[go: up one dir, main page]

RU2608302C1 - Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления - Google Patents

Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления Download PDF

Info

Publication number
RU2608302C1
RU2608302C1 RU2015145430A RU2015145430A RU2608302C1 RU 2608302 C1 RU2608302 C1 RU 2608302C1 RU 2015145430 A RU2015145430 A RU 2015145430A RU 2015145430 A RU2015145430 A RU 2015145430A RU 2608302 C1 RU2608302 C1 RU 2608302C1
Authority
RU
Russia
Prior art keywords
horizontal
junction
junctions
anode
cathode
Prior art date
Application number
RU2015145430A
Other languages
English (en)
Inventor
Сергей Александрович Леготин
Виктор Николаевич Мурашев
Андрей Андреевич Краснов
Ксения Андреевна Кузьмина
Сергей Иванович Диденко
Юлия Константиновна Омельченко
Виталий Васильевич Старков
Дмитрий Сергеевич Ельников
Марина Николаевна Орлова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2015145430A priority Critical patent/RU2608302C1/ru
Application granted granted Critical
Publication of RU2608302C1 publication Critical patent/RU2608302C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к области многопереходных фотоэлектрических преобразователей (ФЭП), применяемых для солнечных батарей и фотоприемников космического и иного назначения. Монолитный кремниевый фотоэлектрический преобразователь содержит диодные ячейки с расположенными в них перпендикулярно горизонтальной светопринимающей поверхности, вертикальные p-n-переходы и расположенные в диодных ячейках, параллельно к светопринимающей поверхности, горизонтальные n+-p-(p+-n-) переходы, причем все диодные ячейки последовательно соединены в единую конструкцию металлическими катодными и анодными электродами, при этом каждая диодная ячейка (и их вертикальные p-n-переходы) изолирована от соседних с четырех сторон, сбоку - слоем диэлектрика, снизу - дополнительным горизонтальным p-n-переходом, образованным кремниевой подложкой p- (n-) типа проводимости и нижним горизонтальным n+ (p+) слоем p-n-перехода, причем на верхней горизонтальной поверхности диодной ячейки расположен верхний горизонтальный p-n-переход, на n+ (p+) слоях которого соответственно расположены электрод катода (анода), а на p+ (n+) слое - электрод анода (катода). Также предложен способ формирования монолитного кремниевого фотоэлектрического преобразователя. Технический результат изобретения заключается в повышении коэффициента полезного действия, радиационной стойкости и технологичности многопереходных преобразователей. 2 н. и 1 з.п. ф-лы, 6 ил.

Description

Настоящее изобретение относится к области фотоэлектрических преобразователей (ФЭП) применяемых в качестве приемников оптических излучений и солнечных батарей космического назначения.
Известны «традиционная» однопереходная (ОП) конструкция ФЭП с перпендикулярно расположенным к направлению потока светового излучения светопринимающей поверхности p+-n--n+ (p+-p--n+) перехода - горизонтальной диодной ячейки (ДЯ), на поверхности которого расположено светопросветляющее покрытие (фиг. 1а, б). Такие ФЭП имеют невысокий коэффициент полезного действия (КПД), около 14%, и не позволяют получить высокое значение выходного напряжения более 0,6 B, что ограничивает область их применения в солнечных батареях с концентраторами излучения [1. Зи С. Физика полупроводниковых приборов. 1972 г.].
Известна конструкция (фиг. 2) многопереходного (МП) кремниевого монокристаллического ФЭП, содержащая диодные ячейки (ДЯ) с размещенными на их светопринимающей поверхности светопросветляющего покрытия и с расположенными в них одиночными p+-n--n+ (p+-p--n+) переходами, в направлении, перпендикулярном светопринимающей поверхности, соединенными в единую конструкцию металлическими анодными и катодными электродами [2. Патент РФ №2127472, опубл. 03.10.1999; 3. Е.Г. Тук и др. Характеристики кремниевого многопереходного солнечного элемента с вертикальными p-n-переходами. Ж-л. Физика и техника полупроводников. 1997 г. Т. 31, №7, с. 855-858].
Такой ФЭП обладают невысоким КПД, (менее 12%), поскольку имеет относительно небольшой объем области пространственного заряда (ОПЗ) p-n-перехода, примыкающего к фоточувствительной поверхности ФЭП.
Известна, взятая за прототип (фиг. 3), конструкция МП кремниевого монокристаллического ФЭП, содержащая диодные ячейки с расположенными в них, перпендикулярно горизонтальной (перпендикулярно к направлению света) светопринимающей поверхности, вертикальных p+-p--p+ (p+-n--n+) переходов и расположенными в солнечных элементах параллельно к светопринимающей поверхности горизонтальных n-p- (p+-n-) переходов, все переходы соединены в единую конструкцию (электрическую схему) металлическими катодными и анодными электродами, расположенными соответственно на боковых поверхностях областей - n+ (p+) типа перпендикулярных одиночных n+-p--p+ (p+-n--n+) переходов [4. Мурашев В.Н и др. «Полупроводниковый фотопреобразователь и способ его изготовления», Патент РФ №2377695 от 27.12.2009].
Способ ее изготовления, включающий
- формирование на поверхности пластин из монокристаллического кремния вертикальных одиночных p+-n--n+ (p+-p--n+) переходов, металлизацию поверхности пластин, сборки пластин в столбик с прокладками из алюминиевой фольги, сплавления в вакуумной печи, резанья столбика на структуры, формирование горизонтальных p+-n+ переходов, присоединения токовыводящих контактов и нанесение диэлектрического светопросветляющего покрытия.
Недостатками конструкции прототипа также является низкая радиационная стойкость, ограничение величины КПД фотопреобразователя, связанные с превышением планарных размеров ячеек диффузионной длины неосновных носителей заряда, а также технологическая проблемы, связанные с «ручной» сборкой стопки пластин, ее механической резки и шлифовки поверхности.
Целями изобретения является повышение радиационной стойкости и КПД фотопреобразователя и упрощение технологии его изготовления.
Первая и вторая цели достигаются путем создания «монолитной» конструкции ФП, в которой каждая диодная ячейка (и их вертикальные p-n-переходы) изолирована от соседних сбоку - слоем диэлектрика, снизу - дополнительным горизонтальным p-n-переходом, образованным подложкой p- (n-) типа проводимости и нижним горизонтальным n+ (p+) слоем p-n-перехода, на горизонтальной верхней поверхности ячейки расположен верхний горизонтальный p-n-переход, на n+ (p+) слое которого расположен электрод катода (анода), а на p+ (n+) слое - электрод анода (катода), электроды анодов и катодов соседних ячеек последовательно соединены между собой.
При этом планарные размеры диодных ячеек много меньше диффузионной длины неосновных носителей тока, а вертикальные превышают величину глубины поглощения оптического спектра излучения (40 мкм).
Третья цель достигается путем применения технологии ФЭП, исключающей механическую сборку и резку кремниевых пластин, состоящей в формировании на поверхности подложки p- (n-) типа слоя n+ (p+) типа нижнего горизонтального p-n-перехода, наращивания эпитаксиального слоя и формирования путем проведения первой и второй фотолитографий на его поверхности n+ (p+) слоев верхнего горизонтального p-n-перехода, формирования рельефа путем проведения третьей фотолитографии и травления щелей в кремнии на глубину, превышающую глубину залегания нижнего горизонтального p-n-перехода, формирования вертикальных p-n-переходов путем проведения диффузии донорной (акцепторной) примеси в поверхность щелей, термического окисления поверхности щелей, осаждения на поверхность пластины диэлектрического светопросветляющего покрытия, формирования четвертой фотолитографией контактных окон, осаждения металла и формирования пятой фотолитографией последовательно соединенных между собой электродов анода и катода ячеек фотопреобразователя.
Конструкция и топология (вид сверху) монолитного кремниевого фотоэлектрического преобразователя показаны соответственно на фиг. 4,.б, который согласно изобретению содержит полупроводниковую подложку 1 p (n) типа, на поверхности которой расположены диодные ячейки 2, на верхней поверхности каждой диодной ячейки расположено светопросветляющее покрытие 3, оно расположено на поверхности верхнего горизонтального p-n-перехода, на области n (p+) 5 которого расположен электрод катода (анода) 6, а на области p+ (n+) которого расположен электрод анода (катода) 7, электроды катодов 6 и анодов 7 соседних ячеек последовательно соединены металлическими проводниками 8, на нижней поверхности диодных ячеек расположена n+ (p+) область нижнего горизонтального p-n-перехода 9, образующая p-n-переход с подложкой 1 p (n) типа проводимости и слаболегированной областью p- (n-) 10, расположенной в объеме диодной ячейки, при этом область 10 образует с четырьмя областями n+ (p+) типа 11, расположенными на ее боковых поверхностях, вертикальные p-n-переходы, диодные ячейки ФЭП изолированы друг от друга с четырех боковых сторон слоем диэлектрика 12.
Технология изготовления. (Пример реализации) ФЭП, согласно изобретению, может быть изготовлен по относительно простой технологии, показанной на фиг. 5а, б, в, г, которая состоит в следующем:
а) в пластинах p--типа КДБ 1 Ом⋅см проводят диффузию сурьмы при температуре T=1100°C в течение времени t=1 час, затем выращивают эпитаксиальный слой p-типа толщиной 20-40 мкм;
б) формируют путем проведения первой фотолитографии и ионного легирования фосфора дозой Д=500 мкКл n+-область верхнего горизонтального p-n-перехода, затем проводят вторую фотолитографию формируют ионным легированием дозой Д=500 мкКл p+-верхнего горизонтального p-n-перехода, удаляют фоторезист и проводят термический отжиг радиационных дефектов при температуре Т=950°C в течение времени t=40 минут;
в) формируют рельеф поверхности на глубину превышающую глубину залегания нижнего горизонтального p-n-перехода - путем проведения третьей фотолитографии и плазмохимического травления щелей (решетки) в эпитаксиальном слое и кремнии. Затем формируют вертикальные p-n-переходы путем проведения диффузии фосфора T=850°C в течение t=30 минут в поверхность щелей. Проводят термическое окисление поверхности щелей, при температуре T=850°C в течение 20 минут в атмосфере сухого кислорода - O2), осаждают на поверхность пластины диэлектрическое светопросветляющее покрытие и формируют четвертой фотолитографией контактные окна, осаждают алюминий и формируют пятой фотолитографией последовательное соединение между собой электродов анода и катода диодных ячеек фотопреобразователя.
Следует отметить, что с целью дальнейшего упрощения технологии области n+-типа вертикальных p-n-переходов могут быть инверсионными слоями образованными положительным зарядом в оксиде щелей в результате облучения фотопреобразователя, например потоком ионизирующей радиации от изотопа кобальт-60 дозой свыше 1,0 Мрад.
Электрическая эквивалентная схема предлагаемого ФЭП. показанная на рис. 6 отличается от известных наличием, изолирующих диодов - Dиз.
Здесь обозначены:
- Dяч – диоды, образованные p-n-переходами диодных ячеек;
- Dиз – диоды, образованные изолирующими p-n-переходами нижний n+ (p+) горизонтальный слой -p+ (n+) подложка
Технические преимущества изобретения.
Как видно из фиг. 3, 4 и 5, ширина диодной ячейки (ее один из размеров по горизонтали, равный расстоянию между щелями) может быть весьма малой, т.е. 10 мкм и менее, что существенно меньше диффузионной длины неосновных носителей тока. Это позволяет собирать практически все носители заряда, генерируемые в дали (середине) p-области. Данное обстоятельство соответственно приводит к большему КПД ФЭП, его малой чувствительности к радиации уменьшающей время жизни и диффузионной длины неосновных носителей заряда. Вторым фактором является высокое качество поверхности на границе раздела кремний проводник по сравнению в предлагаемой конструкции качеством поверхности границы раздела кремний-металл в прототипе, приводящее к увеличению рекомбинации носителей тока и соответственно КПД ФЭП.
Преимущества по технологии изготовления заключаются в отсутствии необходимости механической резки пластин, сборки и сплавления их в стопку, а затем механической полировки их поверхности.
Несмотря на несколько более высокую стоимость, по сравнению с традиционными планарными батареями, монолитные ФЭП вполне конкурентоспособны и перспективны, учитывая их высокий КПД, высокую радиационную стойкость и соответственно возможность их работы с концентраторами излучения.

Claims (3)

1. Конструкция монолитного кремниевого фотоэлектрического преобразователя, содержащая диодные ячейки с расположенными в них перпендикулярно горизонтальной светопринимающей поверхности, вертикальные p-n-переходы и расположенными в диодных ячейках, параллельно к светопринимающей поверхности, горизонтальные n+-p-(p+-n-) переходы, причем все диодные ячейки последовательно соединены в единую конструкцию металлическими катодными и анодными электродами, отличающаяся тем, что каждая диодная ячейка (и их вертикальные p-n-переходы) изолирована от соседних с четырех сторон, сбоку - слоем диэлектрика, снизу - дополнительным горизонтальным p-n-переходом, образованным кремниевой подложкой p- (n-) типа проводимости и нижним горизонтальным n+ (p+) слоем p-n-перехода, причем на верхней горизонтальной поверхности диодной ячейки расположен верхний горизонтальный p-n-переход, на n+ (p+) слоях которого соответственно расположены электрод катода (анода), а на p+ (n+) слое - электрод анода (катода).
2. Способ изготовления конструкции, включающий формирование на поверхности пластины из монокристаллического кремния вертикальных и горизонтальных p-n-переходов, металлизацию поверхности пластины, отличающийся тем, что на поверхности кремниевой пластины-(подложки) p- (n-) типа формируют слой n+ (p+) типа проводимости нижнего горизонтального p-n-перехода, затем наращивают эпитаксиальный слой, и формируют путем проведения первой и второй фотолитографии на его поверхности n+ (p+) слои верхнего горизонтального p-n-перехода, затем формируют рельеф путем проведения третьей фотолитографии и травления щелей в кремнии на глубину, превышающую глубину залегания нижнего горизонтального p-n-перехода, затем формируют вертикальные p-n-переходы путем проведения диффузии донорной (акцепторной) примеси в поверхность щелей, проводят термическое окисление поверхности щелей, осаждают на поверхность пластины диэлектрическое светопросветляющее покрытие, формируют четвертой фотолитографией контактные окна, осаждают металл и формируют пятой фотолитографией последовательное соединение между собой электродов анода и катода диодных ячеек фотопреобразователя.
3. Способ изготовления по п. 2, отличающийся тем, что области n+-типа вертикальных p-n-переходов являются инверсионными слоями, образованными положительным зарядом в оксиде щелей в результате облучения фотопреобразователя потоком ионизирующей радиации.
RU2015145430A 2015-10-22 2015-10-22 Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления RU2608302C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015145430A RU2608302C1 (ru) 2015-10-22 2015-10-22 Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015145430A RU2608302C1 (ru) 2015-10-22 2015-10-22 Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления

Publications (1)

Publication Number Publication Date
RU2608302C1 true RU2608302C1 (ru) 2017-01-17

Family

ID=58455900

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015145430A RU2608302C1 (ru) 2015-10-22 2015-10-22 Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления

Country Status (1)

Country Link
RU (1) RU2608302C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080284A (zh) * 2023-08-17 2023-11-17 中山大学 一种被分割的三阱型片上太阳能电池及其分割优化方法
RU223705U1 (ru) * 2023-08-04 2024-02-29 Акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" Кремниевая структура с диэлектрической изоляцией

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127472C1 (ru) * 1996-03-28 1999-03-10 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Способ изготовления полупроводникового фотопреобразователя
RU2377695C1 (ru) * 2008-07-28 2009-12-27 Федеральное государственное унитарное предприятие "Всероссийский Электротехнический институт им. В.И. Ленина" (ФГУП ВЭИ) Полупроводниковый фотопреобразователь и способ его изготовления
US20100037943A1 (en) * 2008-08-14 2010-02-18 Sater Bernard L Vertical multijunction cell with textured surface
RU2453013C1 (ru) * 2011-01-19 2012-06-10 Федеральное государственное унитарное предприятие "Всероссийский Электротехнический институт им. В.И. Ленина" (ФГУП ВЭИ) Фотопреобразователь
RU2502156C1 (ru) * 2012-07-20 2013-12-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Кремниевый фотоэлектрический преобразователь с гребенчатой конструкцией и способ его изготовления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2127472C1 (ru) * 1996-03-28 1999-03-10 Всероссийский научно-исследовательский институт электрификации сельского хозяйства Способ изготовления полупроводникового фотопреобразователя
RU2377695C1 (ru) * 2008-07-28 2009-12-27 Федеральное государственное унитарное предприятие "Всероссийский Электротехнический институт им. В.И. Ленина" (ФГУП ВЭИ) Полупроводниковый фотопреобразователь и способ его изготовления
US20100037943A1 (en) * 2008-08-14 2010-02-18 Sater Bernard L Vertical multijunction cell with textured surface
RU2453013C1 (ru) * 2011-01-19 2012-06-10 Федеральное государственное унитарное предприятие "Всероссийский Электротехнический институт им. В.И. Ленина" (ФГУП ВЭИ) Фотопреобразователь
RU2502156C1 (ru) * 2012-07-20 2013-12-20 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Кремниевый фотоэлектрический преобразователь с гребенчатой конструкцией и способ его изготовления

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU223705U1 (ru) * 2023-08-04 2024-02-29 Акционерное общество "ГРУППА КРЕМНИЙ ЭЛ" Кремниевая структура с диэлектрической изоляцией
CN117080284A (zh) * 2023-08-17 2023-11-17 中山大学 一种被分割的三阱型片上太阳能电池及其分割优化方法
CN117080284B (zh) * 2023-08-17 2024-06-11 中山大学 一种被分割的三阱型片上太阳能电池及其分割优化方法
RU2815653C1 (ru) * 2023-11-13 2024-03-19 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук (ФИАН) Способ формирования ячейки солнечной батареи

Similar Documents

Publication Publication Date Title
US4110122A (en) High-intensity, solid-state-solar cell device
KR102710224B1 (ko) 전하-캐리어-선택적 접촉을 통해 연결되는 복수의 흡수체들을 구비한 태양 전지
KR101613843B1 (ko) 태양 전지 및 이의 제조 방법
US4330680A (en) Integrated series-connected solar cell
US4283589A (en) High-intensity, solid-state solar cell
JP7168800B1 (ja) 太陽電池及び光起電力モジュール
US3433677A (en) Flexible sheet thin-film photovoltaic generator
KR20140027047A (ko) 개선된 패시베이션을 구비하는 광전 디바이스 및 모듈 및 제조 방법
JP2009164544A (ja) 太陽電池のパッシベーション層構造およびその製造方法
KR20160084261A (ko) 태양 전지 및 이의 제조 방법
CN103208557A (zh) 太阳能电池的制作方法及太阳能电池
KR20140126819A (ko) 태양 전지
RU2539109C1 (ru) Многопереходный кремниевый монокристаллический преобразователь оптических и радиационных излучений
KR102547804B1 (ko) 양면 수광형 실리콘 태양전지 및 그 제조 방법
KR102148427B1 (ko) 광전소자 및 그 제조방법
JP5667280B2 (ja) 太陽電池及びその製造方法
RU2377695C1 (ru) Полупроводниковый фотопреобразователь и способ его изготовления
EA013788B1 (ru) Преобразователь электромагнитного излучения
RU2608302C1 (ru) Конструкция монолитного кремниевого фотоэлектрического преобразователя и способ ее изготовления
KR101198438B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
US8697986B2 (en) Photovoltaic device with double-junction
KR101198430B1 (ko) 양면 수광형 국부화 에미터 태양전지 및 그 제조 방법
KR20140140200A (ko) 태양 전지 및 이의 제조 방법
RU2502156C1 (ru) Кремниевый фотоэлектрический преобразователь с гребенчатой конструкцией и способ его изготовления
KR20120004174A (ko) 후면전극형 태양전지 및 그 제조방법