[go: up one dir, main page]

RU2609825C1 - Method for producing nanocapsules of tettracycline antibiotics - Google Patents

Method for producing nanocapsules of tettracycline antibiotics Download PDF

Info

Publication number
RU2609825C1
RU2609825C1 RU2015136965A RU2015136965A RU2609825C1 RU 2609825 C1 RU2609825 C1 RU 2609825C1 RU 2015136965 A RU2015136965 A RU 2015136965A RU 2015136965 A RU2015136965 A RU 2015136965A RU 2609825 C1 RU2609825 C1 RU 2609825C1
Authority
RU
Russia
Prior art keywords
nanocapsules
carrageenan
suspension
producing
tetracycline
Prior art date
Application number
RU2015136965A
Other languages
Russian (ru)
Inventor
Александр Александрович Кролевец
Original Assignee
Александр Александрович Кролевец
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Александрович Кролевец filed Critical Александр Александрович Кролевец
Priority to RU2015136965A priority Critical patent/RU2609825C1/en
Application granted granted Critical
Publication of RU2609825C1 publication Critical patent/RU2609825C1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/65Tetracyclines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5161Polysaccharides, e.g. alginate, chitosan, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5192Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Preparation (AREA)

Abstract

FIELD: chemistry.
SUBSTANCE: invention relates to a method for producing nanocapsules. Disclosed a method for nanocapsules of tetracycline family antibiotics, such as tetracycline, doxycicline or minocycline. Carrageenan is used as nanocapsule shell material. According to the method antibiotic was added to the suspension of carrageenan in petroleum ether with E472c present, followed by benzene, and the resulting suspension of nanocapsules was filtered, washed and dried. The core : shell ratio in the nanocapsules was 1:1, or 1:3, or 1:5 or 5:1.
EFFECT: quick and simple process of nanocapsule production, reduced process losses (increase of mass yield).
3 dwg, 10 ex

Description

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины.The invention relates to the field of nanotechnology, medicine, pharmacology and veterinary medicine.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. 2092155, МПК A61K 047/02, A61K 009/16, опубликован 10.10.1997, Российская Федерация, предложен метод микрокапсулирования лекарственных средств, основанный на применении специального оборудования с использованием облучения ультрафиолетовыми лучами.Previously known methods for producing microcapsules of drugs. So, in US Pat. 2092155, IPC A61K 047/02, A61K 009/16, published October 10, 1997, Russian Federation, a method for microencapsulation of drugs based on the use of special equipment using ultraviolet radiation is proposed.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.The disadvantages of this method are the duration of the process and the use of ultraviolet radiation, which can affect the process of formation of microcapsules.

В пат. 2095055, МПК A61K 9/52, A61K 9/16, A61K 9/10, Российская Федерация, опубликован 10.11.1997, предложен способ получения твердых непористых микросфер, который включает расплавление фармацевтически неактивного вещества-носителя, диспергирование фармацевтически активного вещества в расплаве в инертной атмосфере, распыление полученной дисперсии в виде тумана в замораживающей камере под давлением, в инертной атмосфере, при температуре от -15 до -50°С и разделение полученных микросфер на фракции по размерам. Суспензия, предназначенная для введения путем парентеральной инъекции, содержит эффективное количество указанных микросфер, распределенных в фармацевтически приемлемом жидком векторе, причем фармацевтически активное вещество микросферы нерастворимо в указанной жидкой среде.In US Pat. 2095055, IPC A61K 9/52, A61K 9/16, A61K 9/10, Russian Federation, published 10.11.1997, a method for producing solid non-porous microspheres, which includes the melting of a pharmaceutically inactive carrier substance, dispersion of the pharmaceutically active substance in a melt in an inert atmosphere, spraying the resulting dispersion in the form of fog in a freezing chamber under pressure, in an inert atmosphere, at a temperature of from -15 to -50 ° C and separating the resulting microspheres into fractions by size. A suspension intended for administration by parenteral injection contains an effective amount of said microspheres distributed in a pharmaceutically acceptable liquid vector, the pharmaceutically active substance of the microsphere being insoluble in said liquid medium.

Недостатки предложенного способа: сложность и длительность процесса, применение специального оборудования.The disadvantages of the proposed method: the complexity and duration of the process, the use of special equipment.

В пат. 2076765, МПК B01D 9/02, Российская Федерация, опубликован 10.04.1997, предложен способ получения дисперсных частиц растворимых соединений в микрокапсулах посредством кристаллизации из раствора, отличающийся тем, что раствор диспергируют в инертной матрице, охлаждают и, изменяя температуру, получают дисперсные частицы.In US Pat. 2076765, IPC B01D 9/02, Russian Federation, published April 10, 1997, a method for producing dispersed particles of soluble compounds in microcapsules by crystallization from a solution is proposed, characterized in that the solution is dispersed in an inert matrix, cooled, and dispersed particles are obtained by changing the temperature.

Недостатком данного способа является сложность исполнения: получение микрокапсул путем диспергирования с последующим изменением температур, что замедляет процесс.The disadvantage of this method is the difficulty of execution: obtaining microcapsules by dispersion with subsequent change in temperature, which slows down the process.

В пат. 2101010, МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Российская Федерация, опубликован 10.01.1998, предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, которая содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.In US Pat. 2101010, IPC A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Russian Federation, published 01/10/1998, a chewing form of the drug with a taste masking having the properties of a controlled release of the drug a preparation that contains microcapsules 100-800 microns in diameter and consists of a pharmaceutical core with crystalline ibuprofen and a polymer coating that includes a plasticizer that is flexible enough to withstand chewing. The polymer coating is a methacrylic acid based copolymer.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; получение микрокапсул методом суспензионной полимеризации; сложность исполнения; длительность процесса.The disadvantages of the invention: the use of a copolymer based on methacrylic acid, as these polymer coatings can cause cancerous tumors; obtaining microcapsules by suspension polymerization; complexity of execution; the duration of the process.

В статье «Разраработка микрокапсулированных и гелеобразных продуктов и материалов для различных отраслей промышленности», Российский химический журнал, 2001, т. XLV, №5-6, с. 125-135, описан способ получения микрокапсул лекарственных препаратов методом газофазной полимеризации, так как авторы статьи считают непригодным метод химической коацервации из водных сред для микрокапсулирования лекарственных препаратов вследствие того, что большинство из них являются водорастворимыми. Процесс микрокапсулирования по методу газофазной полимеризации с использованием n-ксилилена включает следующие основные стадии: испарение димера n-ксилилена (170°С), термическое разложение его в пиролизной печи (650°С при остаточном давлении 0,5 мм рт.ст.), перенос продуктов реакции в «холодную» камеру полимеризации (20°С, остаточное давление 0,1 мм рт.ст.), осаждение и полимеризация на поверхности защищаемого объекта. Камера полимеризации выполнена в виде вращающегося барабана, оптимальная скорость для покрытия порошка 30 об/мин. Толщина оболочки регулируется временем нанесения покрытия. Этот метод пригоден для капсулирования любых твердых веществ (за исключением склонных к интенсивной сублимации). Получаемый поли-n-ксилилен высококристаллический полимер, отличающийся высокой ориентацией и плотной упаковкой, обеспечивает конформное покрытие.In the article “Development of microencapsulated and gel-like products and materials for various industries”, Russian Chemical Journal, 2001, vol. XLV, No. 5-6, p. 125-135, a method for producing microcapsules of drugs by gas-phase polymerization is described, since the authors of the article consider the method of chemical coacervation from aqueous media to be microencapsulated as unsuitable because most of them are water-soluble. The microencapsulation process by gas phase polymerization using n-xylylene includes the following main stages: evaporation of the n-xylylene dimer (170 ° C), its thermal decomposition in a pyrolysis furnace (650 ° C at a residual pressure of 0.5 mm Hg), transfer of reaction products to the “cold” polymerization chamber (20 ° C, residual pressure 0.1 mm Hg), deposition and polymerization on the surface of the protected object. The polymerization chamber is made in the form of a rotating drum, the optimum speed for coating the powder is 30 rpm. The thickness of the shell is regulated by the time of coating. This method is suitable for encapsulation of any solids (with the exception of prone to intense sublimation). The resulting poly-n-xylylene highly crystalline polymer, characterized by high orientation and tight packaging, provides a conformal coating.

Недостатками предложенного способа являются сложность и длительность процесса, использование метода газофазной полимеризации, что делает способ неприменимым для получения микрокапсул лекарственных препаратов в полимерах белковой природы вследствие денатурации белков при высоких температурах.The disadvantages of the proposed method are the complexity and duration of the process, the use of gas phase polymerization, which makes the method inapplicable for producing microcapsules of drugs in polymers of protein nature due to denaturation of proteins at high temperatures.

В статье «Разработка микро- и наносистем доставки лекарственных средств», Российский химический журнал, 2008, т. LII, №1, с. 48-57, представлен метод получения микрокапсул с включенными белками, который существенно не снижает их биологической активности, осуществляемый процессом межфазного сшивания растворимого крахмала или гидроксиэтилкрахмала и бычьего сывороточного альбумина (БСА) с помощью терефталоил хлорида. Ингибитор протеиназ - апротинин, либо нативный, либо с защищенным активным центром был микрокапсулирован при его введении в состав водной фазы. Сплющенная форма лиофилизованных частиц свидетельствовует о получении микрокапсул или частиц резервуарного типа. Приготовленные таким образом микрокапсулы не повреждались после лиофилизации и легко восстанавливали свою сферическую форму после регидратации в буферной среде. Величина рН водной фазы являлась определяющим при получении прочных микрокапсул с высоким выходом.In the article “Development of Micro- and Nanosystems for the Delivery of Medicines”, Russian Chemical Journal, 2008, vol. LII, No. 1, p. 48-57, a method for producing microcapsules with incorporated proteins is presented, which does not significantly reduce their biological activity, carried out by the process of interfacial crosslinking of soluble starch or hydroxyethyl starch and bovine serum albumin (BSA) using terephthaloyl chloride. The proteinase inhibitor aprotinin, either native or with a protected active center, was microencapsulated when it was introduced into the aqueous phase. The flattened form of lyophilized particles indicates the production of microcapsules or particles of a reservoir type. Thus prepared microcapsules were not damaged after lyophilization and easily restored their spherical shape after rehydration in a buffer medium. The pH of the aqueous phase was decisive in the preparation of durable microcapsules in high yield.

Недостатком предложенного способа получения микрокапсул является сложность процесса, а отсюда плавающий выход целевых капсул.The disadvantage of the proposed method for producing microcapsules is the complexity of the process, and hence the floating output of the target capsules.

В пат. 2359662, МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.In US Pat. 2359662, IPC A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, published June 27, 2009, Russian Federation, a method for producing microcapsules using spray cooling in a Niro spray cooling tower under the following conditions: air temperature inlet 10 ° C; outlet air temperature 28 ° C; spray drum rotation speed of 10,000 rpm. The microcapsules of the invention have improved stability and provide controlled and / or prolonged release of the active ingredient.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).The disadvantages of the proposed method are the duration of the process and the use of special equipment, a set of certain conditions (air temperature at the inlet 10 ° C, air temperature at the outlet 28 ° C, rotation speed of the spray drum 10,000 rpm).

В пат. WO/2010/076360 ES, МПК B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, опубликован 08.07.2010, предложен новый способ получения твердых микро- и наночастиц с однородной структурой с размером частиц менее 10 мкм, где обработанные твердые соединения имеют естественное кристаллическое, аморфное, полиморфное и другие состояния, связанные с исходным соединением. Метод позволяет получить твердые микро- и наночастицы с существенно сфероидальной морфологией.In US Pat. WO / 2010/076360 ES, IPC B01J 13/00; A61K 9/14; A61K 9/10; A61K 9/12, published July 8, 2010, proposes a new method for producing solid micro- and nanoparticles with a homogeneous structure with a particle size of less than 10 μm, where the treated solid compounds have a natural crystalline, amorphous, polymorphic and other states associated with the starting compound. The method allows one to obtain solid micro- and nanoparticles with substantially spheroidal morphology.

Недостатком предложенного способа является сложность и длительность процесса.The disadvantage of the proposed method is the complexity and duration of the process.

В пат. WO/2010/119041 ЕР, МПК A23L 1/00, опубликован 21.10.2010, предложен способ получения микрошариков, содержащих активный компонент инкапсулированный в гель-матрице сывороточного протеина, включающего денатурированный белок, сыворотку и активные компоненты. Изобретение относится к способу получения микрошариков, которые содержат такие компоненты, как пробиотические бактерии. Способ получения микрошариков включает стадию производства микрошариков в соответствии с методом изобретения и последующее отверждение микрошариков в растворе анионный полисахарид с рН 4,6 и ниже в течение не менее 10, 30, 60, 90, 120, 180 минут. Примеры подходящих анионных полисахаридов: пектины, альгинаты, каррагинаны. В идеале, сывороточный протеин является теплоденатурирующим, хотя и другие методы денатурации также применимы, например денатурация индуцированным давлением. В предпочтительном варианте сывороточный белок денатурирует при температуре от 75°С до 80°С надлежащим образом в течение от 30 минут до 50 минут. Как правило, сывороточный протеин перемешивают при тепловой денатурации. Соответственно, концентрация сывороточного белка составляет от 5 до 15%, предпочтительно от 7 до 12%, а в идеале от 9 до 11% (вес/объем). Как правило, продукт подлежит фильтрации, которая осуществляется через множество фильтров с постепенным снижением размера пор. В идеале, фильтр тонкой очистки имеет субмикронные размеры пор, например, от 0,1 до 0,9 микрон. Предпочтительным способом получения микрошариков является способ с применением вибрационных инкапсуляторов (Inotech, Швейцария) и машин производства Nisco Engineering AG. Как правило, форсунки имеют отверстия 100 и 600 мкм, а в идеале около 150 микрон.In US Pat. WO / 2010/119041 EP, IPC A23L 1/00, published October 21, 2010, a method for producing beads containing the active component encapsulated in a gel matrix of a whey protein including denatured protein, serum and active components is proposed. The invention relates to a method for producing beads that contain components such as probiotic bacteria. A method for producing microspheres includes the stage of production of microspheres in accordance with the method of the invention and the subsequent curing of the microspheres in a solution of an anionic polysaccharide with a pH of 4.6 or lower for at least 10, 30, 60, 90, 120, 180 minutes. Examples of suitable anionic polysaccharides: pectins, alginates, carrageenans. Ideally, whey protein is heat denaturing, although other denaturation methods are also applicable, such as pressure-induced denaturation. In a preferred embodiment, the whey protein is denatured at a temperature of from 75 ° C to 80 ° C appropriately for from 30 minutes to 50 minutes. As a rule, whey protein is mixed with heat denaturation. Accordingly, the concentration of whey protein is from 5 to 15%, preferably from 7 to 12%, and ideally from 9 to 11% (weight / volume). Typically, the product is subject to filtration, which is carried out through many filters with a gradual reduction in pore size. Ideally, a fine filter has submicron pore sizes, for example, from 0.1 to 0.9 microns. The preferred method for producing beads is a method using vibratory encapsulators (Inotech, Switzerland) and machines manufactured by Nisco Engineering AG. As a rule, nozzles have openings of 100 and 600 microns, and ideally about 150 microns.

Недостатком данного способа является применение специального оборудования (вибрационных инкапсуляторов (Inotech, Швейцария)), получение микрокапсул посредством денатурации белка, сложность выделения полученных данным способом микрокапсул - фильтрация с применением множества фильтров, что делает процесс длительным.The disadvantage of this method is the use of special equipment (vibration encapsulators (Inotech, Switzerland)), the production of microcapsules by protein denaturation, the difficulty of isolating the microcapsules obtained by this method is filtration using multiple filters, which makes the process long.

В пат. 20110223314, МПК B05D 7/00; 20060101, B05D 007/00, В05С 3/02; 20060101, В05С 003/02; В05С 11/00; 20060101, В05С 011/00; B05D 1/18; 20060101, B05D 001/18; B05D 3/02 20060101, B05D 003/02; B05D 3/06; 20060101, B05D 003/06 от 10.03. 2011 US, описан способ получения микрокапсул методом суспензионной полимеризации, относящийся к группе химических методов с применением нового устройства и ультрафиолетового облучения.In US Pat. 20110223314, IPC B05D 7/00; 20060101, B05D 007/00, B05C 3/02; 20060101, B05C 003/02; B05C 11/00; 20060101, B05C 011/00; B05D 1/18; 20060101, B05D 001/18; B05D 3/02 20060101, B05D 003/02; B05D 3/06; 20060101, B05D 003/06 dated 03/10. 2011 US, describes a method for producing microcapsules by suspension polymerization, belonging to the group of chemical methods using a new device and ultraviolet radiation.

Недостатком данного способа являются сложность и длительность процесса, применение специального оборудования, использование ультрафиолетового облучения.The disadvantage of this method is the complexity and duration of the process, the use of special equipment, the use of ultraviolet radiation.

В пат. WO/2011/160733 ЕР, МПК B01J 13/16, опубликован 29.12.2011, описан способ получения микрокапсул, которые содержат оболочки и ядра нерастворимых в воде материалов. Водный раствор защитного коллоида и раствор смеси по меньшей мере двух структурно различных бифункциональных диизоцианатов (А) и (В) нерастворимых в воде собираются вместе до образования эмульсии, затем добавляется к смеси бифункциональных аминов и нагревается до температуры не менее 60°С до формирования микрокапсул.In US Pat. WO / 2011/160733 EP, IPC B01J 13/16, published December 29, 2011, describes a method for producing microcapsules that contain shells and cores of water-insoluble materials. An aqueous solution of a protective colloid and a solution of a mixture of at least two structurally different bifunctional diisocyanates (A) and (B) insoluble in water are collected together until an emulsion is formed, then added to a mixture of bifunctional amines and heated to a temperature of at least 60 ° C until microcapsules are formed.

Недостатками предложенного способа являются сложность, длительность процесса, использование в качестве оболочек микрокапсул полимеров синтетического происхождения и их смесей.The disadvantages of the proposed method are the complexity, duration of the process, the use as shells of microcapsules of polymers of synthetic origin and their mixtures.

Наиболее близким методом является способ, предложенный в пат. 2134967, МПК A01N53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.The closest method is the method proposed in US Pat. 2134967, IPC A01N53 / 00, A01N 25/28, published on 08.27.1999, Russian Federation (1999). A solution of a mixture of natural lipids and a pyrethroid insecticide in a weight ratio of 2-4: 1 in an organic solvent is dispersed in water, which simplifies the microencapsulation method.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.The disadvantage of this method is dispersion in an aqueous medium, which makes the proposed method inapplicable for producing microcapsules of water-soluble preparations in water-soluble polymers.

Техническая задача - упрощение и ускорение процесса получения нанокапсул антибиотиков тетрациклинового ряда в каррагинане, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).The technical task is to simplify and accelerate the process of producing nanocapsules of tetracycline antibiotics in carrageenan, reducing losses in obtaining nanocapsules (increase in yield by mass).

Решение технической задачи достигается способом получения нанокапсул антибиотиков тетрациклинового ряда, отличающимся тем, что в качестве оболочки нанокапсул используется каррагинан, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - бензола.The solution to the technical problem is achieved by the method of producing nanocapsules of tetracycline antibiotics, characterized in that carrageenan is used as the shell of the nanocapsules, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using a precipitating agent - benzene.

Отличительной особенностью предлагаемого метода является использование в качестве оболочки нанокапсул антибиотиков тетрациклического ряда каррагинана, а также получение нанокапсул физико-химическим способом осаждения нерастворителем с использованием осадителя - бензола.A distinctive feature of the proposed method is the use of a tetracyclic carrageenan antibiotic as a shell of nanocapsules, as well as the preparation of nanocapsules by the physicochemical method of precipitation with a non-solvent using a precipitant benzene.

Результатом предлагаемого метода являются получение нанокапсул антибиотиков тетрациклического ряда в каррагинана при 25°С в течение 15 минут. Выход нанокапсул составляет 100%.The result of the proposed method is the production of tetracyclic antibiotic nanocapsules in carrageenan at 25 ° C for 15 minutes. The yield of nanocapsules is 100%.

ПРИМЕР 1. Получение нанокапсул тетрациклина, соотношение ядро : оболочка 1:3EXAMPLE 1. Obtaining nanocapsules of tetracycline, the ratio of the core: shell 1: 3

В суспензию 0,6 г каррагинана в петролейном эфире и 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами, свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества небольшими порциями добавляют 0,2 г порошка тетрациклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 0.6 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c (glycerol ester with one or two molecules of food fatty acids and one or two molecules of citric acid, moreover, citric acid, as tribasic, can be esterified with other glycerides and as oxoacid with other fatty acids, free acid groups can be neutralized with sodium) 0.2 g of tetracycline powder is added in small portions as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 0,8 г белого порошка. Выход составил 100%.Obtained 0.8 g of a white powder. The yield was 100%.

ПРИМЕР 2. Получение нанокапсул тетрациклина, соотношение ядро : оболочка 1:1EXAMPLE 2. Obtaining nanocapsules of tetracycline, the ratio of the core: shell 1: 1

В суспензию 0,5 г каррагинана в петролейном эфире и 0,01 г препарата в качестве поверхностно-активного вещества добавляют 0,5 г порошка тетрациклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of tetracycline powder is added to a suspension of 0.5 g of carrageenan in petroleum ether and 0.01 g of the preparation as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 1 г белого порошка. Выход составил 100%.Received 1 g of a white powder. The yield was 100%.

ПРИМЕР 3. Получение нанокапсул тетрациклина, соотношение ядро : оболочка 1:5EXAMPLE 3. Obtaining nanocapsules of tetracycline, the ratio of the core: shell 1: 5

В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,3 г порошка тетрациклина. Затем по каплям добавляют 10 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.0.3 g of tetracycline powder is added to a suspension of 1.5 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c as a surfactant. Then 10 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 1,8 г белого порошка. Выход составил 100%.Received 1.8 g of a white powder. The yield was 100%.

ПРИМЕР 4. Получение нанокапсул тетрациклина, соотношение ядро : оболочка 5:1EXAMPLE 4. Obtaining nanocapsules of tetracycline, the ratio of the core: shell 5: 1

В суспензию 0,1 г каррагинана в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка тетрациклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.In a suspension of 0.1 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c, 0.5 g of tetracycline powder is added as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 0,6 г белого порошка. Выход составил 100%.Received 0.6 g of a white powder. The yield was 100%.

ПРИМЕР 5. Получение нанокапсул диоксициклина, соотношение ядро : оболочка 1:3EXAMPLE 5. Obtaining nanocapsules of dioxicycline, the ratio of the core: shell 1: 3

В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка диоксициклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 1.5 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c, 0.5 g of dioxicycline powder is added as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 2 г порошка. Выход составил 100%.Received 2 g of powder. The yield was 100%.

ПРИМЕР 6. Получение нанокапсул диоксициклина, соотношение ядро : оболочка 1:1EXAMPLE 6. Obtaining nanocapsules of dioxicycline, the ratio of the core: shell 1: 1

В суспензию 0,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка диоксициклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of dioxicycline powder is added to a suspension of 0.5 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 1 г порошка. Выход составил 100%.Received 1 g of powder. The yield was 100%.

ПРИМЕР 7. Получение нанокапсул диоксициклина в альгинате натрия, соотношение ядро : оболочка 1:5EXAMPLE 7. Obtaining nanocapsules of dioxicycline in sodium alginate, the ratio of core: shell 1: 5

В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,3 г порошка диоксициклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.In a suspension of 1.5 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c, 0.3 g of dioxicycline powder is added as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 1,8 г порошка. Выход составил 100%.Received 1.8 g of powder. The yield was 100%.

ПРИМЕР 8. Получение нанокапсул диоксициклина, соотношение ядро : оболочка 5:1EXAMPLE 8. Obtaining nanocapsules of dioxicycline, the ratio of the core: shell 5: 1

В суспензию 0,2 г каррагинана в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 1,0 г порошка диоксициклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.To a suspension of 0.2 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c, 1.0 g of dioxicycline powder was added as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 1,2 г порошка. Выход составил 100%.Received 1.2 g of powder. The yield was 100%.

ПРИМЕР 9. Получение нанокапсул миноциклина, соотношение ядро : оболочка 1:3EXAMPLE 9. Obtaining nanocapsules of minocycline, the ratio of the core: shell 1: 3

В суспензию 1,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка миноциклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат. Получено 2 г порошка. Выход составил 100%.0.5 g of minocycline powder is added to a suspension of 1.5 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried. Received 2 g of powder. The yield was 100%.

ПРИМЕР 10. Получение нанокапсул миноциклина, соотношение ядро : оболочка 1:1EXAMPLE 10. Obtaining nanocapsules of minocycline, the ratio of the core: shell 1: 1

В суспензию 0,5 г каррагинана в петролейном эфире и 0,01 г препарата Е472с в качестве поверхностно-активного вещества добавляют 0,5 г порошка миноциклина. Затем по каплям добавляют 5 мл бензола. Полученную суспензию нанокапсул отфильтровывают и сушат.0.5 g of minocycline powder is added to a suspension of 0.5 g of carrageenan in petroleum ether and 0.01 g of the preparation E472c as a surfactant. Then 5 ml of benzene are added dropwise. The resulting suspension of nanocapsules is filtered and dried.

Получено 1 г белого порошка. Выход составил 100%.Received 1 g of a white powder. The yield was 100%.

ПРИМЕР 11. Определение размеров нанокапсул методом NTA (см. рис.1-3)EXAMPLE 11. Determination of the size of nanocapsules by the NTA method (see Fig. 1-3)

Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном bASTM E2834.The measurements were carried out on a Nanosight LM0 multiparameter nanoparticle analyzer manufactured by Nanosight Ltd (Great Britain) in the HS-BF configuration (Andor Luca high-sensitivity video camera, 405 nm semiconductor laser with a power of 45 mW). The device is based on the method of analysis of trajectories of nanoparticles (Nanoparticle Tracking Analysis, NTA) described by bASTM E2834.

Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.The optimal dilution for dilution was 1: 100. For the measurement, the device parameters were selected: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length: Auto, Min Expected Size: Auto. duration of a single measurement of 215s, the use of a syringe pump.

Предложенная методика пригодна для фармацевтической промышленности вследствие минимальных потерь, быстроты, простоты получения и выделения нанокапсул антибиотиков в каррагинане.The proposed technique is suitable for the pharmaceutical industry due to minimal losses, speed, ease of preparation and isolation of antibiotic nanocapsules in carrageenan.

Claims (1)

Способ получения нанокапсул антибиотиков терациклинового ряда, заключающийся в том, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра – антибиотик тетрациклинового ряда, выбранный из тетрациклина, диоксициклина или миноциклина, при массовом соотношении ядро:оболочка 1:1, или 1:3, или 1:5, или 5:1, соответственно, при этом порошок указанного антибиотика добавляют в суспензию каррагинана в петролейном эфире в присутствии препарата E472с, затем добавляют бензол, полученную суспензию нанокапсул отфильтровывают и сушат.A method of producing nanocapsules of the teracycline antibiotics, which consists in using carrageenan as the shell of the nanocapsules and a tetracycline antibiotic selected from tetracycline, dioxicycline or minocycline, with a mass ratio of core: shell of 1: 1, or 1: 3 or 1: 5 or 5: 1, respectively, while the powder of the indicated antibiotic is added to a suspension of carrageenan in petroleum ether in the presence of E472c, then benzene is added, the resulting suspension of nanocapsules is filtered off and dried.
RU2015136965A 2015-08-31 2015-08-31 Method for producing nanocapsules of tettracycline antibiotics RU2609825C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015136965A RU2609825C1 (en) 2015-08-31 2015-08-31 Method for producing nanocapsules of tettracycline antibiotics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015136965A RU2609825C1 (en) 2015-08-31 2015-08-31 Method for producing nanocapsules of tettracycline antibiotics

Publications (1)

Publication Number Publication Date
RU2609825C1 true RU2609825C1 (en) 2017-02-06

Family

ID=58457269

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015136965A RU2609825C1 (en) 2015-08-31 2015-08-31 Method for producing nanocapsules of tettracycline antibiotics

Country Status (1)

Country Link
RU (1) RU2609825C1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (en) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Method of preparing microcapsulated preparations containing pyrethroid insecticides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134967C1 (en) * 1997-05-30 1999-08-27 Шестаков Константин Алексеевич Method of preparing microcapsulated preparations containing pyrethroid insecticides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tyrsin Y.A. et al. Nano and Microencapsulation of Cephalosporin Antibiotics. World Applied Sciences Journal 30 (11): 1636-1641, 2014. *
КРОЛЕВЕЦ А.А. и др. ПРИМЕНЕНИЕ НАНО- И МИКРОКАПСУЛИРОВАНИЯ В ФАРМАЦЕВТИКЕ И ПИЩЕВОЙ ПРОМЫШЛЕННОСТИ. ЧАСТЬ 2. ХАРАКТЕРИСТИКА ИНКАПСУЛИРОВАНИЯ. ВЕСТНИК РОССИЙСКОЙ АКАДЕМИИ ЕСТЕСТВЕННЫХ НАУК, 2013/01. СОЛОДОВНИК В. Д. "Микрокапсулирование", 1980, cтр.136-137. *

Similar Documents

Publication Publication Date Title
RU2550918C1 (en) Method of production of nanocapsules of antibiotics in gellan gum
RU2646482C2 (en) Method for producing nanocapsules of metronidazole in carrageenan
RU2569736C1 (en) Method of production of nanocapsules of adenine in sodium alginate
RU2694776C1 (en) Method of producing doxycycline nanocapsules in guar gum
RU2619331C2 (en) Method of producing nanocapsules of umifenovir (arbidol) in sodium alginate
RU2613108C1 (en) Production method of metronidazole nanocapsules in konjac gum
RU2631883C2 (en) Method for production of nanocapules of penicillin group medicine preparations in konjac gum
RU2611367C1 (en) Method of producing of microcapsules of tetracycline antibiotics in sodium alginatemethod of producing of microcapsules of aminoglycoside antibiotics in sodium alginate
RU2627581C2 (en) Method of producing nanocapules of chloralhydrate in kappa-carraginane
RU2550919C1 (en) Method of production of nanocapsules of antibiotics in carrageenan
RU2550932C1 (en) Method for producing cephalosporin nanocapsules in xanthum gum
RU2730452C1 (en) Method of producing nanocapsules of doxycycline
RU2627580C2 (en) Method of obtaining nanocapules of antibiotics of tetracyclin row in konjac gum
RU2599007C1 (en) Method of producing nanocapsules of ciprofloxacin hydrochloride in sodium alginate
RU2611368C1 (en) Method of production of metronidazole nanocapsules in sodium alginate
RU2609740C1 (en) Method for preparation of nanocapsules of aminoglycoside antibiotics in gellan gum
RU2640130C2 (en) Method for producing nanocapsules of dry extract of topinambur
RU2609825C1 (en) Method for producing nanocapsules of tettracycline antibiotics
RU2725987C1 (en) Method of producing salicylic acid nanocapsules in sodium alginate
RU2609824C1 (en) Method for obtaining nanocapsules of medications of penicillin goup in sodium alginate
RU2730844C1 (en) Method of producing nanocapsules of doxycycline
RU2618453C2 (en) Method for production of nanocapules of penicillin group medicine preparations in carraginan
RU2626507C1 (en) Method of obtaining chloralhydrate nanocapsules in sodium alginate
RU2580613C1 (en) Method of producing antibiotic nanocapsules in agar-agar
RU2691391C1 (en) Method of producing metronidazole nanocapsules in kappa-carrageenan