[go: up one dir, main page]

RU2551252C2 - Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель - Google Patents

Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель Download PDF

Info

Publication number
RU2551252C2
RU2551252C2 RU2012138447/06A RU2012138447A RU2551252C2 RU 2551252 C2 RU2551252 C2 RU 2551252C2 RU 2012138447/06 A RU2012138447/06 A RU 2012138447/06A RU 2012138447 A RU2012138447 A RU 2012138447A RU 2551252 C2 RU2551252 C2 RU 2551252C2
Authority
RU
Russia
Prior art keywords
rotor
resonant wave
reference resonant
mode
detection
Prior art date
Application number
RU2012138447/06A
Other languages
English (en)
Other versions
RU2012138447A (ru
Inventor
Себастьян БУРЖЕ
Original Assignee
Снекма
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Снекма filed Critical Снекма
Publication of RU2012138447A publication Critical patent/RU2012138447A/ru
Application granted granted Critical
Publication of RU2551252C2 publication Critical patent/RU2551252C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Engines (AREA)

Abstract

Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель, содержащий ротор, согласно которому: измеряют мгновенный режим ротора (R(t)); фильтруют сигнал режима ротора R(t) для разделения его статической составляющей (Rs(t)) от его динамической составляющей (Rd(t)); сравнивают отфильтрованную динамическую составляющую (Rd(t)) с эталонной резонансной волной (e(t)) ротора для получения показателя попадания (TING), причем эталонная резонансная волна (e(t)) соответствует вибрационной импульсной реакции ротора; сравнивают полученный показатель попадания (TING) с порогом обнаружения (S); подают сигнал обнаружения попадания инородного тела, когда показатель попадания (TING) выше порога обнаружения (S). Технический результат изобретения - повышение точности и надежности обнаружения попадания инородного тела. 5 з.п. ф-лы, 4 ил.

Description

Настоящее изобретение относится к устройству и способу обнаружения удара о лопасть газотурбинного двигателя, в частности лопасть вентилятора.
Газотурбинный двигатель, установленный на летательном аппарате, может быть поврежден предметами, которые засасываются двигателем во время его работы. Эти предметы могут быть представлены различными видами, например птицами, камнями или льдом.
После засасывания предметов последние перемещаются из передней в заднюю часть двигателя, ударяясь о различные элементы двигателя. Это явление известно специалистам под названием «попадание инородных тел».
В зависимости от свойств, плотности и относительной скорости тел, которые втянуты двигателем, некоторые части двигателя могут быть в той или иной степени повреждены.
Для сохранения высокого уровня безопасности и надежности двигателя во время его эксплуатации необходимо обнаружить повреждения, причиной которых стали такие попадания, для производства ремонта или замены элементов поврежденного двигателя.
При совершении коммерческих полетов с пассажирами на борту перед каждым полетом производится визуальный осмотр газотурбинных двигателей. Однако такой контроль имеет множество недостатков. Во-первых, такой визуальный контроль не позволяет обеспечить в полной мере надежное обнаружение, операторы не могут обнаружить небольшие повреждения, при этом последние являются, кроме того, трудно выявляемыми. Во-вторых, после обнаружения повреждения необходимо немедленно приступить к выполнению операций по техническому обслуживанию, что требует остановки летательного аппарата и, как следствие, задержки его вылета. Такое запоздалое обнаружение последствий попадания инородного тела создает, таким образом, неудобства для пассажиров перед посадкой в упомянутый летательный аппарат.
Из заявки на патент FR2840358 Al фирмы SNECMA известна система обнаружения повреждений ротора двигателя летательного аппарата, содержащая средства измерения вибрации и скорости ротора во время определенного полета. Однако такая система не имеет необходимой точности для обнаружения попадания инородного тела.
Из заявки на патент EP 1312766 A2 фирмы ROLLS-ROYCE известен способ обнаружения удара о лопатку ротора, согласно которому измеряют падение скорости ротора для подачи сигнала тревоги. Такое обнаружение содержит недостаток, который заключается в том, что оно слабо распознаваемо. Действительно, в случае помпажа двигателя скорость ротора уменьшается и подается сигнал тревоги, хотя ни одно тело не попало в двигатель. Для устранения этого недостатка в заявке на патент EP 1312766 A2 предлагается добавить датчики для измерения угла кручения двигателя и, таким образом, повысить точность способа. Такой способ, с многочисленными датчиками, не является удовлетворительным и не позволяет точно и надежно обнаружить попадание инородного тела.
Для устранения этих недостатков изобретение относится к способу автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель, содержащий ротор, способ, согласно которому:
измеряют мгновенный режим ротора;
фильтруют сигнал режима ротора для разделения его статической составляющей от его динамической составляющей;
сравнивают отфильтрованную динамическую составляющую с эталонной резонансной волной ротора для получения показателя попадания, причем эталонная резонансная волна соответствует вибрационной импульсной реакции ротора;
сравнивают полученный показатель попадания с порогом обнаружения;
подают сигнал обнаружения попадания инородного тела, когда показатель попадания выше порога обнаружения.
Вибрационная реакция ротора представляет собой его характеристические признаки, обусловленные ударом, т.е. толчкообразным движением. Под эталонной резонансной волной понимается вибрационная импульсная реакция, измеренная на роторе после попадания тела в упомянутый ротор.
Благодаря изобретению временная динамическая составляющая режима ротора сравнивается с его характеристическими признаками для выявления попадания. Способ согласно изобретению обеспечивает большее распознавание, чем способ на основе достигнутого уровня техники, базирующийся исключительно на установлении пороговой величины по амплитуде динамической составляющей режима ротора R(t); причем динамическая составляющая большой амплитуды может иметь множество причин.
Благодаря изобретению можно не обращать внимания на вибрации с большой амплитудой (например, помпаж), когда форма динамической составляющей режима ротора R(t) не соответствует форме эталонной резонансной волны. Кроме того, можно обнаружить попадания так называемых тел со «слабой энергией» (небольшой массой, небольшой скоростью), приводящих к вибрациям с малой амплитудой; причем такое обнаружение не представляется возможным посредством способа на основании достигнутого уровня техники.
Предпочтительным образом, данный способ реализуется без дополнительного использования датчика и без какой-либо модификации конструкции.
Предпочтительно, эталонная резонансная волна ротора соответствует импульсной реакции первой крутильной моды ротора.
Предпочтительно, поиск в отфильтрованной динамической составляющей импульсной реакции первой крутильной моды ротора, характеристики которой вместе с тем известны, позволяет получить коэффициент попадания, который позволяет определять вибрацию.
Действительно, импульсная реакция первой крутильной моды присутствует только после временного возбуждения в кручении ротора, которое является типичным при попадании инородного тела. Таким образом, обеспечивается надежное и точное обнаружение попадания.
Также, предпочтительно, получают произведение сверток между отфильтрованной динамической составляющей и эталонной резонансной волной для получения показателя попадания.
Согласно первому варианту эталонную резонансную волну измеряют непосредственно на роторе двигателя, на котором осуществляется способ обнаружения.
Таким образом, характеристики импульсной реакции первой крутильной моды ротора (частота, ослабление) определены экспериментальным образом.
Согласно второму варианту, эталонную резонансную волну определяют теоретически в зависимости от характеристик импульсной реакции первой крутильной моды ротора (частота, ослабление и т.д.).
Предпочтительно, ротор является ротором низкого давления газотурбинного двигателя; причем сравнивают отфильтрованную динамическую составляющую с эталонной резонансной волной ротора низкого давления для получения показателя попадания; причем эталонная резонансная волна соответствует вибрационной импульсной реакции ротора низкого давления.
Изобретение будет лучше понятно со ссылкой на прилагаемые фигуры чертежа, на которых:
фиг. 1 изображает измерение режима ротора низкого давления в течение определенного времени;
фиг. 2 изображает динамическую составляющую режима ротора низкого давления, представленную на фиг. 1;
фиг. 3 изображает эталонную резонансную волну ротора низкого давления;
фиг. 4 изображает показатель попадания, соответствующий мере сходства между динамической составляющей режима ротора и эталонной резонансной волной упомянутого ротора.
Изобретение относится к способу точного обнаружения попадания инородного тела в двухвальный газотурбинный двигатель, содержащий вал ротора низкого давления и вал ротора высокого давления; причем вентилятор жестко соединен с ротором низкого давления.
Как показано на фиг. 1, режим вращения R(t) ротора низкого давления измеряется в течение времени посредством известного специалистам фонического колеса, располагаемого для измерения угловой скорости вала ротора низкого давления. Понятно, что режим ротора низкого давления также мог бы быть измерен другими средствами, в частности расположенными в двигателе акселерометрами.
В результате такого измерения получаем кривую 1, по существу постоянную в течение времени, вокруг статического режима ротора низкого давления Rs. Как это показано на фиг. 1, режим вращения R(t) упорядочен относительно максимальной величины режима ротора низкого давления. Как это показано на фиг. 1, статический режим Rs ротора низкого давления составляет приблизительно 85% максимального режима.
В период измерения тело с небольшой массой (приблизительно 50г) попадает в двигатель. Кривая 1, изображающая режим вентилятора R(t), содержит колебание 2 в момент попадания тела в двигатель; причем такое колебание является очень слабым и составляет около 0,5% значения статического режима Rs. Это колебание не может быть обнаружено непосредственно в результате измерения режима ротора низкого давления R(t). Действительно, такие колебания могут быть связаны с шумами измерения или с явлениями, отличными от попадания, в частности с явлениями помпажа двигателя.
Известно, что режим ротора низкого давления R(t), измеренный посредством фонического колеса, обладает статической составляющей Rs и динамической составляющей Rd(t) и раскладывается в следующем виде:
(1) R(t)=Rs+Rd(t)
Для выявления колебания 2 режим ротора низкого давления R(t) фильтруют для сохранения только динамической составляющей Rd(t) сигнала, например, посредством полосовой фильтрации, сосредоточенной на частоте эталонной резонансной волны.
Заявителем отмечено, что когда тело сталкивается с вентилятором вследствие попадания, ротор низкого давления, сопряженный с вентилятором, реагирует, вибрируя согласно первой крутильной моде, наподобие колокола, испуская резонансную волну, частота и форма которой свойственна ротору. Данная вибрационная реакция в результате короткого удара представляет собой импульсную реакцию первой крутильной моды ротора низкого давления. Такая характерная реакция позволяет различить вибрационные возмущения вследствие попадания тел, от возмущений вследствие шумов или наружных явлений; причем их влияние, в общем плане, на режим ротора низкого давления R(t) будет почти идентичным.
Действительно, попадание или помпаж приводят к появлению колебаний, общая интенсивность которых аналогична, когда производится анализ режима двигателя. Однако только колебания, форма и амплитуда которых аналогичны форме и амплитуде импульсной реакции ротора низкого давления, соответствуют попаданию инородного тела.
В результате попадания инородного тела динамическая составляющая Rd(t) сигнала режима ротора низкого давления R(t) выражается, таким образом, в целом в следующем виде:
(2) Rd(t)= C(t).cos(wт (t)*t+Φ)
В этой формуле C(t).cos(wт(t)*t+Φ) является возмущением, обусловленным вибрационной реакцией ротора низкого давления в результате попадания. Такое возмущение зависит от параметра амплитуды C(t), параметра фазы Φ и параметра пульсации wт, соответствующего первой крутильной моде ротора низкого давления.
Ротор низкого давления обладает несколькими крутильными модами на низкой частоте. При попадании инородного тела только первая крутильная мода реагирует в значительной степени. Импульсная реакция последнего будет представлять собой, таким образом, характеристические признаки, характеризующие попадание. Вследствие попадания C(t) будет сильно изменяться по следующей формуле:
(3) C(t)=C.exp(-t/τт)
C является амплитудой возмущения и зависит от «серьезности» попадания, причем амплитуда возмущения является очень слабой по сравнению со значением статического режима Rs. Параметр ослабления τт зависит от ослабления первой крутильной моды ротора низкого давления и частоты собственных колебаний этой моды.
Таким образом, при попадании инородного тела в двигатель динамическая составляющая Rd(t) ротора низкого давления сильно похожа на импульсную реакцию первой крутильной моды e(t) ротора низкого давления, представленную на фиг. 3. Импульсная реакция первой крутильной моды ротора e(t) сравнима с динамической реакцией Rd(t) режима ротора низкого давления R(t) для определения, попало ли тело в двигатель. Другими словами, отфильтрованная динамическая составляющая сравнивается с эталонной резонансной волной e(t) ротора низкого давления для получения показателя попадания TING, соответствующего мере сходства между эталонной резонансной волной e(t) и динамической составляющей Rd(t) измеренного сигнала режима.
Для выполнения сравнения представляется необходимым предварительно определить эталонную резонансную волну e(t).
Согласно первому варианту осуществления изобретения данная волна соответствует импульсной реакции первой крутильной моды ротора.
Согласно первому варианту первая крутильная мода ротора является «характерной» модой; причем характеристики (частота, ослабление) первой крутильной моды измеряются непосредственно на роторе низкого давления, на котором будет осуществляться обнаружение попадания; причем обнаружение осуществляется, таким образом, «индивидуально» при помощи вибрационной импульсной реакции первой крутильной моды ротора в качестве эталонной резонансной волны. Определение параметров способа обнаружения при помощи характерной моды позволяет осуществлять точное обнаружение, приспособленное к упомянутому ротору низкого давления. Действительно, каждый ротор обладает импульсной реакцией своей первой крутильной моды, которая ему свойственна. Иначе говоря, различные модели ротора обладают различными импульсными реакциями.
Согласно второму варианту импульсная реакция первой крутильной моды ротора определена аналитически-расчетным путем.
Согласно второму варианту эталонная резонансная волна e(t) соответствует сумме множества крутильных мод одного и того же ротора низкого давления, предпочтительно двум или трем первым крутильным модам ротора низкого давления. Эталонная резонансная волна e(t), содержащая несколько крутильных мод, позволяет повысить надежность обнаружения и его точность.
Например, для производства сравнения получают произведение сверток между динамической реакцией ротора низкого давления Rd(t) и эталонной волной e(t) для получения показателя попадания TING.
Figure 00000001
Разумеется, что также могли бы подойти и другие алгоритмы сравнения. Предпочтительно, параметры алгоритмов сравнения определены для учета искажения эталонной резонансной волны (задержка, шум и т.д.).
Показатель попадания TING, изображенный на фиг. 4, позволяет определить сомнительное колебание 2, выявленное при измерении режима ротора низкого давления R(t). Чем больше динамическая реакция ротора низкого давления Rd(t) совпадает с теоретической импульсной реакцией, характерной для реакции на удар (в данном случае - попадание инородного тела), тем выше будет значение показателя попадания TING.
После расчета показателя попадания TING он сравнивается с порогом обнаружения S определенной величины, при этом сигнал тревоги о попадании подается, когда показатель попадания TING превышает упомянутый порог обнаружения S.
Величина обнаружения S определена таким образом, чтобы не формировать сигнал тревоги для величин показателя TING, соответствующих нормальной работе двигателя и чтобы определить шум. Данный порог обнаружения, таким образом, достигается путем применения допустимого предела на среднем уровне «шума» Sb. Этот допустимый предел зависит от характеристик сигнала «шум», а также от уровня желаемой надежности обнаружения. Как это показано на фиг. 4, допустимый предел в 70% отделяет порог обнаружения от среднего уровня шума.
Этот способ является выборочным, поскольку показатель попадания TING для шумового сигнала (вне попадания) является слабым, т.к. в случае отсутствия попадания импульсная реакция первой крутильной моды не присутствует в сигнале. Шумовой сигнал не похож на импульсную реакцию первой крутильной моды.
После обнаружения попадания сформированный сигнал тревоги может быть или направлен непосредственно пилоту летательного аппарата, на котором установлен двигатель, для изучения в реальном масштабе времени, или храниться в памяти для изучения в последующем, например, при осмотре двигателя, или передаваться в реальном масштабе времени в сервисную службу авиационной компании для того, чтобы позволить ей предусмотреть и организовать во время ближайшей промежуточной посадки детальный осмотр двигателя, в котором произошло столкновение, и любые другие необходимые действия по техническому обслуживанию.
Понятно, что могут быть установлены различные пороги сигнала тревоги для того, чтобы отличать различные виды попадания (более или менее энергетические попадания, более или менее серьезные попадания).
В данном случае приведено описание изобретения для двухвального турбинного двигателя, однако понятно, что изобретение применяется аналогичным образом и к двигателю с одним и более двух роторами.

Claims (6)

1. Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель, содержащий ротор, способ, согласно которому:
измеряют мгновенный режим ротора (R(t));
фильтруют сигнал режима ротора R(t) для разделения его статической составляющей (Rs(t)) от его динамической составляющей (Rd(t));
сравнивают отфильтрованную динамическую составляющую (Rd(t)) с эталонной резонансной волной (e(t)) ротора для получения показателя попадания (TING), причем эталонная резонансная волна (e(t)) соответствует вибрационной импульсной реакции ротора;
сравнивают полученный показатель попадания (TING) с порогом обнаружения (S);
подают сигнал обнаружения попадания инородного тела, когда показатель попадания (TING) выше порога обнаружения (S).
2. Способ по п. 1, в котором эталонная резонансная волна (e(t)) ротора соответствует импульсной реакции первой крутильной моды ротора.
3. Способ по п. 2, в котором эталонную резонансную волну (e(t)) определяют теоретически в зависимости от характеристик импульсной реакции первой крутильной моды ротора.
4. Способ по п. 2, в котором эталонную резонансную волну (e(t)) измеряют непосредственно на роторе двигателя, на котором осуществляется способ обнаружения.
5. Способ по п. 1, в котором получают произведение сверток между отфильтрованной динамической составляющей (Rd(t)) и эталонной резонансной волной (e(t)).
6. Способ по п. 1, в котором ротор является ротором низкого давления газотурбинного двигателя, причем сравнивают отфильтрованную динамическую составляющую (Rd(t)) с эталонной резонансной волной (e(t)) ротора низкого давления для получения показателя попадания (TING), причем эталонная резонансная волна (e(t)) соответствует вибрационной импульсной реакции ротора низкого давления.
RU2012138447/06A 2010-02-08 2011-02-02 Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель RU2551252C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1050870 2010-02-08
FR1050870A FR2956159B1 (fr) 2010-02-08 2010-02-08 Methode de detection automatisee de l'ingestion d'au moins un corps etranger par un moteur a turbine a gaz
PCT/FR2011/050205 WO2011095737A1 (fr) 2010-02-08 2011-02-02 Méthode de détection automatisée de l'ingestion d'au moins un corps étranger par un moteur à turbine à gaz

Publications (2)

Publication Number Publication Date
RU2012138447A RU2012138447A (ru) 2014-03-20
RU2551252C2 true RU2551252C2 (ru) 2015-05-20

Family

ID=42697390

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012138447/06A RU2551252C2 (ru) 2010-02-08 2011-02-02 Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель

Country Status (9)

Country Link
US (1) US9366154B2 (ru)
EP (1) EP2534341B1 (ru)
JP (1) JP5698766B2 (ru)
CN (1) CN103026006B (ru)
BR (1) BR112012019559A2 (ru)
CA (1) CA2788901C (ru)
FR (1) FR2956159B1 (ru)
RU (1) RU2551252C2 (ru)
WO (1) WO2011095737A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680770C1 (ru) * 2018-06-25 2019-02-26 Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Способ обнаружения попадания несжимаемых объектов в проточную часть турбокомпрессора и система для его реализации

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968038B1 (fr) * 2010-11-26 2012-12-28 Snecma Systeme de detection d'un evenement fugace sur une roue aubagee de moteur d'aeronef
EP2594912A1 (en) * 2011-11-21 2013-05-22 Eurocopter Deutschland GmbH Detection system for detection of damages on rotating components of aircraft and method of operating such a detection system
FR2986269B1 (fr) 2012-01-30 2015-08-07 Snecma Systeme de detection d'un impact sur une roue aubagee de moteur d'aeronef
FR2988130B1 (fr) * 2012-03-13 2014-05-09 Snecma Systeme de detection de defaut sur une roue aubagee de moteur d'aeronef
US10228304B2 (en) * 2016-01-18 2019-03-12 Pratt & Whitney Canada Corp. Shaft shear detection through shaft oscillation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284392A2 (en) * 1987-03-25 1988-09-28 Stewart Hughes Limited Monitoring of foreign object ingestion in engines
EP1312766A2 (en) * 2001-11-07 2003-05-21 ROLLS-ROYCE plc An apparatus and method for detecting an impact on a rotor blade
FR2840358A1 (fr) * 2002-05-28 2003-12-05 Snecma Moteurs Procede et systeme de detection d'endommagement de rotor d'un moteur d'aeronef
RU2348911C1 (ru) * 2007-06-21 2009-03-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ диагностики газотурбинных двигателей при попадании посторонних предметов на их вход
RU2367811C2 (ru) * 2007-07-30 2009-09-20 Алексей Александрович Комов Способ регулирования величины обратной тяги газотурбинных двигателей на пробеге четырехдвигательного самолета при использовании реверса тяги двух внутренних двигателей

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6098022A (en) 1997-10-17 2000-08-01 Test Devices, Inc. Detecting anomalies in rotating components
EP1082690A1 (en) * 1999-03-30 2001-03-14 Koninklijke Philips Electronics N.V. Deriving time-averaged moments
US6499350B1 (en) * 2000-04-04 2002-12-31 Swantech, L.L.C. Turbine engine foreign object damage detection system
US6668655B2 (en) * 2001-09-27 2003-12-30 Siemens Westinghouse Power Corporation Acoustic monitoring of foreign objects in combustion turbines during operation
EP1574674A1 (de) * 2004-03-03 2005-09-14 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Detektierung von Verunreinigungen an Turbinenbauteilen
JP2006138756A (ja) * 2004-11-12 2006-06-01 Fanuc Ltd 衝撃検知装置
DE102005020900B3 (de) * 2005-05-04 2006-11-02 Siemens Ag Verfahren und System zur Diagnose von mechanischen, elektromechanischen oder fluidischen Komponenten
US8818683B2 (en) * 2006-04-21 2014-08-26 General Electric Company Method and apparatus for operating a gas turbine engine
JP2009278757A (ja) * 2008-05-14 2009-11-26 Toshiba Corp 回転電機又は回転機械のリプレイス情報収集方法及び収集システム
FR2937079B1 (fr) * 2008-10-10 2011-08-26 Snecma Procede et systeme de surveillance d'un turboreacteur
US7855469B2 (en) * 2009-10-02 2010-12-21 General Electric Company Condition monitoring system for wind turbine generator and method for operating wind turbine generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0284392A2 (en) * 1987-03-25 1988-09-28 Stewart Hughes Limited Monitoring of foreign object ingestion in engines
EP1312766A2 (en) * 2001-11-07 2003-05-21 ROLLS-ROYCE plc An apparatus and method for detecting an impact on a rotor blade
FR2840358A1 (fr) * 2002-05-28 2003-12-05 Snecma Moteurs Procede et systeme de detection d'endommagement de rotor d'un moteur d'aeronef
RU2348911C1 (ru) * 2007-06-21 2009-03-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения имени П.И. Баранова" Способ диагностики газотурбинных двигателей при попадании посторонних предметов на их вход
RU2367811C2 (ru) * 2007-07-30 2009-09-20 Алексей Александрович Комов Способ регулирования величины обратной тяги газотурбинных двигателей на пробеге четырехдвигательного самолета при использовании реверса тяги двух внутренних двигателей

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2680770C1 (ru) * 2018-06-25 2019-02-26 Акционерное общество "Научно-исследовательский и конструкторский институт центробежных и роторных компрессоров им. В.Б. Шнеппа" Способ обнаружения попадания несжимаемых объектов в проточную часть турбокомпрессора и система для его реализации

Also Published As

Publication number Publication date
JP2013519031A (ja) 2013-05-23
RU2012138447A (ru) 2014-03-20
US20120303330A1 (en) 2012-11-29
EP2534341B1 (fr) 2013-11-13
FR2956159A1 (fr) 2011-08-12
BR112012019559A2 (pt) 2018-03-27
CA2788901C (fr) 2017-01-03
FR2956159B1 (fr) 2012-02-10
JP5698766B2 (ja) 2015-04-08
CN103026006B (zh) 2015-04-01
CN103026006A (zh) 2013-04-03
CA2788901A1 (fr) 2011-08-11
EP2534341A1 (fr) 2012-12-19
WO2011095737A1 (fr) 2011-08-11
US9366154B2 (en) 2016-06-14

Similar Documents

Publication Publication Date Title
RU2551252C2 (ru) Способ автоматизированного обнаружения попадания, по меньшей мере, одного инородного тела в газотурбинный двигатель
RU2507403C2 (ru) Способ и система контроля турбореактивного двигателя
US8752394B2 (en) Determining fan parameters through pressure monitoring
US8942886B2 (en) System for detecting an impact on an aircraft engine impeller wheel
US20130268154A1 (en) Detection system for detection of damages on rotating components of components of aircraft and method of operating such a detection system
US7698942B2 (en) Turbine engine stall warning system
EP3192980B1 (en) Shaft shear detection through shaft oscillation
US6932560B2 (en) Apparatus and method for detecting an impact on a rotor blade
US10228305B2 (en) Shaft shear detection through shaft oscillation
EP2949879B1 (en) Rotating machinery monitoring system
US6659712B2 (en) Apparatus and method for detecting a damaged rotary machine aerofoil
US20180135455A1 (en) Foreign object debris trending concept and design
CN111868497B (zh) 用于检测飞行器的活动叶片的损伤的方法和系统
CN112204238A (zh) 利用振动测量来监测涡轮轴发动机的火花塞的方法
Pavolvskyi et al. On-board vibration diagnostics of shaft damage of the aviation engine
CN111188742A (zh) 基于光纤加速度传感器的风力发电机组叶片结冰检测方法
EP4123126B1 (en) Method and device for monitoring the operation of a pair of turboprop engines through the numerical processing of an acoustic magnitude
Grądzki The parametric method of evaluation of technical condition of the working turbomachine blade depending on the distribution course representing its environment

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160203