publication Date
RU2624751C1 true RU2624751C1 (ru) 2017-07-06

Family

ID=59312832

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016113976A RU2624751C1 (ru) 2016-04-11 2016-04-11 Способ цианистого выщелачивания золота и серебра

Country Status (1)

Country Link
RU (1) RU2624751C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0358004A2 (de) * 1988-09-09 1990-03-14 Degussa Aktiengesellschaft Verfahren zur Laugung von Edelmetallen mit einer cyanidhaltigen Laugungslösung und Wasserstoffperoxid
US5275791A (en) * 1986-10-31 1994-01-04 Degussa Aktiengesellschaft Process for the leaching of gold and silver with cyanidic leaching solution and controlled addition of hydrogen peroxide
RU2071980C1 (ru) * 1992-12-29 1997-01-20 Абрамина Елена Васильевна Способ извлечения благородных металлов из руд и концентратов
RU2086687C1 (ru) * 1995-05-31 1997-08-10 Товарищество с ограниченной ответственностью с иностранными инвестициями "Уралэф" Способ цианистого выщелачивания благородных металлов
RU2265068C1 (ru) * 2004-10-07 2005-11-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) (МИСиС) Способ переработки упорного минерального сырья, содержащего металлы

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275791A (en) * 1986-10-31 1994-01-04 Degussa Aktiengesellschaft Process for the leaching of gold and silver with cyanidic leaching solution and controlled addition of hydrogen peroxide
EP0358004A2 (de) * 1988-09-09 1990-03-14 Degussa Aktiengesellschaft Verfahren zur Laugung von Edelmetallen mit einer cyanidhaltigen Laugungslösung und Wasserstoffperoxid
RU2071980C1 (ru) * 1992-12-29 1997-01-20 Абрамина Елена Васильевна Способ извлечения благородных металлов из руд и концентратов
RU2086687C1 (ru) * 1995-05-31 1997-08-10 Товарищество с ограниченной ответственностью с иностранными инвестициями "Уралэф" Способ цианистого выщелачивания благородных металлов
RU2265068C1 (ru) * 2004-10-07 2005-11-27 Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) (МИСиС) Способ переработки упорного минерального сырья, содержащего металлы

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СТРИЖКО Л.С. Металлургия золота и серебра.-Москва: МИСИС, 2001, с.39. *

Similar Documents

Publication Publication Date Title
Li et al. A review of gold leaching in acid thiourea solutions
Rees et al. The role of metal-cyanide species in leaching gold from a copper concentrate
Sparrow et al. Cyanide and other lixiviant leaching systems for gold with some practical applications
CA2520039C (en) Precious metal recovery using thiocyanate lixiviant
Liu et al. A systematic review of gold extraction: Fundamentals, advancements, and challenges toward alternative lixiviants
US4980134A (en) Leaching process
Zhang et al. Dual lixiviant leaching process for extraction and recovery of gold from ores at room temperature
Hasab et al. Simultaneous sulfide oxidation and gold leaching of a refractory gold concentrate by chloride–hypochlorite solution
CN108103310B (zh) 一种含硫金矿的二氧化氯预氧化方法
Rasskazova et al. Stage-activation leaching of oxidized copper—gold ore: theory and technology
Parga et al. Pressure cyanide leaching for precious metals recovery
Lorenzen et al. The mechanism of leaching of gold from refractory ores
Melashvili et al. Study of gold leaching with bromine and bromide and the influence of sulphide minerals on this reaction
Mahmoud et al. Improved recovery of gold and silver from thiosulfate solution on activated carbon in presence of ammonium persulfate
RU2624751C1 (ru) Способ цианистого выщелачивания золота и серебра
RU2265068C1 (ru) Способ переработки упорного минерального сырья, содержащего металлы
US5587001A (en) Process for treating iron-containing sulfidic rocks and ores
RU2526069C2 (ru) Способ обезвреживания цианистых растворов
Altinkaya Leaching and recovery of gold from low grade raw materials in cyanide-free media
RU2657254C1 (ru) Способ извлечения золота из упорных серебросодержащих сульфидных руд концентратов и вторичного сырья
RU2758915C2 (ru) Способ извлечения золота из золотосодержащего сырья
RU2312908C2 (ru) Способ извлечения цветных, редких и благородных металлов из упорного минерального сырья
AU2003269743B2 (en) Method for recovery of nonferrous, rare and precious metals from robust minerals
RU2354819C1 (ru) Способ выщелачивания окисленных и смешанных медьсодержащих руд и продуктов их обогащения
US649628A (en) Extraction of gold or other precious metals from slimes.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180412