RU2265068C1 - Способ переработки упорного минерального сырья, содержащего металлы - Google Patents
Способ переработки упорного минерального сырья, содержащего металлы Download PDFInfo
- Publication number
- RU2265068C1 RU2265068C1 RU2004129476/02A RU2004129476A RU2265068C1 RU 2265068 C1 RU2265068 C1 RU 2265068C1 RU 2004129476/02 A RU2004129476/02 A RU 2004129476/02A RU 2004129476 A RU2004129476 A RU 2004129476A RU 2265068 C1 RU2265068 C1 RU 2265068C1
- Authority
- RU
- Russia
- Prior art keywords
- leaching
- raw materials
- fact
- mineral raw
- solution
- Prior art date
Links
- 229910052500 inorganic mineral Inorganic materials 0.000 title claims abstract description 62
- 239000011707 mineral Substances 0.000 title claims abstract description 62
- 238000000034 method Methods 0.000 title claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 26
- 239000002184 metal Substances 0.000 title claims abstract description 26
- 238000002386 leaching Methods 0.000 claims abstract description 74
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 32
- 239000001301 oxygen Substances 0.000 claims abstract description 32
- 150000002739 metals Chemical class 0.000 claims abstract description 22
- 239000002253 acid Substances 0.000 claims abstract description 10
- 230000000694 effects Effects 0.000 claims abstract description 6
- 239000000243 solution Substances 0.000 claims description 53
- 239000002994 raw material Substances 0.000 claims description 45
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 30
- 239000007800 oxidant agent Substances 0.000 claims description 27
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 26
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 21
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 21
- 238000000605 extraction Methods 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 15
- 239000007790 solid phase Substances 0.000 claims description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 12
- 239000007791 liquid phase Substances 0.000 claims description 10
- 230000001590 oxidative effect Effects 0.000 claims description 8
- 229910001447 ferric ion Inorganic materials 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 238000009210 therapy by ultrasound Methods 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 5
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 4
- 239000007864 aqueous solution Substances 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 230000005855 radiation Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 3
- 150000007522 mineralic acids Chemical class 0.000 claims description 3
- 230000010355 oscillation Effects 0.000 claims description 3
- 230000035939 shock Effects 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 3
- 238000009854 hydrometallurgy Methods 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 15
- 238000007254 oxidation reaction Methods 0.000 description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 10
- 229910052802 copper Inorganic materials 0.000 description 10
- 239000010949 copper Substances 0.000 description 10
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 10
- 229910052737 gold Inorganic materials 0.000 description 10
- 239000010931 gold Substances 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 239000012141 concentrate Substances 0.000 description 7
- -1 tailings Substances 0.000 description 7
- 229910052725 zinc Inorganic materials 0.000 description 7
- 239000011701 zinc Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 239000012071 phase Substances 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 229910052785 arsenic Inorganic materials 0.000 description 5
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000003642 reactive oxygen metabolite Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910052683 pyrite Inorganic materials 0.000 description 3
- 239000011028 pyrite Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 150000004763 sulfides Chemical group 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- VJRVSSUCOHZSHP-UHFFFAOYSA-N [As].[Au] Chemical compound [As].[Au] VJRVSSUCOHZSHP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 229910052964 arsenopyrite Inorganic materials 0.000 description 2
- MJLGNAGLHAQFHV-UHFFFAOYSA-N arsenopyrite Chemical compound [S-2].[Fe+3].[As-] MJLGNAGLHAQFHV-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005188 flotation Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 239000013067 intermediate product Substances 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910052976 metal sulfide Inorganic materials 0.000 description 2
- 150000002926 oxygen Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052569 sulfide mineral Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical class ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 241000907663 Siproeta stelenes Species 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 229910052933 brochantite Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- ZZBBCSFCMKWYQR-UHFFFAOYSA-N copper;dioxido(oxo)silane Chemical compound [Cu+2].[O-][Si]([O-])=O ZZBBCSFCMKWYQR-UHFFFAOYSA-N 0.000 description 1
- 238000007333 cyanation reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 238000009853 pyrometallurgy Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к гидрометаллургии и обогащению руд, в частности извлечению цветных, редких и благородных металлов из упорного минерального сырья выщелачиванием, к переработке руд, продуктов обогащения и отходов горно-обогатительных и металлургических производств, в том числе концентратов, промпродуктов, хвостов, шлаков, шламов и др. Способ переработки упорного минерального сырья, содержащего металлы, включает выщелачивание упорного минерального сырья в водном растворе кислоты с концентрацией от 1,8 г/дм3 до 50 г/дм3 активным кислородом в присутствии ионов трехвалентного железа и извлечение металлов из получаемых продуктов выщелачивания, достигается повышение степени извлечения металлов из упорного минерального сырья, сокращение времени выщелачивания, снижение энергетических затрат и повышение экологичности переработки. 13 з.п. ф-лы.
Description
Изобретение относится к гидрометаллургии и обогащению руд, в частности извлечению цветных, редких и благородных металлов из упорного минерального сырья, к переработке руд, продуктов обогащения и отходов горно-обогатительных и металлургических производств, в том числе концентратов, промпродуктов, хвостов, шлаков, шламов и др.
Упорное минеральное сырье цветных, редких и благородных металлов, перерабатывается пирометаллургическими, гидрометаллургическими и комбинированными способами (сульфатизирующий обжиг и выщелачивание).
Основными недостатками использования пирометаллургии является высокий расход электроэнергии и образование газов и пыли, имеющих вредное воздействие на окружающую среду.
Гидрометаллургическое извлечение металлов из упорного минерального сырья осуществляется выщелачиванием с использованием сильных окислителей (фтора, хлора, аммиака, азотной и азотистой кислот и др.), оказывающих вредное воздействие на окружающую среду и сопровождающихся сложной технологией извлечения металлов из растворов выщелачивания.
Выщелачивание сульфидных металлов в сернокислой среде трехвалентным железом является малозатратным и экологичным способом, так как в составе руд и продуктов, содержащих сульфиды металлов, присутствуют соединения, при окислении которых в растворе образуются необходимые для осуществления выщелачивания серная кислота и ионы железа.
Известен способ выщелачивания упорного минерального сырья трехвалентным железом в сернокислой среде с регенерацией окислителя железоокисляющими мезофильными бактериями при температуре 28-35°С (СА 2282848, С 22 В 3/18, опублик. 20.03.2001) или термофильными бактериями при температуре от 45 до 68°С (WO 0071763, С 22 В 3/18, опублик. 30.11.2000).
Недостатками способов являются: низкая скорость выщелачивания (время чанового выщелачивания составляет 75-120 часов) и сложность управления процессами, протекающими с участием живых микроорганизмов. Технологические параметры процесса ограничены условиями, необходимыми для поддержания окислительной активности бактерий, содержание твердой фазы при чановом выщелачивании не превышает 10-25%, необходима аэрация кислородсодержащим газом.
Активный кислород является наиболее экологически безвредным соединением, обладающим сильными окислительными свойствами. Окислительный потенциал активного кислорода выше, чем у хлора.
Активные формы кислорода содержат неустойчивые, возбужденные атомы кислорода, имеющие неспаренные электроны, и отличаются чрезвычайно высокой реакционной способностью. Активный кислород содержится или образуется при взаимодействии в озоне, перекиси водорода, синглетном или атомарном кислороде и кислородсодержащих радикалах - супероксидный, гидроперекисный, гидроксильный др.
Способ получения золота из упорных руд, преимущественно углеродсодержащих и арсенопиритных (US 3764650, С 22 В 11/04, опублик. 09.10.1973) заключается в выщелачивании в течение 4-16 часов в растворе кислоты с рН 0,5-1,8 озоном в присутствии соли хлорида с извлечением золота в виде комплекса хлорида и позволяет извлекать золото в один этап - вскрытие минералов, в которых находится золото, и его растворение. К недостаткам данного изобретения относится накопление в растворе выщелачивания ионов соли хлорида, ограничивающее повторное его использование, утилизацию раствора выщелачивания и выделение золота из раствора.
Способ селективного выщелачивания металлов (ЕР 1281779, С 22 В 011/00, опублик. 03.02.2003), в котором минеральное сырье контактирует в водном растворе с окислителями последовательно в следующем порядке: в присутствии кислорода, затем - кислорода и озона и далее - кислорода, озона и третьего реагента. После применения каждого шага производится разделение твердой и жидкой фаз. Недостатками способа является сложная технология выщелачивания, включающая три операции разделения и недостаточная селективность извлечения металлов. Например, медистые песчаники содержат медь и серебро. Медь находится в окисленных минералах (малахит, брошантит), окисляемых кислотой без кислорода; вторичных сульфидах (халькозин, ковеллин), окисляемых частично серной кислотой, неэффективно окисляемых кислородом, только озоном; очень упорном минерале - халькопирите, который будет окисляться только озоном и более сильными окислителями; в силикате меди - хризоколле, для извлечения меди, из которой в определенных условиях озон и третий окислитель неэффективен. Аналогично серебро будет содержаться во втором и третьем растворе.
Наиболее близким аналогом заявленного изобретения является способ получения драгоценных металлов (US 4752412, С 22 В 11/04, опублик. 1988-06-21), заключающийся в контактировании упорного минерального сырья в жидком растворе с газовой фазой, содержащей активированный кислород, включающий обязательно озон, гидроксил, атомарной кислород, перекись водорода, димеры и тримеры перекиси водорода. Данная газовая фаза, содержащая активированный кислород, получается только в результате воздействия ультрафиолетового излучения.
Недостатком этого способа является использование определенного состава кислородсодержащих окислителей в газовой фазе, который трудно создать, что определяет сложность реализации изобретения. До настоящего времени неизвестны источники ультрафиолетового излучения или другие генераторы активного кислорода, позволяющие получить газовую смесь данного состава.
В изобретении достигаются следующий технический результат: повышение степени извлечения металлов из упорного минерального сырья и повышение технологичности способа.
Кроме того, достигается сокращение времени выщелачивания, снижение энергетических затрат и повышение экологичности переработки.
Указанный технический результат достигается следующим образом.
Способ переработки упорного минерального сырья, содержащего металлы, включает выщелачивание упорного минерального сырья в водном растворе кислоты с концентрацией от 1,8 г/дм3 до 50 г/дм3 активным кислородом в присутствии ионов трехвалентного железа и извлечение металлов из получаемых продуктов выщелачивания.
При этом после выщелачивания упорного минерального сырья осуществляют разделение получаемого продукта на жидкую и твердую фазы и извлечение металлов производят из жидкой и/или твердой фазы.
Кроме того, для выщелачивания используют содержащие или образующие активный кислород окислители: озон, или перекись водорода, или синглетный кислород, или атомарный кислород, или кислородсодержащие радикалы, или смесь, по крайней мере, двух перечисленных окислителей.
В качестве кислородсодержащего радикала может быть использован супероксидный, гидроперекисный, гидроксильный и другие.
Также при выщелачивании упорного минерального сырья используют раствор неорганической кислоты, предпочтительно серной или соляной кислоты.
При этом выщелачивание упорного минерального сырья с использованием окислителя, содержащего или образующего активные формы кислорода, осуществляют при атмосферном давлении при температуре 40-95°С.
Выщелачивание упорного минерального сырья также можно осуществлять при давлении выше атмосферного.
Кроме того, выщелачивание упорного минерального сырья можно осуществлять при ультрафиолетовом облучении.
Также выщелачивание упорного минерального сырья осуществляют с возбуждением в растворе резонансных волн, или колебаний, или ударных волн.
Кроме того, выщелачивание упорного минерального сырья осуществляют с гидродинамическим воздействием на раствор, обеспечивающим режим кавитации.
Выщелачивание упорного минерального сырья также осуществляют с предварительной с ультразвуковой обработкой упорного минерального сырья или (и) ультразвуковой обработкой в процессе его выщелачивания.
Кроме того, выщелачивание упорного минерального сырья осуществляют в гидродинамическом режиме, при закручивании потоков раствора, содержащих газ и твердую фазу.
Выщелачивание упорного минерального сырья можно также осуществлять с использованием вибрационного перемешивания.
При уменьшении скорости выщелачивания упорного минерального сырья производят удаление, по крайней мере, части раствора и замену его новым раствором.
После извлечения металлов из жидкой фазы продукта выщелачивания ее можно повторно использовать в качестве раствора для выщелачивания.
Достижение вышеуказанного технического результата с помощью вышеперечисленных признаков обеспечивается следующим образом.
Окислители, содержащие или образующие активные формы кислорода, имеют высокий окислительный потенциал в кислой среде: озон 2,07 В, перекись водорода 1,77 В, атомарный кислород 2,42 В, ионы пероксида 1,7 В, гидроксила 2,8 В. Окислительный потенциал этих окислителей выше, чем потенциал упорных сульфидных минералов, что определяет их способность окислять упорные минералы.
Озон, перекись водорода, синглетный кислород и другие кислородсодержащие окислители являются нестойкими соединениями и разлагаются с выделением атомарного кислорода, который имеет более высокий окислительный потенциал. Присутствие в растворе ионов трехвалентного железа способствует разложению кислородсодержащих окислителей до атомарного кислорода, катализирует образование активного кислорода с более высоким окислительным потенциалом и таким образом усиливает окислительное действие соединений активных форм кислорода. Кроме того, регенерация трехвалентного железа кислородсодержащими окислителями происходит с образованием атомарного кислорода и трехвалентное железо в растворе кислоты также является окислителем упорных сульфидов металлов. При воздействии на минералы ионы трехвалентного железа принимают электрон и переходят в двухвалентную форму. Окислители, содержащие активные формы кислорода, в процессе выщелачивания регенерируют трехвалентное железо, в результате поддерживается его высокая концентрация, которая определяет высокую скорость окисления минерального сырья.
Осуществление процесса в растворе кислоты позволяет получить высокую скорость и эффективность выщелачивания, так как в кислой среде окислительный потенциал окислителей, содержащих активные формы кислорода, выше, чем в щелочной, ионы трехвалентного железа находятся в растворенном состоянии, в кислой среде повышается растворение газообразных окислителей, например озона и кислорода, и соответственно окисление минералов, которое осуществляется растворенными окислителями.
При концентрации кислоты в растворе менее 1,8 г/дм3 трехвалентное железо выпадает в осадок, выводится из раствора и не окисляет минеральное сырье.
Увеличение концентрации серной кислоты способствует большей растворимости и использованию газообразных окислителей, содержащих активные формы кислорода. При повышении концентрации кислоты выше 50 скорость реакции элементной серы, образующейся при окислении сульфидов снижается, что приводит к накоплению ее на поверхности твердых минеральных частиц и снижению скорости выщелачивания. Кроме того, повышается расход серной кислоты на выщелачивание, так как она не образуется при окислении серы.
Металлы, находящиеся в упорном минеральном сырье, при выщелачивании переходят в раствор или остаются в твердой фазе, становясь после разрушения минералов доступными для извлечения. При выщелачивании минерального сырья цветных металлов они переходят в раствор. При выщелачивании упорных концентратов, содержащих тонковкрапленные в пирите или арсенопирите золото и серебро, минералы, в которых находятся металлы, растворяются, ценные металлы вскрываются и могут быть извлечены. Выщелачивание этих концентратов в растворе соляной кислоты позволяет переводить благородные металлы в раствор.
Извлечение выщелоченных металлов можно производить без разделения продуктов выщелачивания на фазы, например, сорбционным методом, или из твердой и жидкой фазы продукта выщелачивания после их разделения.
Для выщелачивания предлагается использовать неорганическую кислоту, предпочтительно серную кислоту или соляную кислоту.
Преимущественное применение серной кислоты для реализации способа определяется возможностью восполнения затрат на выщелачивание кислоты за счет ее образования при окислении упорных сульфидных минералов из элементной серы.
Использование соляной кислоты при выщелачивании позволяет не только разрушить упорные минералы, в которых тонко вкраплены благородные металлы (золото, серебро и др.), но и одновременно извлекать их в раствор без использования применяемого с этой целью метода цианирования.
Повышение температуры в процессе выщелачивания при атмосферном давлении до 40-95°С позволяет повысить скорость химических реакций окисления и глубину разложения минерального сырья и сократить время переработки.
Выщелачивание упорного минерального сырья при давлении выше атмосферного позволяет повысить растворимость газов, активность окислителей и соответственно скорость процесса.
Ультрафиолетовое облучение при выщелачивании способствует образованию в газовой фазе наиболее активных форм кислорода.
Возбуждение резонансных волн, или колебаний, или ударных волн при выщелачивании упорного минерального сырья позволяет улучшить гидродинамику и интенсифицировать массообменные процессы, в том числе способствует диспергированию газовой фазы, перемешиванию раствора и др.
Гидродинамическое воздействие, обеспечивающее режим кавитации, также как и предварительная с ультразвуковая обработка минерального сырья или/и ультразвуковая обработка в процессе выщелачивания позволяет интенсифицировать окисление упорного минерального сырья посредством активного воздействия на протекание массообменных процессов в растворе.
Гидродинамический режим, при котором потоки содержащего газ раствора вращаются в объеме реактора, обеспечивает наибольшее время пребывания окислителя и соответственно время его взаимодействия с минеральным сырьем, а также растворение газообразного окислителя и его эффективное использование.
Вибрационное перемешивание позволяет диспергировать газовые пузырьки окислителя, увеличивать их время пребывания в объеме раствора, интенсифицировать диффузионные процессы подвода реагентов к поверхности минералов и отвода продуктов реакции, препятствует образованию пленок продуктов реакции на поверхности минералов и способствует их разрушению, что приводит к увеличению скорости и глубины разложения сульфидов.
После осуществления выщелачивания упорного минерального сырья проводят разделение жидкой и твердой фаз, например, фильтрованием, и извлечение металлов из продуктов выщелачивания, из раствора или из твердой фазы.
Удаление, по крайней мере, части раствора, содержащего металлы, и замену его новым раствором позволяет обеспечить градиент концентрации извлекаемых металлов и высокую скорость процесса.
Раствор после выщелачивания содержит кислоту и ионы трехвалентного железа. Использование раствора после разделения твердой и жидкой фаз и извлечения металлов из раствора позволяет снизить расходы на реагенты.
Активные формы кислорода являются наиболее экологичными реагентами, так как имеют небольшое время существования, и при их разложении образуются абсолютно безвредные соединения - молекулярный кислород и вода.
Реализация изобретения не представляет трудностей, так как для выщелачивания минерального сырья озон и активный кислород может подаваться с газовой фазой от любого генератора озона, перекись водорода, ионы гидроксила и пероксида поступать в реактор в жидком виде, а также образовываться в процессе разложения кислородсодержащих окислителей и их взаимодействия в водном растворе.
Конкретные примеры реализации способа.
Пример 1.
Труднообогатимый сульфидный медно-цинково-пиритный промпродукт флотации крупностью - 0,074 мм, содержащий, 14,9% цинка, выщелачивался после предварительной ультразвуковой обработки в воде в количестве, соответствующем содержанию твердого, - 25%, водным раствором серной кислоты с концентрацией, поддерживаемой на уровне 2 г/дм3, и трехвалентного железа при концентрации 20 г/дм3. Выщелачивание осуществляли в чанах с вибрационным перемешиванием в течение 10 часов при температуре 70-75°С с непрерывной подачей перекиси водорода. При уменьшении скорости выщелачивания через каждые 2 часа производили удаление третьей части раствора и замену его раствором с серной кислотой.
В результате выщелачивания содержание цинка в кеке выщелачивания снизилось до 1,2-1,5%, выход твердой фазы составил 67,1%, извлечение цинка в раствор 96,4%.
Выщелачивание медно-цинково-пиритного промпродукта в растворе серной кислоты трехвалентным железом при температуре 70-75°С позволяет получить извлечь цинк на 92% за 25 часов, содержание цинка в кеке выщелачивания 1,5-1,7%.
Выщелачивание промпродукта в растворе серной кислоты перекисью водорода при температуре 70-75°С без трехвалентного железа позволяет получить извлечение цинка за 10 часов выщелачивания 45%, содержание цинка в кеке выщелачивания 2,8-3,4%.
Пример 2.
Медный сульфидный концентрат, содержащий 26,2% меди, подвергался выщелачиванию озоном в чанах при перемешивании в растворе серной кислоты концентрацией 50 г/дм3 и трехвалентного железа концентрацией 12 г/дм3 при температуре 40°С. Выщелачивание осуществлялось с гидроакустическим воздействием на раствор, обеспечивающим режим кавитации и в гидродинамическом режиме, при закручивании потоков раствора, содержащих газ и твердую фазу. Концентрация озона в подаваемой газовой смеси составляла 100 мг/дм3. Время обработки 8 часов. Извлечение меди составляет 96,2%, содержание меди в кеке выщелачивания 0,94%.
Выщелачивание сульфидного медного концентрата озоном в тех же условиях без трехвалентного железа позволяет за 8 часов обработки получить извлечение меди 74,3%, а трехвалентным железом без озона извлечение меди составляет 43,8%.
Пример 3.
Золотомышьяковый упорный концентрат флотации крупностью 100% - 0,074 мм, содержащий 10,2% мышьяка, подвергался выщелачиванию в растворе соляной кислоты концентрацией 30 г/дм3 и трехвалентного железа 20 г/дм3 при температуре 50°С. Для окисления минерального сырья использовались озон и перекись водорода при ультрафиолетовом облучении и с возбуждением в растворе колебаний от волнового генератора.
За 10 часов выщелачивания содержание мышьяка снизилось до 0,45%, извлечение мышьяка составило 98,2%. Извлечение золота в раствор составило 90%.
Выщелачивание золотомышьякого концентрата при тех же условиях трехвалентным железом с подачей кислорода позволяет за 10 часов извлечь в раствор мышьяка 53,2%, золота 68,9%. Выщелачивание с использованием в качестве окислителя озона и перекиси водорода без трехвалентного железа за 10 часов позволяет извлекать мышьяк на 75,9%, золота на 83,5%.
Claims (14)
1. Способ переработки упорного минерального сырья, содержащего металлы, включающий выщелачивание упорного минерального сырья в водном растворе кислоты концентрацией от 1,8 до 50 г/дм3 активным кислородом в присутствии ионов трехвалентного железа и извлечение металлов из получаемых продуктов выщелачивания.
2. Способ по п.1, заключающийся в том, что после выщелачивания упорного минерального сырья осуществляют разделение получаемого продукта на жидкую и твердую фазы и извлечение металлов производят из жидкой и/или твердой фазы.
3. Способ по п.1, заключающийся в том, что для выщелачивания используют содержащие или образующие активный кислород окислители: озон, или перекись водорода, или синглетный кислород, или атомарный кислород, или кислородсодержащие радикалы, или смесь, по крайней мере, двух перечисленных окислителей.
4. Способ по п.1, заключающийся в том, что при выщелачивании упорного минерального сырья используют раствор неорганической кислоты, предпочтительно серной или соляной кислоты.
5. Способ по п.1, заключающийся в том, что выщелачивание упорного минерального сырья осуществляют при атмосферном давлении при температуре 40-95°С.
6. Способ по п.1, заключающийся в том, что выщелачивание упорного минерального сырья осуществляют при давлении выше атмосферного.
7. Способ по п.1, заключающийся в том, что выщелачивание упорного минерального сырья осуществляют при ультрафиолетовом облучении.
8. Способ по п.1, заключающийся в том, что выщелачивание упорного минерального сырья осуществляют с возбуждением в растворе резонансных волн, или колебаний, или ударных волн.
9. Способ по п.1, заключающийся в том, что выщелачивание упорного минерального сырья осуществляют с гидродинамическим воздействием на раствор, обеспечивающим режим кавитации.
10. Способ по п.1, заключающийся в том, что выщелачивание упорного минерального сырья осуществляют с предварительной ультразвуковой обработкой упорного минерального сырья или (и) ультразвуковой обработкой в процессе его выщелачивания.
11. Способ по п.1, заключающийся в том, что выщелачивание упорного минерального сырья осуществляют в гидродинамическом режиме при закручивании потоков раствора, содержащих газ и твердую фазу.
12. Способ по п.1, заключающийся в том, что выщелачивание упорного минерального сырья осуществляют с использованием вибрационного перемешивания.
13. Способ по п.1, заключающийся в том, что при уменьшении скорости выщелачивания упорного минерального сырья производят удаление, по крайней мере, части раствора, содержащего металлы, и замену его новым раствором.
14. Способ по п.2, заключающийся в том, что после извлечения металлов из жидкой фазы продукта выщелачивания ее повторно используют в качестве раствора для выщелачивания.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004129476/02A RU2265068C1 (ru) | 2004-10-07 | 2004-10-07 | Способ переработки упорного минерального сырья, содержащего металлы |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2004129476/02A RU2265068C1 (ru) | 2004-10-07 | 2004-10-07 | Способ переработки упорного минерального сырья, содержащего металлы |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2265068C1 true RU2265068C1 (ru) | 2005-11-27 |
Family
ID=35867695
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2004129476/02A RU2265068C1 (ru) | 2004-10-07 | 2004-10-07 | Способ переработки упорного минерального сырья, содержащего металлы |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2265068C1 (ru) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2339708C1 (ru) * | 2007-04-16 | 2008-11-27 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) | Способ выщелачивания продуктов, содержащих сульфиды металлов |
RU2339706C1 (ru) * | 2007-04-16 | 2008-11-27 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) | Способ гидрометаллургической переработки сульфидных концентратов |
RU2384633C1 (ru) * | 2008-08-19 | 2010-03-20 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский, проектный и конструкторский институт горного дела и металлургии цветных металлов" (ФГУП "Гипроцветмет") | Способ переработки упорного медного сырья, содержащего благородные металлы |
RU2428492C1 (ru) * | 2009-12-17 | 2011-09-10 | Владимир Викторович Бондарь | Способ переработки упорного минерального сырья, содержащего золото, и проходной реактор для его осуществления |
RU2465354C1 (ru) * | 2011-04-13 | 2012-10-27 | Учреждение Российской академии наук Центр геофизических исследований Владикавказского научного центра РАН и Правительства Республики Северная Осетия - Алания (ЦГИ ВНЦ РАН и РСО-А) | Способ извлечения золота из сульфидных руд |
RU2468101C2 (ru) * | 2011-02-14 | 2012-11-27 | Учреждение Российской Академии Наук Центр Геофизических Исследований Владикавказского Научного Центра Ран И Правительства Республики Северная Осетия-Алания | Способ извлечения металлов из хвостов обогащения |
RU2468100C2 (ru) * | 2011-02-14 | 2012-11-27 | Учреждение Российской Академии Наук Центр Геофизических Исследований Владикавказского Научного Центра И Правительства Республики Северная Осетия-Алания | Способ извлечения металлов из хвостов обогащения |
RU2468099C2 (ru) * | 2011-02-14 | 2012-11-27 | Учреждение Российской Академии Наук Центр Геофизических Исследований Владикавказского Научного Центра Ран И Правительства Республики Северная Осетия-Алания | Способ извлечения металлов из хвостов обогащения |
RU2522873C1 (ru) * | 2013-03-14 | 2014-07-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Установка для извлечения золота из руд и концентратов |
RU2624751C1 (ru) * | 2016-04-11 | 2017-07-06 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ цианистого выщелачивания золота и серебра |
RU2635582C1 (ru) * | 2016-09-14 | 2017-11-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") | Способ выщелачивания металлов из упорных углистых руд (варианты) |
RU2689487C1 (ru) * | 2018-09-28 | 2019-05-28 | Федеральное государственное бюджетное учреждение науки Институт горного дела Дальневосточного отделения Российской академии наук | Способ извлечения благородных металлов из руд и концентратов |
RU2704946C1 (ru) * | 2019-03-21 | 2019-10-31 | Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет" | Способ извлечения золота из медьсодержащего сульфидного сырья методом цианирования |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752412A (en) * | 1985-10-08 | 1988-06-21 | Gsp Metals And Chemicals Corp. | Precious metal recovery using ozone |
SU1521784A1 (ru) * | 1987-10-27 | 1989-11-15 | Красноярский государственный университет | Способ гидрометаллургической переработки труднообогатимых свинецсодержащих концентратов и промпродуктов |
WO1996029439A1 (en) * | 1995-03-22 | 1996-09-26 | M.I.M. Holdings Limited | Atmospheric mineral leaching process |
RU2071980C1 (ru) * | 1992-12-29 | 1997-01-20 | Абрамина Елена Васильевна | Способ извлечения благородных металлов из руд и концентратов |
RU2119963C1 (ru) * | 1997-08-26 | 1998-10-10 | Общество с ограниченной ответственностью "СОЛИТЭК" | Способ извлечения золота из упорных руд и концентратов |
WO1999066085A1 (en) * | 1998-06-12 | 1999-12-23 | Protium Metals Inc. | Treatment of roasted metal sulphide ores and ferrites by leaching with peroxysulphuric acid |
-
2004
- 2004-10-07 RU RU2004129476/02A patent/RU2265068C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752412A (en) * | 1985-10-08 | 1988-06-21 | Gsp Metals And Chemicals Corp. | Precious metal recovery using ozone |
SU1521784A1 (ru) * | 1987-10-27 | 1989-11-15 | Красноярский государственный университет | Способ гидрометаллургической переработки труднообогатимых свинецсодержащих концентратов и промпродуктов |
RU2071980C1 (ru) * | 1992-12-29 | 1997-01-20 | Абрамина Елена Васильевна | Способ извлечения благородных металлов из руд и концентратов |
WO1996029439A1 (en) * | 1995-03-22 | 1996-09-26 | M.I.M. Holdings Limited | Atmospheric mineral leaching process |
RU2119963C1 (ru) * | 1997-08-26 | 1998-10-10 | Общество с ограниченной ответственностью "СОЛИТЭК" | Способ извлечения золота из упорных руд и концентратов |
WO1999066085A1 (en) * | 1998-06-12 | 1999-12-23 | Protium Metals Inc. | Treatment of roasted metal sulphide ores and ferrites by leaching with peroxysulphuric acid |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2339708C1 (ru) * | 2007-04-16 | 2008-11-27 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) | Способ выщелачивания продуктов, содержащих сульфиды металлов |
RU2339706C1 (ru) * | 2007-04-16 | 2008-11-27 | Государственное образовательное учреждение высшего профессионального образования "Московский государственный институт стали и сплавов" (технологический университет) | Способ гидрометаллургической переработки сульфидных концентратов |
RU2384633C1 (ru) * | 2008-08-19 | 2010-03-20 | Федеральное государственное унитарное предприятие "Государственный научно-исследовательский, проектный и конструкторский институт горного дела и металлургии цветных металлов" (ФГУП "Гипроцветмет") | Способ переработки упорного медного сырья, содержащего благородные металлы |
RU2428492C1 (ru) * | 2009-12-17 | 2011-09-10 | Владимир Викторович Бондарь | Способ переработки упорного минерального сырья, содержащего золото, и проходной реактор для его осуществления |
RU2468100C2 (ru) * | 2011-02-14 | 2012-11-27 | Учреждение Российской Академии Наук Центр Геофизических Исследований Владикавказского Научного Центра И Правительства Республики Северная Осетия-Алания | Способ извлечения металлов из хвостов обогащения |
RU2468101C2 (ru) * | 2011-02-14 | 2012-11-27 | Учреждение Российской Академии Наук Центр Геофизических Исследований Владикавказского Научного Центра Ран И Правительства Республики Северная Осетия-Алания | Способ извлечения металлов из хвостов обогащения |
RU2468099C2 (ru) * | 2011-02-14 | 2012-11-27 | Учреждение Российской Академии Наук Центр Геофизических Исследований Владикавказского Научного Центра Ран И Правительства Республики Северная Осетия-Алания | Способ извлечения металлов из хвостов обогащения |
RU2465354C1 (ru) * | 2011-04-13 | 2012-10-27 | Учреждение Российской академии наук Центр геофизических исследований Владикавказского научного центра РАН и Правительства Республики Северная Осетия - Алания (ЦГИ ВНЦ РАН и РСО-А) | Способ извлечения золота из сульфидных руд |
RU2522873C1 (ru) * | 2013-03-14 | 2014-07-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" | Установка для извлечения золота из руд и концентратов |
RU2624751C1 (ru) * | 2016-04-11 | 2017-07-06 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" | Способ цианистого выщелачивания золота и серебра |
RU2635582C1 (ru) * | 2016-09-14 | 2017-11-14 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Забайкальский государственный университет" (ФГБОУ ВПО "ЗабГУ") | Способ выщелачивания металлов из упорных углистых руд (варианты) |
RU2689487C1 (ru) * | 2018-09-28 | 2019-05-28 | Федеральное государственное бюджетное учреждение науки Институт горного дела Дальневосточного отделения Российской академии наук | Способ извлечения благородных металлов из руд и концентратов |
RU2704946C1 (ru) * | 2019-03-21 | 2019-10-31 | Акционерное общество "Иркутский научно-исследовательский институт благородных и редких металлов и алмазов" АО "Иргиредмет" | Способ извлечения золота из медьсодержащего сульфидного сырья методом цианирования |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2125107C1 (ru) | Гидрометаллургический процесс восстановления содержания драгоценных металлов из руд драгоценных металлов тиосульфатным выщелачиванием | |
CA2520039C (en) | Precious metal recovery using thiocyanate lixiviant | |
Guo et al. | A novel bio-oxidation and two-step thiourea leaching method applied to a refractory gold concentrate | |
RU2265068C1 (ru) | Способ переработки упорного минерального сырья, содержащего металлы | |
EA034681B1 (ru) | Способ извлечения меди и/или благородного металла | |
EP0355418B1 (en) | Process for the treatment of effluents containing cyanide and toxid metals, using hydrogen peroxide and trimercaptotriazine | |
RU2245380C1 (ru) | Способ переработки продуктов, содержащих сульфиды металлов | |
Srithammavut | Modeling of gold cyanidation | |
US5320665A (en) | Metal recovery process from solution with a steel substrate | |
RU2476610C2 (ru) | Способ извлечения металлов из металлсодержащего минерального сырья | |
RU2739492C1 (ru) | Способ переработки минерального сырья, содержащего сульфиды металлов | |
RU2768928C1 (ru) | Способ растворения сульфидов металлов с использованием озона и пероксида водорода | |
JP2000153284A (ja) | オゾンによるシアン処理方法 | |
RU2339708C1 (ru) | Способ выщелачивания продуктов, содержащих сульфиды металлов | |
RU2526069C2 (ru) | Способ обезвреживания цианистых растворов | |
WO1997008349A1 (en) | Extraction of valuable metals from sulphide minerals | |
RU2749310C2 (ru) | Способ переработки сульфидного золотомедного флотоконцентрата | |
RU2336340C1 (ru) | Способ выщелачивания сульфидсодержащих продуктов | |
RU2415955C2 (ru) | Способ извлечения благородных металлов из упорных руд и концентратов | |
RU2339706C1 (ru) | Способ гидрометаллургической переработки сульфидных концентратов | |
RU2657254C1 (ru) | Способ извлечения золота из упорных серебросодержащих сульфидных руд концентратов и вторичного сырья | |
RU2255127C2 (ru) | Способ извлечения меди и золота из окисленных руд и техногенных отходов | |
US9487419B2 (en) | Treatment of acid mine drainage | |
RU2337156C1 (ru) | Способ чанового бактериального выщелачивания сульфидсодержащих продуктов | |
RU2841274C1 (ru) | Способ кучного выщелачивания упорных комплексных руд |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20071008 |