RU2567185C1 - Прецизионный датчик расстояний - Google Patents
Прецизионный датчик расстояний Download PDFInfo
- Publication number
- RU2567185C1 RU2567185C1 RU2014127827/28A RU2014127827A RU2567185C1 RU 2567185 C1 RU2567185 C1 RU 2567185C1 RU 2014127827/28 A RU2014127827/28 A RU 2014127827/28A RU 2014127827 A RU2014127827 A RU 2014127827A RU 2567185 C1 RU2567185 C1 RU 2567185C1
- Authority
- RU
- Russia
- Prior art keywords
- distance sensor
- system including
- receiving
- receiving circuit
- circuit
- Prior art date
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Abstract
Изобретение касается прецизионного датчика расстояния. Особенностью указанного датчика является то, что приемная схема выполнена двухканальной и состоит из оптической системы, включающей две ромб-призмы и два отклоняющих клина, и приемной проекционной системы, включающей цилиндрическую линзу и сферический объектив, а в качестве фотодетектора использована двухкоординатная ПЗС-матрица, выход которой подключен к персональному компьютеру или контроллеру. Технический результат заключается в повышении абсолютной и относительной точности измерений. 2 ил.
Description
Изобретение относится к области измерительной техники и может быть использовано в точном приборостроении, машиностроении, метрологии и других отраслях промышленности.
Известен лазерный радар MV260 (фирмы Metric Vision, США, Приложение к настоящему описанию предполагаемого изобретения), построенный по принципу светолокации.
Основным недостатком известного лазера является низкая абсолютная точность, лежащая в диапазоне 0,1÷0,025 мм, а также высокая цена прибора и большие его габариты.
Известны также триангуляционные датчики расстояния фирмы MEL Mikroelektronik Германия, один из которых, модель M7LL (http://www.melsensor.de/optoelectronic-distance-sensors.html?Itemid=64), выбран в качестве прототипа к заявленному прецизионному датчику расстояний. Известный датчик содержит осветительную схему с лазерным диодом, формирующую узкий зондирующий световой луч, направленный на измеряемую поверхность, и одноканальную приемную схему с позиционно-чувствительным фотодиодом или с ПЗС-линейкой в качестве детектора. За счет того, что оптические оси осветителя и приемной схемы разнесены на параллактический угол φ≠0, в приемной плоскости возникают линейные параллаксы изображений светлых точек, зависящие от координаты дальности Z до объекта, которые и измеряются с помощью линейного детектора.
Основным недостатком прототипа является неустранимая нестабильность выходных данных, вызванная тем, что отсчетная точность определения координат сигнального изображения достигает величин ≈0,1÷0,03 мкм. Кроме того, при одноканальной приемной схеме в прототипе невозможно обеспечить стабильность на таком уровне между осью зондируемого луча и приемным изображением из-за деформаций конструкции прибора. Поэтому в рекламных материалах приборов, выпускаемых этой фирмой, приводятся только параметры чувствительности (разрешения), а реальная точность хуже параметров чувствительности измерений примерно в 10 и более раз. Так, в прототипе для диапазона измерений ΔZ=100 мм разрешение δZ=0,06 мм, то есть относительная точность
. Реальная точность измерений намного хуже и лежит в диапазоне ε≥10-3÷10-2.
Технической задачей предлагаемого изобретения является повышение абсолютной и относительной точности измерений.
Для достижения технического результата в прецизионном датчике расстояний, содержащем осветительную схему с лазерным диодом, приемную схему и фотодетектор, приемная схема выполнена двухканальной и состоит из оптической системы, включающей две ромб-призмы и два отклоняющих клина, и приемной проекционной системы, включающей цилиндрическую линзу и сферический объектив, а в качестве фотодетектора использована двухкоординатная ПЗС-матрица, выход которой подключен к персональному компьютеру или специализированному контроллеру.
По сравнению с известными аналогами и прототипом предлагаемая конструкция прецизионного датчика расстояний позволяет повысить точность измерений за счет выполнения приемной схемы двухканальной, использования ромб-призм и ПЗС-матрицы. Совокупность таких существенных признаков позволила исключить нестабильность выходных данных при любых деформациях конструктивных элементов, что существенно влияет на повышение точности измерений.
Таким образом предлагаемое изобретение обеспечивает достижение поставленной задачи, является новым и промышленно применимым.
Предлагаемое изобретение поясняется чертежами, где:
на фиг. 1 представлена принципиальная схема прецизионного датчика расстояний,
на фиг. 2 представлены изображения в виде световых линий, формируемые в плоскости приемной ПЗС-матрицы.
Прецизионный датчик расстояний (фиг. 1) содержит осветительную схему, состоящую из лазерного диода 1, объектива 2 и призмы 3 и формирующую узкий зондирующий световой поток, распространяющийся по оси датчика на измеряемую поверхность объекта, двухканальную приемную схему, состоящую из оптической системы, включающей два отклоняющих клина 4 и две ромб-призмы 5, и приемной проекционной системы, включающей цилиндрическую линзу 6 и проекционный сферический объектив 7, двухкоординатную ПЗС-матрицу 8, используемую в качестве фотодетектора, выход которой подключен к персональному компьютеру ПК. Буквой В обозначена линейная база датчика.
Схема датчика функционирует следующим образом.
Осветительная схема формирует на поверхности объекта зондирующее световое («точечное») пятна круглой формы. Диффузная часть отраженного от объекта светового потока попадает на входные отклоняющие клинья 4, далее проходит ромб-призмы 5 и поступает на приемную проекционную систему. В отличие от традиционных изоморфных систем (сферического объектива 7), эта система анаморфотна и содержит дополнительно цилиндрическую линзу 6 с плоскостью фокусировки по оси OY.
В результате в плоскости приемной двухкоординатной ПЗС-матрицы 8 будет построено два изображения в виде световых линий вдоль оси 0′Y′ с
- расстоянием между ними (фиг. 2б). В традиционных схемах (без анаморфота 6) проекционная система строит «точечные» изображения с расстоянием
между ними (фиг. 2а).
Выходной информацией о координате дальности Z является расстояние ΔХ′, измеряемое в плоскости ПЗС-матрицы 8:
где:
Z - расстояние до объекта,
φ1 - параллактические углы,
Vx - увеличение проекционного объектива.
Из фиг. 1 и 2 видно, что малые линейные и угловые подвижки всех элементов схемы заявленного датчика не приводят к изменению величины
, то есть обеспечивают нерасстраиваемость ее при измерении координаты Z. Так, малые наклоны отклоняющих клиньев 4, очевидно, не изменяют угол между входным и выходным лучами, а также и наклоны ромб-призм 5 из-за четности числа отражений в них. Смещения проекционного объектива 7 и ПЗС-матрицы 8 приводят к смещению всего изображения, оставляя неизменным расстояние
, а эффектов от смещения цилиндрической линзы 6 по оси 0X не происходит вообще, так как она эквивалентна плоскопараллельной пластине в направлении 0X. Смещение оси осветительной схемы и формируемого ею зондирующего луча по оси 0X приводит также только к смещению всего сигнального изображения по оси ΔХ′ без изменения
.
Для заявленного прецизионного датчика расстояний выходная информация о Z представляется в виде среднего значения ΔХ по всем строкам ПЗС-матрицы 8, то есть:
где:
М - число строк ПЗС-матрицы 8.
Дифференцируя уравнение (2), получаем выражение для погрешностей измерений 8L:
где:
Погрешность
зависит от многих параметров (от свойств измеряемой поверхности, параметров осветительной и приемной схем, от режимов работы ПЗС-матрицы и т.д.) и носит случайный характер. Поэтому величину
проще всего определить экспериментально, что и было сделано на макетном образце заявленного датчика расстояний. Оказалось, что
где
ΔХ-X - размер пикселов ПЗС-матрицы 8.
С учетом этой величины из уравнения (3) выражение для погрешностей имеет следующий вид:
Следует отметить, что для однокоординатного фотодетектора (ПЗС-линейки) М=1. Таким образом, повышение чувствительности измерений схемы (фиг. 1) по сравнению с прототипом составляет величину
для ПЗС-матриц 1000×1000 пикселов.
Изготовленный и испытанный макетный образец заявленного датчика расстояний показал, что погрешность измерений δZ расстояния до объекта составила величину, равную 0,003÷0,01 пиксела, включая случайную погрешность измерений и долговременную нестабильность за t≥8 часов. Для ПЗС-матрицы разрядности 1240х1024 пикселов относительная точность измерений составляет
. Параметры оптической схемы макетного образца определяет измерительный диапазон по дальности Z=300 мм, при этом погрешность измерения δZ≤7 мкм, включая временную нестабильность выходных данных за время 8 часов. Достигнутая на макетном образце относительная точность измерений равна
и может быть улучшена в 2÷3 раза на этапе создания опытных образцов заявленного прецизионного датчика расстояний.
Таким образом, использование заявленного изобретения позволяет повысить абсолютную и относительную точности измерений.
Claims (1)
- Прецизионный датчик расстояний, содержащий осветительную схему с лазерным диодом, приемную схему и фотодетектор, отличающийся тем, что приемная схема выполнена двухканальной и состоит из оптической системы, включающей две ромб-призмы и два отклоняющих клина, и приемной проекционной системы, включающей цилиндрическую линзу и сферический объектив, а в качестве фотодетектора использована двухкоординатная ПЗС-матрица, выход которой подключен к персональному компьютеру или специализированному контроллеру.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014127827/28A RU2567185C1 (ru) | 2014-07-08 | 2014-07-08 | Прецизионный датчик расстояний |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2014127827/28A RU2567185C1 (ru) | 2014-07-08 | 2014-07-08 | Прецизионный датчик расстояний |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2567185C1 true RU2567185C1 (ru) | 2015-11-10 |
Family
ID=54536921
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2014127827/28A RU2567185C1 (ru) | 2014-07-08 | 2014-07-08 | Прецизионный датчик расстояний |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2567185C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6285813A (ja) * | 1985-10-11 | 1987-04-20 | Nec Corp | 距離測定装置 |
JPH04204010A (ja) * | 1990-11-30 | 1992-07-24 | Hitachi Ltd | 光応用距離センサ |
RU2124700C1 (ru) * | 1996-08-15 | 1999-01-10 | Юрий Ефимович Дукаревич | Бесконтактный измеритель расстояний |
JP2004163343A (ja) * | 2002-11-15 | 2004-06-10 | Toshiba Corp | 距離検出装置,厚さ測定装置及びその方法 |
RU2399024C2 (ru) * | 2008-09-17 | 2010-09-10 | Юрий Ефимович Дукаревич | Бесконтактный измеритель профиля |
-
2014
- 2014-07-08 RU RU2014127827/28A patent/RU2567185C1/ru not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6285813A (ja) * | 1985-10-11 | 1987-04-20 | Nec Corp | 距離測定装置 |
JPH04204010A (ja) * | 1990-11-30 | 1992-07-24 | Hitachi Ltd | 光応用距離センサ |
RU2124700C1 (ru) * | 1996-08-15 | 1999-01-10 | Юрий Ефимович Дукаревич | Бесконтактный измеритель расстояний |
JP2004163343A (ja) * | 2002-11-15 | 2004-06-10 | Toshiba Corp | 距離検出装置,厚さ測定装置及びその方法 |
RU2399024C2 (ru) * | 2008-09-17 | 2010-09-10 | Юрий Ефимович Дукаревич | Бесконтактный измеритель профиля |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3511450B2 (ja) | 光学式測定装置の位置校正方法 | |
TWI420081B (zh) | 測距系統及測距方法 | |
JP2013171039A (ja) | タッチプローブ | |
CN101846506B (zh) | 基于共路平行光线的滚转角测量方法 | |
CN101545761A (zh) | 一种多自由度光学测量系统 | |
Turgalieva et al. | Research of autocollimating angular deformation measurement system for large-size objects control | |
JP2019200168A (ja) | 真直度測定装置 | |
Chen et al. | Development of high-precision micro-roundness measuring machine using a high-sensitivity and compact multi-beam angle sensor | |
CN119354095A (zh) | 光学位移计 | |
JP4970204B2 (ja) | 真直度測定装置、厚み変動測定装置及び直交度測定装置 | |
CN104535300A (zh) | 一种大口径平行光管波前及像面位置标定装置及方法 | |
JP2010249589A (ja) | 歪み計測方法及び歪み計測装置 | |
CN102865835B (zh) | 游标狭缝式光电自准直仪 | |
CN104655027B (zh) | 微小高度的检测方法及系统 | |
CN110487219A (zh) | 一种运动机构直线度的检测系统及其检测方法 | |
RU2567185C1 (ru) | Прецизионный датчик расстояний | |
CN203286992U (zh) | 一种激光光束垂直度的检测装置 | |
JP6279935B2 (ja) | 変位計測装置 | |
JP2015127661A (ja) | 変位計測装置 | |
Korolev et al. | A digital autocollimator | |
RU2399024C2 (ru) | Бесконтактный измеритель профиля | |
KR101033031B1 (ko) | 변형률 측정 장치 | |
CN207301331U (zh) | 一种三角法激光测距传感器 | |
JP6599137B2 (ja) | 平面形状測定装置及び平面形状算出システム | |
CN105180814A (zh) | 一种新型光臂放大式二维线性测头 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180709 |