[go: up one dir, main page]

RU2549412C1 - Способ переработки монацитового концентрата - Google Patents

Способ переработки монацитового концентрата Download PDF

Info

Publication number
RU2549412C1
RU2549412C1 RU2013145917/05A RU2013145917A RU2549412C1 RU 2549412 C1 RU2549412 C1 RU 2549412C1 RU 2013145917/05 A RU2013145917/05 A RU 2013145917/05A RU 2013145917 A RU2013145917 A RU 2013145917A RU 2549412 C1 RU2549412 C1 RU 2549412C1
Authority
RU
Russia
Prior art keywords
rare
ree
thorium
product
solution
Prior art date
Application number
RU2013145917/05A
Other languages
English (en)
Other versions
RU2013145917A (ru
Inventor
Дмитрий Васильевич Акимов
Александр Николаевич Дьяченко
Николай Борисович Егоров
Александр Дмитриевич Киселёв
Валерий Константинович Ларин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет"
Priority to RU2013145917/05A priority Critical patent/RU2549412C1/ru
Publication of RU2013145917A publication Critical patent/RU2013145917A/ru
Application granted granted Critical
Publication of RU2549412C1 publication Critical patent/RU2549412C1/ru

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано для получения концентратов редких и редкоземельных элементов из монацита. Способ переработки монацитового концентрата включает обработку исходного сырья смесью серной кислоты и фторида аммония при температуре 200-230°C в течение 30-40 минут, очищение полученного продукта от фосфатных и фторидных продуктов методом сублимационной перегонки, водное выщелачивание сульфатов редкоземельных элементов, обезвреживание раствора хлоридом бария, последующее селективное выделение ториевого, уранового, железистого и редкоземельного продукта, при этом выделение редкоземельного продукта осуществляют через стадию осаждения двойных солей редкоземельных элементов сульфатом аммония с последующей конверсией в нитраты редкоземельных элементов через стадии прокаливания, растворения в азотной кислоте и экстракционной очистки от примеси тория. Изобретение обеспечивает высокую степень извлечения и чистоту редкоземельного продукта. 2 з.п. ф-лы, 2 ил., 3 пр.

Description

Изобретение относится к технологии редких и радиоактивных элементов и может быть использовано для получения концентратов редких и редкоземельных элементов из монацита.
Известен способ вскрытия монацитового концентрата [Зеликман А.Н., Коршунов Б.Г. Металургия редких металлов. - М.: Металургия, 1991., с. 353-354], основанный на разложении руды концентрированным раствором едкого натрия при температуре 110-140°C в течение 3 часов, при расходе 300% от стехиометрического количества, распульповкой, фильтрацией осажденных гидроксидов от раствора фосфатов с последующим растворением в соляной кислоте и селективным осаждением гидроксидов РЗЭ. Недостатком способа является высокий расход вскрывающего агента и энергоемкость процессов выпаривания и кристаллизации, используемых для выделения фосфатов и регенерации гидроксида натрия.
Известен способ переработки монацитового концентрата (прототип) [Зеликман А.Н., Коршунов Б.Г. Металургия редких металлов. - М.: Металургия, 1991, с. 352-353], включающий разложение концентрата 96% серной кислотой при 180-200°C, при расходе 250-300% от стехиометрически необходимого количества в течение 2-4 ч, извлечение сульфатов РЗЭ из реакционной массы водным выщелачиванием и обезвреживанием раствора хлоридом бария с последующей ступенчатой нейтрализацией и селективным осаждением фосфатов РЗЭ при pH 2,3. Недостатком способа является низкая степень извлечения РЗЭ и загрязнение редкоземельного продукта трудноотделимыми гидрофосфатами тория, железа, алюминия, титана и кремния.
Задачей настоящего изобретения является разработка процесса комплексной переработки монацитового концентрата с высокой степенью извлечения и чистоты конечного редкоземельного продукта.
Задача достигается тем, что вскрытие концентрата осуществляется смесью серной кислоты и фторида аммония, взятых в соотношении 1:1,3 соответственно, при стехиометрическом соотношении моноцит: серная кислота 1:1,2. Механизм вскрытия может быть представлен в виде последовательного процесса гидрофторирования компонентов монацитового концентрата фторидом аммония с последующим переводом продуктов фторирования в сульфаты взаимодействием с присутствующей в системе серной кислотой. Процесс ведут в барабанной вращающейся печи при температуре от 200-230°C в течение 30-40 минут
После проведения сернокислотного гидрофторирования полученный спек нагревают до 300-350°C для перевода в газообразное состояние и удаления из системы летучих продуктов реакций. При повышении температуры в газовую фазу переходят: избыток вскрывающего агента (фторид аммония и серная кислота), гексафторосиликат и гексафторотитанат аммония, фториды фосфора, фосфаты аммония. Газовая фаза направляется на селективную десублимацию с последующей регенерацией вскрывающего агента и улавливанием соединений фосфора для получения фосфатных удобрений.
В твердой фазе остаются сульфаты металлов, при этом исходная шихта имеет высокую удельную поверхность, пригодную для выщелачивания. Процесс выщелачивания проводится 20% водным раствором серной кислоты для исключения вероятности процесса гидролиза сульфатов.
Обезвреживание и дезактивация раствора осуществляется введением в раствор хлорида бария, повышающего степень соосаждений радиоактивных бария, радия, кальция и свинца. Локализованные в твердом остатке радиоактивные нерастворимые сульфаты отделяются фильтрацией для дальнейшей цементации и захоронения. Маточник, содержащий сульфаты урана, тория, железа и РЗЭ, нагревают до 70-80°C и вносят в него кристаллический сульфат аммония в избытке 200% от стехеометрически необходимого количества для образования двойных сульфатных солей РЗЭ. Раствор выдерживают в течение часа, образовавшиеся двойные соли отделяют от маточника фильтрацией. Двойные сульфаты РЗЭ направляются на конверсию в нитраты РЗЭ и очистку от примеси тория.
Маточник после осаждения двойной соли РЗЭ направляют на выделение железистого, ториевого и уранового кека. Процесс проводят обработкой маточника аммиачной водой с попутной регенерацией сульфата аммония. Осадок гидратированного тория, урана и железа отделяют фильтрацией от раствора для дальнейшего извлечения урана и тория или цементации и захоронения.
Отделенный раствор сульфата аммония упаривается и кристаллизуется, полученные кристаллы возвращают в цикл на стадию получения двойных сульфатных солей РЗЭ.
На стадии выделения тория и урана используется регенерированная аммиачная вода, которая образуется в результате взаимодействия монацитового концентрата с фторидом аммония.
Участок конверсии необходим для перевода сульфатов двойных солей в нитраты РЗЭ и отделения примеси тория. Удобным соединением для конверсии в нитраты являются оксиды РЗЭ, которые можно получить прокаливанием двойных солей в барабанной вращающейся печи при температуре 1350-1400°C. Оксиды РЗЭ и Th направляют на растворение азотной кислотой с последующим выделение тория из азотнокислого раствора экстракционными методами.
Очищенный раствор нитратов РЗЭ является конечной товарной продукцией и может использоваться для разделения смеси РЗЭ на индивидуальные компоненты.
Пример 1
Навеску монацитового концентрата состава: РЗЭ2О3 27%, P2O5 11,1%, ThO2 2,7%, UO2 0,1%, Fe2O3 1,8%, Al2O3 1,4%, SiO2 2%, TiO2 1,1%, CaO 0,7%, MgO 0,6%, ZrO2 1,5%, массой 50 г, согласно стехиометрическому соотношению монацит: серная кислота 1:1,2, смешивают со смесью 45,4 г серной кислоты и 59 г гидрофторида аммония (соотношение вскрывающих агентов 1:1,3) и выдерживают при 220°C в течение 40 минут. Полученный продукт нагревают до 340°C и выдерживают при этой температуре до прекращении выделения газообразных продуктов реакции. Спек в количестве 66,7 г промывают 200 мл 20% водного раствора серной кислоты и обрабатывают 20 мл 20% раствора хлорида бария, соосаждая радиоактивные Ra, Ba, Pb. Осадок отстаивают и отфильтровывают, масса утилизируемого радиоактивного остатка 8 г, с содержанием непрореагировавших в процессе вскрытия оксидов РЗЭ 8,7% (0,7 г). Очищенный раствор сульфатов нагревают до 80°C и вносят сульфат аммония массой 87,7 г. Раствор выдерживают в течение 1 часа, образовавшиеся кристаллы двойных солей отделяют от маточника фильтрацией. Маточник, содержащий сульфаты тория и железа, смешивают с 40 г 25% аммиачной воды. Твердые продукты реакции (гидратированный торий и железо) отфильтровывают и утилизируют. Двойные сульфаты РЗЭ в количестве 92,11 г нагревают при 1400°C до прекращения выделения газообразных продуктов реакции. Образующиеся оксиды массой 27,15 г растворяют в 100 мл 35% азотной кислоты, полученный раствор подвергают стандартной операции очистки нитратов РЗЭ от примеси тория экстракционными методами. Содержание нитратов РЗЭ в очищенном растворе 264,9 г/л, степень извлечения РЗЭ из исходного монацитового концентрата составляет 98,1%.
Пример 2
Навеску монацитового концентрата 50 г состава по примеру 1 смешивают со смесью 75 г серной кислоты и 112,5 г гидрофторида аммония (соотношение монацит вскрывающих агентов 1:1,5; соотношение вскрывающих агентов 1:1,5) и выдерживают при 200°C в течение 2 часов. Полученный продукт нагревают до 340°C и выдерживают при этой температуре до прекращения выделения газообразных продуктов реакции. Образуется спек в количестве 65,9 г. По примеру 1 спек промывают раствором серной кислоты и дезактивируют раствором хлорида бария, масса утилизируемого радиоактивного остатка 8 г, с содержанием РЗЭ 6,25% (0,5 г). По примеру 1 из очищенного сульфатного раствора осуществляют выделение раствора нитратов РЗЭ с концентрацией 266,8 г/л, степень извлечения РЗЭ из исходного монацитового концентрата составляет 98,8%.
Пример 3
Навеску монацитового концентрата 50 г состава по примеру 1, смешивают согласно стехиометрическому соотношению монацит: серная кислота 1:1 со смесью 37,8 г серной кислоты и 49 г гидрофторида аммония (соотношение вскрывающих агентов 1:1) и выдерживают при 260°C в течение 20 минут. Полученный продукт нагревают до 340°C и выдерживают при этой температуре до прекращении выделения газообразных продуктов реакции. Образуется спек в количестве 72,7 г. По примеру 1 спек промывают раствором серной кислоты и дезактивируют раствором хлорида бария, масса утилизируемого радиоактивного остатка 11 г, содержание непрореагировавших в процессе вскрытия оксидов РЗЭ в остатке составляет 3,75 г (34%). Из очищенного раствора по примеру 1 проводят: осаждение двойных сульфатных солей РЗЭ, фильтрацию и термическое разложение кристаллов, растворение оксидов РЗЭ в азотной кислоте, очистку нитратов РЗЭ от тория экстракционными методами. Содержание нитратов РЗЭ в очищенном растворе составляет 247,8 г/л, степень извлечения РЗЭ из исходного монацитового концентрата составляет 91,7%.
Таким образом, из приведенных примеров следует, что предлагаемый способ позволяет повысить степень извлечения РЗЭ до 98%, снизить расход серной кислоты и сточных вод при обеспечении высокой степени очистки от тория, железа, алюминия, титана и кремния.

Claims (3)

1. Способ переработки монацитового концентрата, включающий обработку исходного сырья серной кислотой, водное выщелачивание сульфатов РЗЭ и обезвреживание раствора хлоридом бария с последующим селективным выделением ториевого, уранового, железистого и редкоземельного продукта, отличающийся тем, что обработку исходного монацитового концентрата проводят в смеси серной кислоты и фторида аммония при температуре 200-230°C в течение 30-40 минут, полученный продукт очищают от фосфатных и фторидных продуктов методом сублимационной перегонки, выделение редкоземельного продукта осуществляют через стадию осаждения двойных солей РЗЭ сульфатом аммония с последующей конверсией в нитраты РЗЭ через стадии прокаливания, растворения в азотной кислоте и экстракционной очистки от примеси тория.
2. Способ по п. 1, отличающийся тем, что процесс выщелачивания ведут раствором серной кислоты.
3. Способ по п. 1, отличающийся тем, что получение железистого, ториевого и уранового продукта ведут из маточного раствора после осаждения двойных солей РЗЭ.
RU2013145917/05A 2013-10-14 2013-10-14 Способ переработки монацитового концентрата RU2549412C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013145917/05A RU2549412C1 (ru) 2013-10-14 2013-10-14 Способ переработки монацитового концентрата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013145917/05A RU2549412C1 (ru) 2013-10-14 2013-10-14 Способ переработки монацитового концентрата

Publications (2)

Publication Number Publication Date
RU2013145917A RU2013145917A (ru) 2015-04-20
RU2549412C1 true RU2549412C1 (ru) 2015-04-27

Family

ID=53282782

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013145917/05A RU2549412C1 (ru) 2013-10-14 2013-10-14 Способ переработки монацитового концентрата

Country Status (1)

Country Link
RU (1) RU2549412C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969974A (zh) * 2016-05-20 2016-09-28 辽宁科技大学 一种从稀土矿石中选择性提取稀土金属的方法
RU2667932C1 (ru) * 2017-08-29 2018-09-25 Владимир Леонидович Софронов Способ переработки монацитового сырья
CN111020242A (zh) * 2019-09-09 2020-04-17 湖南中核金原新材料有限责任公司 一种从独居石精矿中冶炼分离铀、钍和稀土的工艺方法
RU2746867C1 (ru) * 2017-07-17 2021-04-21 Чайна Энфи Инжиниринг Корпорейшн Способ и система для обработки концентратов редкоземельных элементов

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2109686C1 (ru) * 1996-02-01 1998-04-27 Акционерное общество закрытого типа "Техноген" Способ извлечения редкоземельных элементов из фосфогипса
RU2151206C1 (ru) * 1999-06-28 2000-06-20 Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук Способ переработки монацитового концентрата

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2109686C1 (ru) * 1996-02-01 1998-04-27 Акционерное общество закрытого типа "Техноген" Способ извлечения редкоземельных элементов из фосфогипса
RU2151206C1 (ru) * 1999-06-28 2000-06-20 Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук Способ переработки монацитового концентрата

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105969974A (zh) * 2016-05-20 2016-09-28 辽宁科技大学 一种从稀土矿石中选择性提取稀土金属的方法
RU2746867C1 (ru) * 2017-07-17 2021-04-21 Чайна Энфи Инжиниринг Корпорейшн Способ и система для обработки концентратов редкоземельных элементов
RU2667932C1 (ru) * 2017-08-29 2018-09-25 Владимир Леонидович Софронов Способ переработки монацитового сырья
CN111020242A (zh) * 2019-09-09 2020-04-17 湖南中核金原新材料有限责任公司 一种从独居石精矿中冶炼分离铀、钍和稀土的工艺方法
CN111020242B (zh) * 2019-09-09 2021-07-20 湖南中核金原新材料有限责任公司 一种从独居石精矿中冶炼分离铀、钍和稀土的工艺方法

Also Published As

Publication number Publication date
RU2013145917A (ru) 2015-04-20

Similar Documents

Publication Publication Date Title
Gladyshev et al. Recovery of vanadium and gallium from solid waste by-products of Bayer process
US9517944B2 (en) Method for producing alumina
PL155815B1 (pl) Sposób wydzielania lantanowców z fosfogipsu
RU2549412C1 (ru) Способ переработки монацитового концентрата
SU1165238A3 (ru) Способ гидрометаллургической переработки сырь ,содержащего цветные металлы и железо
JP2023510391A (ja) アルミナおよびリチウム塩を産生するためのプロセス
RU2543160C2 (ru) Способ сернокислотного разложения рзм-содержащего фосфатного сырья
JP6337708B2 (ja) ニッケルスラッジからのニッケルの分離方法
RU2571244C1 (ru) Способ получения чистой вольфрамовой кислоты
RU2525877C2 (ru) Способ переработки фосфогипса
RU2487185C1 (ru) Способ извлечения редкоземельных металлов из фосфогипса
RU2667932C1 (ru) Способ переработки монацитового сырья
RU2348716C1 (ru) Способ извлечения ванадия
RU2477758C1 (ru) Способ извлечения америция
SU1761671A1 (ru) Способ получени сульфата кали и глинозема из сыннырита
RU2310003C2 (ru) Способ извлечения ванадия из ванадийсодержащего материала
RU2560802C1 (ru) Способ переработки природного фосфата для извлечения редкоземельных элементов
US4804524A (en) Process for the preparation of boric acid from colemanite and/or howlite minerals
RU2257348C1 (ru) Способ получения оксида скандия
RU2513652C2 (ru) Способ получения оксида магния
US9725785B2 (en) Process for cold hydrochemical decomposition of sodium hydrogen aluminosilicate
US20240391790A1 (en) A process for producing alumina
RU2537626C2 (ru) Способ получения алюмокалиевых квасцов
RU2480413C2 (ru) Способ очистки от железа кислых растворов солей, содержащих нитрат алюминия
CN104944456B (zh) 一种酸法处理低铝矿物生产氧化铝的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151015