RU2606385C1 - Способ переработки нефтяных отходов - Google Patents
Способ переработки нефтяных отходов Download PDFInfo
- Publication number
- RU2606385C1 RU2606385C1 RU2015156814A RU2015156814A RU2606385C1 RU 2606385 C1 RU2606385 C1 RU 2606385C1 RU 2015156814 A RU2015156814 A RU 2015156814A RU 2015156814 A RU2015156814 A RU 2015156814A RU 2606385 C1 RU2606385 C1 RU 2606385C1
- Authority
- RU
- Russia
- Prior art keywords
- reactor
- gas
- stage
- frequency
- inductors
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 50
- 238000012545 processing Methods 0.000 title claims abstract description 23
- 239000002699 waste material Substances 0.000 title claims abstract description 18
- 239000002994 raw material Substances 0.000 claims abstract description 29
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 20
- 239000010959 steel Substances 0.000 claims abstract description 20
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 19
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 16
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 15
- 239000007787 solid Substances 0.000 claims abstract description 13
- 238000000926 separation method Methods 0.000 claims abstract description 10
- 239000007788 liquid Substances 0.000 claims abstract description 8
- 230000005672 electromagnetic field Effects 0.000 claims abstract description 7
- 230000005670 electromagnetic radiation Effects 0.000 claims abstract description 6
- 230000005855 radiation Effects 0.000 claims abstract description 5
- 238000010438 heat treatment Methods 0.000 claims description 20
- 239000007789 gas Substances 0.000 abstract description 29
- 239000012535 impurity Substances 0.000 abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 6
- 239000001257 hydrogen Substances 0.000 abstract description 6
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 3
- 230000004913 activation Effects 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 238000004064 recycling Methods 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 41
- 239000010802 sludge Substances 0.000 description 22
- 239000000571 coke Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 238000005336 cracking Methods 0.000 description 9
- 239000012071 phase Substances 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- 239000004575 stone Substances 0.000 description 7
- 239000000839 emulsion Substances 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 238000010025 steaming Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 238000004227 thermal cracking Methods 0.000 description 3
- 238000001149 thermolysis Methods 0.000 description 3
- 239000000654 additive Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 239000003502 gasoline Substances 0.000 description 2
- 238000000265 homogenisation Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003209 petroleum derivative Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- -1 amine compound Chemical class 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000010297 mechanical methods and process Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 239000011269 tar Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 239000002916 wood waste Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G15/00—Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs
- C10G15/08—Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs by electric means or by electromagnetic or mechanical vibrations
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1003—Waste materials
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Treatment Of Sludge (AREA)
Abstract
Настоящее изобретение относится к способу переработки нефтяных отходов, содержащих воду и механические примеси. Способ заключается в том, что предварительно проводят активацию гомогенизированного исходного сырья электромагнитным излучением с частотой 40,0-55,0 МГц, мощностью излучения 0,2-0,6 кВт в течение 1-8 часов, затем активированное сырье подвергают нагреву в однопоточном вертикальном реакторе в две стадии, первую стадию осуществляют при температуре 110-120°С с образованием парогазовой фазы первой стадии с выводом ее с верха реактора, вторую стадию осуществляют при температуре до 375-400°С с образованием парогазовой фазы второй стадии, выводимой с верха реактора, и твердого остатка с последующим разделением парогазовых фаз первой и второй стадий на водную, жидкую углеводородную фазы и газ. При этом нагрев сырья осуществляют с помощью индукторов высокой частоты 8-20 кГц и мощностью 40-80 кВт в присутствии подаваемых в полость реактора предварительно нагретых стальных шаров с обеспечением их вращательного движения в потоке сырья под воздействием электромагнитного поля, генерируемого индукторами низкой частоты 45-55 Гц и мощностью 6-10 кВт, и индукторы размещены последовательно по высоте реактора с чередованием индукторов низкой и высокой частот, начиная с индуктора низкой частоты, размещенного в области верхней части реактора. Предлагаемый способ позволяет получить целевые продукты с высоким выходом, а также повысить содержание водорода в получаемом углеводородном газе. 1 пр.
Description
Изобретение относится к способам переработки нефтяных отходов, в частности нефтешламов, с использованием волновых методов воздействия на сырье, и может быть использовано в нефтяной и нефтеперерабатывающей отраслях промышленности.
Нефтяные отходы по составу чрезвычайно многообразны и представляют собой сложные системы, состоящие из нефтепродуктов, воды и механических примесей (песок, глина, ил). Соотношение этих компонентов колеблется в очень широких пределах. Органические вещества в среднем составляют от 10 до 56% мас., вода - 30-85% мас., твердые примеси - 1-46% мас. Для них характерна высокая вязкость, благодаря повышенному содержанию механических примесей и, самое главное, высокая агрегативная устойчивость шламов, обусловленная преимущественно повышенным содержанием асфальтенов, смол, парафинов и других высокомолекулярных компонентов.
Переработка такого сырья до светлых нефтепродуктов возможна преимущественно с помощью термических методов, требующих большой энергии для активации сырья. Термические методы переработки нефтяных отходов зависят от способа нагрева сырья, предполагающего длительный межремонтный период работы оборудования. Наиболее распространен способ нагрева таких видов сырья в трубчатых печах либо в кубах с обогревом топочными газами от сжигания органического топлива. Нагрев сырья в трубчатых печах сопряжен с интенсивным коксоотложением и требует удаления кокса с внутренних стенок змеевика трубчатой печи. Нагрев в кубах требует больших затрат органического топлива и трудно поддается автоматизации.
Известны различные методы переработки нефтесодержащих отходов, такие как диспергирование, флотация, деэмульгирование, деструкция, стерилизация, экстракция и другие химические и механические способы, используемые в зависимости от решаемой задачи.
Известен способ переработки нефтеотходов (RU 2156750, 2000), включающий предварительное их обезвоживание с последующей термической обработкой при температуре 300-400°С во вращающемся трубчатом смесителе путем контактирования обезвоженного сырья с нагретым в барабанных печах до температуры 300-400°С щебнем или гравием, предварительно нагретым во вращающейся барабанной печи в массовом соотношении 1:2 или 1:3. Для поддержания температуры термообработки во вращающемся смесителе в заданных пределах в него на выход вращающегося смесителя подают дымовые газы с печей нагрева щебня или гравия. Основным недостатком способа являются большие энергозатраты на термическую обработку нефтешлама и щебня (гравия), а также незначительные выходы дистиллятных фракций.
Известен способ переработки нефтяных шламов, в котором шламы переводят сначала в вязкотекучее состояние. Затем проводят нагрев в один или несколько этапов со скоростью 1,25-20,0 град./мин при режиме от температуры окружающей среды до 700°С. При этом выделяют соответствующие фракции, которые модифицируют, причем модифицирование осуществляют на любом этапе нагрева. Модифицированные фракции используют в качестве добавок при получении конструкционных материалов, в частности пластмасс. В качестве модификатора используют двухатомный фенол, аминное соединение, продукты пиролиза твердых горючих ископаемых и т.д. (RU 2193578, 2000). Преимуществом этого метода является возможность получения модифицированных добавок для широкого ассортимента продукции. К недостаткам относятся высокая температура процесса, большая длительность процесса, значительные энергозатраты на его осуществление, а также то, что способ позволяет очистить шлам от углеводородных фракций, остальные же примеси остаются, следовательно, эта технология не является безотходной.
Известен способ (SU 17477400, 1992), включающий предварительное обезвоживание нефтешлама методом капиллярного отсоса волокнистым материалом до влажности 60-70% с последующим высушиванием остатка в барабанных печах при 300-400°С с добавлением гравия или щебня в массовом соотношении от 1:2 до 1:3. В результате получают "черный" щебень - строительный материал с гидрофобным покрытием, масляный конденсат и очищенную воду. Недостатком данного способа переработки нефтешламов является образование в процессе пиролиза большого объема парогазовой фазы, образование которой требует высоких температур и большой длительности процесса. Такой длительный процесс необходим для получения на щебне органической пленки с высокой адгезией и высокой температурой размягчения, что необходимо для получения дорожного гидрофобного щебня. Пиролиз нефтешлама приводит к частичной термодеструкции углеводородов, однако приводится только выход масла (5-10% мас. на обезвоженный нефтешлам). Недостатком способа являются незначительные выходы дистиллятных фракций.
Известен способ переработки нефтяных отходов, включающий процесс жидкофазного термолиза обезвоженных нефтеэмульсионных нефтешламов, донных нефтешламов и нефтяных отходов с высоким содержанием механических примесей (Десяткин А.А. Разработка технологии утилизации нефтяных шламов. Кандидатская диссертация, Уфа, 2004). Для разрушения эмульсий, стабилизированных механическими примесями, применяют композиционные деэмульгаторы, в составе которых наряду с неионогенными деэмульгаторами используют полиэлектролиты, которые взаимодействуют с механическими примесями (объединяя их в крупные агрегаты и облегчая тем самым их удаление из нефтяной эмульсии), реагенты-деэмульгаторы, представляющие собой отходы древесины - подготовленные опилки. Процесс проводят на лабораторной установке при атмосферном давлении и постепенном нагреве до 550°С. Выходы термолизного дистиллята - 14-35% мас., газа - 4,4-5,8% мас., твердого остатка - 11,7-14,6% мас., водного конденсата - 45,7-67,1% мас. в зависимости от типа сырья. Недостатки указанного способа заключаются в использовании композиционных деэмульгаторов, определенное количество которых остается в сырье термолиза, а также высокая температура процесса.
Более близким к изобретению является способ переработки нефтяных отходов, в частности нефтешлама, путем деструкции органических соединений, включающий одновременное или последовательное воздействие на деструктурируемое сырье волновыми электромагнитными и акустическими полями с энергией и частотами, соответствующими резонансным частотам с последующим температурным воздействием в пределах атмосферной перегонки (RU 2246525, 2005). В качестве деструктурируемого сырья используют обводненные отработанные моторные масла, сверхвысоковязкие пластичнообразные нефтешламы. Известный способ переработки предусматривает предварительную гомогенизацию обводненного сырья и получение эмульсий типа "вода в масле" с помощью генератора ультразвуковых колебаний роторного типа мощностью 0,8 кВт и дальнейшую термическую переработку эмульсии с использованием генератора электромагнитного излучения, который позволяет варьировать параметры волнового поля в пределах частот 1-104 Гц и интенсивности 1-104 МВт/м2. Термокрекинг сырья осуществляют в трубчатой печи при температуре до 400°С. Выход дистиллятных фракций составляет 40-80% в зависимости от типа сырья, газа - до 7% и кубового остатка - до 6-8% (от углеводородной составляющей шлама). Однако указанный способ невозможно использовать при переработке нефтяных отходов с содержанием мехпримесей более 1%, воды более 7 мас. %, т.к. это предельное содержание воды, которое можно эмульгировать в нефтяных остатках с помощью ультразвука. Переработка таким способом нефтяных остатков с большим количеством воды и механических примесей не представляется возможной и ведет к необходимости наличия предварительной стадии их удаления. К недостаткам способа относятся недостаточно высокий выход светлых нефтепродуктов, высокое коксообразование, приводящее к высокой степени закоксованности трубчатой печи, что способствует быстрому выходу ее из строя.
Задачей описываемого изобретения является повышение эффективности способа переработки нефтяных отходов.
Поставленная задача достигается описываемым способом переработки нефтяных отходов, содержащих воду и механические примеси, заключающимся в том, что предварительно проводят активацию гомогенизированного исходного сырья электромагнитным излучением с частотой 40,0-55,0 МГц, мощностью излучения 0,2-0,6 кВт в течение 1-8 часов, затем активированное сырье подвергают нагреву в однопоточном вертикальном реакторе, в две стадии, первую стадию осуществляют при температуре 110-120°С с образованием парогазовой фазы первой стадии с выводом ее с верха реактора, вторую стадию осуществляют при температуре до 375-400°С с образованием парогазовой фазы второй стадии, выводимой с верха реактора и твердого остатка с последующим разделением парогазовых фаз первой и второй стадий на водную, жидкую углеводородную фазы и газ, причем нагрев сырья осуществляют с помощью индукторов высокой частоты 8-20 кГц и мощностью 40-80 кВт в присутствии подаваемых в полость реактора предварительно нагретых стальных шаров с обеспечением их вращательного движения в потоке сырья под воздействием электромагнитного поля, генерируемого индукторами низкой частоты 45-55 Гц и мощностью 6-10 кВт, при этом индукторы размещены последовательно по высоте реактора с чередованием индукторов низкой и высокой частот, начиная с индуктора низкой частоты, размещенного в области верхней части реактора.
Технический результат заключается в интенсификации процессов испарения и термического крекинга, следствием чего является повышение выхода целевых продуктов, снижение газообразования и коксообразования, образование углеводородного газа с высоким содержанием водорода.
Описываемый способ проводят следующим образом.
В качестве сырья возможно использование донных нефтешламов (ДНШ) с содержанием нефтепродукта (16-30% мас.), минеральных примесей (6-12% мас.), воды (60-70% мас.), сбросов при подготовке нефти, при зачистке резервуаров, сбросов нефтесодержащих промывочных жидкостей, используемых при производстве буровых работ, сбросов при испытании и капитальном ремонте скважин, при аварийных разливах, сливных нефтяных остатков с ж/д цистерн, морских и речных судов, кислых гудронов.
Исходное сырье гомогенизируют с помощью, например, пластинчатого (шиберного) сырьевого насоса для исключения выпадения механических примесей и расслоения. Затем предварительно проводят активацию гомогенизированного исходного сырья электромагнитным излучением с частотой 40,0-55,0 МГц, мощностью излучения 0,2-0,6 кВт в течение 1-8 часов. Дальнейшую переработку проводят в однопоточном вертикальном реакторе, по высоте которого снаружи размещены индукторы низкой частоты 45-55 Гц, мощностью 6-10 кВт и индукторы высокой частоты 8-20кГц, мощностью 40-80 кВт. При этом индукторы размещены по высоте реактора последовательно с чередованием индукторов низкой и высокой частот, начиная с индуктора низкой частоты с верха реактора. Количество индукторов низкой частоты может составлять, например, 4 шт., количество индукторов высокой частоты, например, 3 шт.
Исходное активированное сырье подают в верхнюю часть реактора. Одновременно в реактор загружают предварительно нагретые (например, до 100-120°С) стальные шары предпочтительно диаметром 50-75 мм. Под воздействием электромагнитного поля, генерируемого индуктором низкой частоты 45-55 Гц, мощностью 6-10 кВт нагретые стальные шары верхней части реактора начинают вращаться, оказывая интенсивное перемешивание сырья в горизонтальной плоскости полости реактора. Таким образом осуществляется первая стадия нагрева активированного сырья при температуре 110-120°С, в результате чего происходит интенсивное испарение воды, а также азеотропной смеси воды с бензином с образованием парогазовой фазы. Указанную фазу отводят с верха реактора.
После первой стадии нагрева обезвоженный нефтешлам после отделения от него парогазовой фазы вместе со стальными шарами поступают в дальнейшую высокотемпературную зону реактора и движутся в вертикальной плоскости вниз, где под воздействием электромагнитного поля, генерируемого поочередно индукторами высокой частоты и индукторами низкой частоты, происходит соответственно постепенный дальнейший нагрев обезвоженного сырья со стальными шарами и дальнейшее перемешивание обезвоженного шлама и стальных шаров. На данной стадии в высокотемпературной зоне реактора осуществляется непосредственно процесс крекинга. Процесс крекинга проводят до температуры 375-400°С в течение 3-7 часов. Предельное время пребывания в реакторе определяется длиной реактора и скоростью движения реакционной массы. В результате крекинга образующаяся парогазовая смесь углеводородов поднимается в верхнюю часть реактора и выводится с его верха. Отводимые с верха реактора парогазовую смесь первой стадии и парогазовую смесь второй стадии подвергают охлаждению и разделению. При разделении получают водную фазу, жидкую углеводородную фракция и газ.
С низа реактора отводят твердый остаток крекинга и стальные шары. Последние подвергают отпарке. Полученные при отпарке стальные шары, нагретые до температуры, например, 100-120°С, направляют на смешение с исходным сырьем, подаваемым в реактор. Твердый остаток, представляющий из себя механические примеси и кокс, может быть использован в дорожном строительстве, в том числе для отсыпных работ.
Способ иллюстрируется примерами, не ограничивающими его использование.
Пример 1
5 кг донного нефтешлама, состава: вода - 69% мас., углеводороды - 20,1% мас., механические примеси - 10,9% мас. подвергают гомогенизации. Далее предварительно проводят активацию гомогенизированного исходного сырья электромагнитным излучением с частотой 49,5 МГц, мощностью излучения 0,6 кВт в течение 4 часов. Исходное активированное сырье подают в верхнюю часть однопоточного вертикального реактора. По высоте реактора размещены индукторы низкой частоты 45-55 Гц, мощностью 6-10 кВт и индукторы высокой частоты 8-20 кГц, мощностью 40-80 кВт. При этом индукторы размещены по высоте реактора последовательно с чередованием индукторов низкой и высокой частот, начиная с индуктора низкой частоты, размещенного в области верхней части реактора. Количество индукторов низкой частоты составляет 4 шт., количество индукторов высокой частоты - 3 шт. Одновременно в реактор загружают предварительно нагретые до 110°С стальные шары диаметром 60 мм. Под воздействием электромагнитного поля, генерируемого индуктором низкой частоты 50 Гц, мощностью 7 кВт нагретые стальные шары в верхней части реактора начинают вращаться. Происходит интенсивное перемешивание сырья в горизонтальной плоскости полости реактора. Таким образом осуществляется первая стадия нагрева активированного сырья при температуре 110°С. При этом происходит интенсивное испарение воды, а также азеотропной смеси воды с бензином с образованием парогазовой фазы первой стадии. Указанную фазу отводят с верха реактора.
После первой стадии нагрева обезвоженный нефтешлам со стальными шарами поступают в дальнейшую высокотемпературную зону реактора и движутся в вертикальной плоскости вниз, где под воздействием электромагнитного поля, генерируемого поочередно индукторами высокой частоты и индукторами низкой частоты, происходит соответственно постепенный дальнейший нагрев обезвоженного сырья со стальными шарами и дальнейшее перемешивание обезвоженного шлама и стальных шаров. На данной второй стадии в высокотемпературной зоне реактора осуществляется непосредственно процесс крекинга. Процесс крекинга проводят при температуре 375-400°С в течение 5 часов. В результате крекинга образующаяся парогазовая смесь углеводородов второй стадии поднимается в верхнюю часть реактора и выводится с его верха. Отводимые с верха реактора парогазовую смесь первой стадии и парогазовую смесь второй стадии подвергают охлаждению и разделению. При разделении получают водную фазу, жидкую углеводородную фракцию и газ. С низа реактора отводят твердый остаток крекинга и стальные шары. Последние подвергают отпарке. Полученные при отпарке стальные шары, нагретые до температуры 110°С, направляют на смешение с исходным сырьем, подаваемым в реактор. Твердый остаток - механические примеси и кокс используют в дорожном строительстве.
Выход широкой газойлевой фракции (90-360°С) в расчете на исходный ДНШ составляет 24,3% мас. или 82,4% мас. от углеводородной составляющей ДНШ, углеводородного газа, соответственно 2% мас. или 6% мас. (содержание водорода 28% об.), кокса, соответственно 4% мас. или 13,2% мас. По известному способу выход дистиллята в расчете от углеводородной составляющей составляет 74,5% мас., углеводородного газа 4,5% мас. (содержание водорода 12% об.), кокса 21% мас.
Из приведенных данных следует, что использование предварительной электромагнитной активации нефтеотхода и использование в качестве теплоносителя - стальных шаров, которые интенсифицируют процессы испарения и термического крекинга жидких сред, позволяет значительно увеличить выход продуктов крекинга на 8% мас., снизить коксообразование на 7,8% мас. и газообразование на 1,5% мас. по сравнению с известным способом. При этом в углеводородном газе увеличивается содержание водорода на 16% об. по сравнению с известным способом.
Таким образом, описываемый способ переработки нефтяных отходов позволяет: повысить выход целевых дистиллятных фракций за счет использования предварительной волновой обработки сырья и эффективного теплоносителя - стальных шаров, на поверхности которых более эффективно протекают процессы испарения жидких сред и термический крекинг перерабатываемого сырья; снизить газообразование и коксообразование; получать углеводородный газ с высоким содержанием водорода (более 20% об.), что, в свою очередь позволяет получать высококалорийный топливный газ. Описываемый способ позволяет также исключить стадию предварительного отделения воды и механических примесей от сырья, исключить ультразвуковую обработку сырья, перерабатывать нефтяные отходы с высоким содержанием воды и механических примесей за счет использования однопоточного реактора с высокочастотными индукторами обогрева и низкочастотными индукторами для перемешивания реакционной массы и эффективного теплоносителя - стальных шаров, использовать выделяемые механические примеси и кокс в дорожном строительстве, в том числе для отсыпных работ, что делает описываемый способ переработки безотходным и экологически безопасным.
Claims (1)
- Способ переработки нефтяных отходов, содержащих воду и механические примеси, заключающийся в том, что предварительно проводят активацию гомогенизированного исходного сырья электромагнитным излучением с частотой 40,0-55,0 МГц, мощностью излучения 0,2-0,6 кВт в течение 1-8 часов, затем активированное сырье подвергают нагреву в однопоточном вертикальном реакторе в две стадии, первую стадию осуществляют при температуре 110-120°С с образованием парогазовой фазы первой стадии с выводом ее с верха реактора, вторую стадию осуществляют при температуре до 375-400°С с образованием парогазовой фазы второй стадии, выводимой с верха реактора, и твердого остатка с последующим разделением парогазовых фаз первой и второй стадий на водную, жидкую углеводородную фазы и газ, причем нагрев сырья осуществляют с помощью индукторов высокой частоты 8-20 кГц и мощностью 40-80 кВт в присутствии подаваемых в полость реактора предварительно нагретых стальных шаров с обеспечением их вращательного движения в потоке сырья под воздействием электромагнитного поля, генерируемого индукторами низкой частоты 45-55 Гц и мощностью 6-10 кВт, при этом индукторы размещены последовательно по высоте реактора с чередованием индукторов низкой и высокой частот, начиная с индуктора низкой частоты, размещенного в области верхней части реактора.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015156814A RU2606385C1 (ru) | 2015-12-29 | 2015-12-29 | Способ переработки нефтяных отходов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2015156814A RU2606385C1 (ru) | 2015-12-29 | 2015-12-29 | Способ переработки нефтяных отходов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2606385C1 true RU2606385C1 (ru) | 2017-01-10 |
Family
ID=58452386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2015156814A RU2606385C1 (ru) | 2015-12-29 | 2015-12-29 | Способ переработки нефтяных отходов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2606385C1 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2246525C1 (ru) * | 2003-10-01 | 2005-02-20 | Крестовников Михаил Павлович | Способ деструкции органических соединений и установка по переработке нефтехимических отходов |
WO2010003180A1 (en) * | 2008-07-11 | 2010-01-14 | P-Fuel Ltd | Method of processing oil refining waste |
US9074142B2 (en) * | 2008-10-28 | 2015-07-07 | Xyleco, Inc. | Processing materials |
-
2015
- 2015-12-29 RU RU2015156814A patent/RU2606385C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2246525C1 (ru) * | 2003-10-01 | 2005-02-20 | Крестовников Михаил Павлович | Способ деструкции органических соединений и установка по переработке нефтехимических отходов |
WO2010003180A1 (en) * | 2008-07-11 | 2010-01-14 | P-Fuel Ltd | Method of processing oil refining waste |
US9074142B2 (en) * | 2008-10-28 | 2015-07-07 | Xyleco, Inc. | Processing materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102452776B (zh) | 一种油泥的处理方法 | |
US7705058B2 (en) | Method for the microwave treatment of water-in-oil emulsions | |
CA2721744C (en) | Process and system for recovering oil from tar sands using microwave energy | |
CN102452778A (zh) | 油泥的处理方法 | |
CN106673401A (zh) | 石化行业中含油浮渣脱水方法 | |
CN101767920A (zh) | 一种油田污油泥处理方法 | |
CN100506941C (zh) | 炼厂或油田污油脱水工艺 | |
RU2335525C1 (ru) | Способ и установка для переработки тяжелых нефтяных остатков | |
RU2606385C1 (ru) | Способ переработки нефтяных отходов | |
CN112723698A (zh) | 一种清罐油泥无害化处理系统及处理工艺 | |
RU2375409C1 (ru) | Способ переработки углеводородного сырья и устройство для его осуществления | |
CN107880930B (zh) | 一种节能的污油脱水装置及其处理方法 | |
RU2246525C1 (ru) | Способ деструкции органических соединений и установка по переработке нефтехимических отходов | |
EP1452576B1 (en) | Method for recycling mixed oil waste and device for carrying out said method | |
RU2550843C1 (ru) | Нефтешламоперерабатывающий комплекс | |
CN102350431B (zh) | 从含原油废弃物中分离有机物油份的方法 | |
CN102140368B (zh) | 一种重污油回炼工艺 | |
RU2411260C1 (ru) | Способ переработки нефтесодержащих шламов | |
CN105802650A (zh) | 高温煤焦油脱水的方法和装置 | |
RU2566407C1 (ru) | Способ переработки нефтяных отходов | |
CN107099326A (zh) | 一种污油脱盐脱水的方法 | |
CN220564548U (zh) | 一种用于电脱盐污油脱水的装置 | |
RU2189846C1 (ru) | Способ совместного сбора, подготовки нефти и переработки, утилизации нефтесодержащих шламов | |
RU2506303C1 (ru) | Способ переработки нефтесодержащих шламов | |
KR20040075870A (ko) | 혼합된 석유 폐기물을 처리하는 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
QB4A | Licence on use of patent |
Free format text: LICENCE Effective date: 20170426 |