[go: up one dir, main page]

RU2556183C2 - Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой - Google Patents

Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой Download PDF

Info

Publication number
RU2556183C2
RU2556183C2 RU2013119139/02A RU2013119139A RU2556183C2 RU 2556183 C2 RU2556183 C2 RU 2556183C2 RU 2013119139/02 A RU2013119139/02 A RU 2013119139/02A RU 2013119139 A RU2013119139 A RU 2013119139A RU 2556183 C2 RU2556183 C2 RU 2556183C2
Authority
RU
Russia
Prior art keywords
titanium
heterostructure
silicide
silicon substrate
titanium oxide
Prior art date
Application number
RU2013119139/02A
Other languages
English (en)
Other versions
RU2013119139A (ru
Inventor
Валентин Михайлович Иевлев
Сергей Владимирович Канныкин
Сергей Борисович Кущев
Сергей Анатольевич Солдатенко
Александр Михайлович Возгорьков
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Воронежский государственный технический университет"
Priority to RU2013119139/02A priority Critical patent/RU2556183C2/ru
Publication of RU2013119139A publication Critical patent/RU2013119139A/ru
Application granted granted Critical
Publication of RU2556183C2 publication Critical patent/RU2556183C2/ru

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, включает проведение фотонной обработки упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10-2 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·см-2 для активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана. Обеспечивается упрощение технологии, значительное сокращение времени изготовления изделия, содержащего кремниевую подложку с гетероструктурой оксид титана - силицид титана и снижается температурная нагрузка на кремниевую подложку. 2 ил., 2 пр.

Description

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов.
Известны различные способы формирования слоев диоксида титана на подложках путем термического оксидирования пленок титана, где источником атомов окислителя является газовая среда [1, 2]. Также известны различные способы формирования слоев силицидов титана на подложке кремния путем термического окисления пленок титана, где источником атомов окислителя является подложка [3-6]. Что касается формирования пленочных гетероструктур диоксид титана-силицид титана на подложке кремния, то предложенный в работе [7] способ формирования гетероструктуры TiO2 / TiSi2 путем термического оксидирования пленки TiSi2 на подложке монокристаллического кремния не позволяет получить однофазную пленку TiO2, а способ, предложенный в работе [8], основанный на твердофазной реакции разложения пленки TiO2 в контакте с подложкой Si - сплошную пленку TiSi2. К недостаткам последнего способа следует отнести и невозможность получения предельной фазы силицида TiSi2(C54), обусловленную ингибирующим влиянием кислорода на кинетику силицидообразования [9].
Наиболее близким аналогом к заявляемому решению является способ получения гетероструктуры TiO2 / TiSi2, предложенный в работе [10]. Этот способ включает следующие стадии:
размещение кремниевой подложки в вакуумной камере;
очистка кремниевой подложки от естественного оксида;
формирование методом магнетронного распыления нанокристаллической пленки титана на поверхности пластины кремния;
синтез гетероструктуры TiO2 / TiSi2 происходит в результате активированных термической обработкой в диапазоне температур от 700 до 1000°C в течение 30 мин реакций оксидирования пленки Ti со стороны свободной поверхности и силицидобразования с межфазной границы Ti/Si.
Основным недостатком этого способа является относительно высокая температура и большая длительность процесса формирования гетероструктуры, а также, как и в способе [8], невозможность получения фазы силицида TiSi2(C54), характеризующейся наивысшей электропроводностью.
Изобретение направлено на снижение температурной нагрузки на кремниевую подложку, сокращение времени процесса. Это достигается тем, что проводят фотонную обработку исходной гетероструктуры Si/Ti излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10-2 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·см-2 для активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана. Снижение температурной нагрузки происходит за счет уменьшения времени обработки и локализации излучения в приповерхностном слое металла.
Способ реализуется следующим образом.
Формирование гетероструктуры TiO2 / TiSi2 / Si производили на модернизированной установке импульсной фотонной обработки УОЛП-1. Исходную гетероструктуру готовили в процессе магнетронного распыления титановой мишени и нанесения пленки толщиной около 0,4 мкм на поверхность монокристаллической пластины кремния толщиной 450 мкм. Гетероструктуру помещали в рабочую камеру параллельно плоскости, в которой расположены лампы. Импульсную фотонную обработку проводили в атмосфере воздуха или кислорода в течение 2,0-2,2 с. При этом плотность энергии излучения, поступающего на образец (ЕИ), составляет 220-240 Дж·см-2.
В результате реакции кислорода с титаном образуется слой диоксида титана, а в результате реакции между титаном и кремнием образуется слой силицида титана. В указанном интервале дозы энергии излучения в атмосфере воздуха при давлении 100 кПа формируется гетероструктура, в которой толщина слоя силицида и слоя оксида близки по величине.
Пример 1. В качестве подложки использовали пластину монокристаллического кремния марки КДБ-10 ориентации (111) диаметром 100 мм. Перед конденсацией Ti поверхность кремния очищали химическим травлением в растворе плавиковой кислоты и промывкой в дистиллированной воде. Из рабочей камеры с помощью вакуумной системы откачивали воздух до получения давления 5·10-3 Па. После откачки в камеру напускали аргон до достижения давления в камере 5,3·10-1 Па. После достижения необходимого давления проводили очистку поверхности подложки ионным пучком. Затем на поверхность ненагретой подложки в процессе магнетронного распыления или электронно-лучевого испарения в сверхвысоком вакууме не хуже 10-5 Па наносили пленку титана. Для предотвращения загрязнения подложки и пленки углеродом откачка вакуумной камеры установки осуществляли безмасляными средствами. Исходную гетероструктуру, представляющую собой пластину монокристаллического кремния толщиной 450 мкм с пленкой титана толщиной около 0,4 мкм, помещали в рабочую камеру установки. Фотонную обработку проводили в атмосфере воздуха при давлении 100 кПа в течение 2,0 с, что соответствовало дозе поступившего на образец излучения 220 Дж·см-2. После обработки образец извлекали из камеры и исследовали фазовый состав методом рентгеновской дифрактометрии на приборе СУР-01 «РЕНОМ» (CuKα излучение). Исследование структуры проводили на электронно-ионном сканирующем микроскопе Quanta 3D и просвечивающем электронном микроскопе Philips ЕМ-430 ST.
Установлено, что исходные пленки Ti имеют нанокристаллическую зеренную структуру с сильно выраженной текстурой <0001>, параметры кристаллической решетки соответствовали содержанию до 16% кислорода.
На рис. 1 приведены рентгеновская дифрактограмма (а), РЭМ-изображение поперечного среза в отраженном ионном пучке (б) и РЭМ-изображение свободной поверхности во вторичных электронах (в) гетероструктуры TiO2-TiSi2-Si, сформированной в течение 2,0 с, ЕИ=220 Дж·см-2 на воздухе.
Анализ дифрактограммы показал, что фотонная обработка исходной гетероструктуры приводит к образованию гетероструктуры, состоящей из смеси оксидов титана: TiO2(Р), TiO2(А) и TiO, и смеси двух модификаций конечной фазы силицида титана TiSi2(C49) и TiSi2(C54). На дифрактограмме в области малых углов наблюдается увеличение фона, свидетельствующее о содержании аморфной фазы. При этом установлено, что фазы TiO2(Р) и TiSi2(C54) являются преобладающими из кристаллических фаз.
Из РЭМ-изображения поперечного среза следует, что гетероструктура состоит из трех слоев: верхний слой - диоксид титана, имеет анизотропную структуру, ниже идет слой диоксида с более дисперсной структурой, причем на границе этих слоев выявляются поры. Слой под оксидными слоями, контактирующий с кремнием, соответствует смеси двух силицидных фаз: TiSi2(C49) и TiSi2(C54).
Пример 2. Пример осуществляется аналогично примеру 1. В этом примере плотность энергии излучения, поступающего на образец, составляет 240 Дж·см-2.
На рис. 2 приведена рентгеновская дифрактограмма синтезированной гетероструктуры. Из нее следует, что гетероструктура состоит из фаз: TiO2, TiSi2(C54) и Si. В результате фотонной обработки формируется слоевая гетероструктура: нижний слой - дисилицид титана структурного типа С54, контактирует с подложкой кремния, верхний слой - диоксид титана в модификации рутила. Тем самым получено изделие, представляющее собой гетероструктуру TiO2-TiSi2(C54)-Si.
Реализация предлагаемого способа позволяет получить изделия, состоящие из кремниевой подложки и сформированной гетероструктуры TiO2-TiSi2(C54). В сравнении с известными способами предложенное техническое решение обеспечивает снижение температурной нагрузки на кремниевую подложку, сокращение времени процесса при изготовлении изделия, что позволяет избежать протекания негативных процессов, активируемых продолжительным высокотемпературным нагревом.
Источники информации
1. Патент RU 2369663, МПК С23С 8/10, 2009; Бай А.С., Лайнер Д.И., Слесарева Е.Н., Цыпин М.И. Окисление титана и его сплавов. М: Металлургия, 1970.
2. Zhang Y., Ma X., Chen P., Yang D. Crystallization behaviors of TiO2 films derived from thermal oxidation of evaporated and sputtered titanium films // J. of Alloys and Compounds. 2009.- V.480.- No. 2. - P. 938-941.
3. Поут Дж., Ту К., Мейер Дж. (ред.). Тонкие Пленки - Взаимная Диффузия и Реакции // М., Мир, 1982. - 576 с.
4. Мьюрарка С.П. Силициды для БИС. М.: Мир, 1986. - 175 с.
5. Barbarini Е., Guastella S., Pirri C.F. Furnace annealing effects in the formation of titanium silicide Schottky barriers // Advanced Thermal Processing of Semiconductors (RTP), 2010 18th International Conference on Sept. 28 2010-Oct. 1 2010.- P. 119-122.
6. V.A. Pilipenko, V.V. Molofeev, V.N. Ponomar′, A.N. Mikhnyuk, V.A. Gorushko. Modeling of Diffusion Synthesis of Titanium Disilicide // Journal of Engineering Physics and Thermophysics 2005.- V.78. - No. 3. - P.610-615.
7. G.J. Huang, L.J. Chen Investigation of the oxidation kinetics of C54-TiSi2 on (001)Si by transmission electron microscopy // J. Appl. Phys. 1992.- V.72.-P.3143-3150.
8. G.J. Yong, Rajeswari M. Kolagani, S. Adhikari, W. Vanderlinde, Y. Liang, K. Muramatsu, S. Friedrich. Thermal stability of SrTiO3 / SiO2/Si Interfaces at Intermediate Oxygen Pressures // Journal of Applied Physics 2010.- V.108.- P.033502-(1-8).
9. J.P. Ponpon, A. Saulnier. Comparison of the growth kinetics of titanium silicide obtained by RTA and furnace annealing // Semiconductor Science and Technology 1989.- V.4. - P.526-528.
10. Sun Chuan-wei, Wang Yu-tai, Li Nian-qiang. Behavior of Ti Based on Si(l 11) Substrate at High Temperature in Oxygen // Semiconductor Photonics and Technology 2007.- No.2.- P. 161-163.

Claims (1)

  1. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой, отличающийся тем, что проводят фотонную обработку упомянутой подложки излучением ксеноновых ламп с диапазоном излучения 0,2-1,2 мкм в атмосфере воздуха пакетом импульсов длительностью 10-2 с в течение 2,0-2,2 с при дозе энергии в интервале 220-240 Дж·см-2 для активации реакций оксидирования и силицидобразования при формировании гетероструктуры оксид титана - силицид титана.
RU2013119139/02A 2013-04-24 2013-04-24 Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой RU2556183C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013119139/02A RU2556183C2 (ru) 2013-04-24 2013-04-24 Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013119139/02A RU2556183C2 (ru) 2013-04-24 2013-04-24 Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой

Publications (2)

Publication Number Publication Date
RU2013119139A RU2013119139A (ru) 2014-10-27
RU2556183C2 true RU2556183C2 (ru) 2015-07-10

Family

ID=53380632

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013119139/02A RU2556183C2 (ru) 2013-04-24 2013-04-24 Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой

Country Status (1)

Country Link
RU (1) RU2556183C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111146410B (zh) * 2018-11-05 2021-03-02 宁德时代新能源科技股份有限公司 负极活性材料及电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897381A (en) * 1996-07-11 1999-04-27 Lsi Logic Corporation Method of forming a layer and semiconductor substrate
US6849471B2 (en) * 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
EP1538234A2 (en) * 2003-12-01 2005-06-08 Mori Yasuhiro Method of modifying solid surface and product obtained
RU2425908C2 (ru) * 2005-02-23 2011-08-10 Пикодеон Лтд. Ой Способ нанесения покрытия с помощью импульсного лазера и объект с покрытием, нанесенным этим способом

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5897381A (en) * 1996-07-11 1999-04-27 Lsi Logic Corporation Method of forming a layer and semiconductor substrate
US6849471B2 (en) * 2003-03-28 2005-02-01 Reflectivity, Inc. Barrier layers for microelectromechanical systems
EP1538234A2 (en) * 2003-12-01 2005-06-08 Mori Yasuhiro Method of modifying solid surface and product obtained
RU2425908C2 (ru) * 2005-02-23 2011-08-10 Пикодеон Лтд. Ой Способ нанесения покрытия с помощью импульсного лазера и объект с покрытием, нанесенным этим способом

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sun Chuan-wei et al, Behaviour of Ti based on Si(111) substrate at high temperature in oxygen, том 13, N2, 05.2007, с.161-163; . *

Also Published As

Publication number Publication date
RU2013119139A (ru) 2014-10-27

Similar Documents

Publication Publication Date Title
CN101798706B (zh) 在碳化硅(SiC)基底上外延生长石墨烯的方法
Stepanov et al. Synthesis of porous silicon by ion implantation
Xiong et al. Solid-state graphene formation via a nickel carbide intermediate phase
JP5563500B2 (ja) グラフェン及び炭素分子薄膜の合成方法
Oliveira et al. High textured AlN thin films grown by RF magnetron sputtering; composition, structure, morphology and hardness
CN105568253B (zh) 一种等离子体化学气相沉积设备生长六方氮化硼的方法
CN103741224B (zh) 高纯度高密度ws2层片状纳米结构的制备方法
CN104389016A (zh) 一种快速制备大尺寸单晶石墨烯的方法
CN101673705B (zh) 一种Ru-TiN扩散阻挡层薄膜的制备方法
CN104313684A (zh) 一种制备六方氮化硼二维原子晶体的方法
JP5578639B2 (ja) グラファイト膜製造方法
TWI307558B (en) Method of facbricating buffer layer on substrate
CN104377257B (zh) 一种硅基锗量子点复合结构材料、其制备方法及应用
Gao et al. ZnO nanorods/plates on Si substrate grown by low-temperature hydrothermal reaction
TWI575327B (zh) Hard mask manufacturing method
Kogut et al. Magnesium silicide thin film formation by reactive diffusion
Kawwam et al. Characterization of CuO (1 1 1)/MgO (1 0 0) films grown under two different PLD backgrounds
CN104176734A (zh) 掺氮石墨烯的制备方法
RU2556183C2 (ru) Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой
CN102127743A (zh) 一种Ta-C-N薄膜的制备方法
CN102925866A (zh) 一种单一相Mg2Si半导体薄膜的制备工艺
CN114162809A (zh) 一种两步化学气相沉积法制备石墨烯的方法
CN114381806B (zh) 二维氮化铝晶体的制备方法
Szwachta et al. Structure and thermal stability of Bi3NbO7 thin films grown by pulsed laser deposition
RU2436727C2 (ru) Способ получения нанокристаллических пленок рутила

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160425