RU2508094C1 - Способы получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот (варианты) - Google Patents
Способы получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот (варианты) Download PDFInfo
- Publication number
- RU2508094C1 RU2508094C1 RU2012133277/15A RU2012133277A RU2508094C1 RU 2508094 C1 RU2508094 C1 RU 2508094C1 RU 2012133277/15 A RU2012133277/15 A RU 2012133277/15A RU 2012133277 A RU2012133277 A RU 2012133277A RU 2508094 C1 RU2508094 C1 RU 2508094C1
- Authority
- RU
- Russia
- Prior art keywords
- pharmacologically active
- active substance
- lactide
- glycolide
- group
- Prior art date
Links
Images
Landscapes
- Medicinal Preparation (AREA)
Abstract
Изобретение относится к медицине. Описан способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора до полного растворения, высушивание горячим воздухом до полного высыхания и постоянной массы с получением пленки, разрезание полученной пленки на части и упаковку, при этом соотношение лактида и гликолида в пределах от 95:5 до 5:95 (варианты). Техническим результатом изобретения является получение трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, которая явялется биодеградируемой. 4 н. и 29 з.п. ф-лы, 1 ил., 3 табл., 6 пр.
Description
Изобретение относится к области фармацевтической промышленности, в частности к способам получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот.
Трансдермальная терапевтическая система (ТТС) представляет собой дозированную лекарственную форму для наружного применения в виде пластырей, нетканого материала или пленок. ТТС способны непрерывно и атравматично подавать в организм лекарственное средство (ЛС) со скоростью, создающей в кровотоке постоянный уровень концентрации ЛС, близкий к оптимальному терапевтическому уровню.
Трансдермальные терапевтические системы являются альтернативой парентеральному и пероральному введению лекарственных средств. По сравнению с пероральным приемом, трансдермальное введение обеспечивает быстрое действие препарата и помогает избежать снижения его активности в результате прохождения через печень. Кроме того, при таком введении появляется возможность снизить частоту назначения лекарства, уменьшить необходимые дозы и при этом избежать колебаний его концентрации в крови, а при развитии нежелательных реакций - немедленно прекратить лечение. Для некоторых лекарств трансдермальная доставка является единственным способом введения.
Задача, положенная в основу создания настоящего изобретения, состоит в дальнейшем совершенствовании трансдермальных терапевтических систем, при этом технический результат, полученный при решении такой задачи, состоит в создании биодеградируемых трансдермальных терапевтических систем на основе сополимеров лактида и гликолида.
Для достижения поставленного результата предлагаются варианты способов получения трансдермальной терапевтической системы (ТТС) на основе сополимеров молочной и гликолевой кислот, первый из которых включает растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора до полного растворения, высушивание горячим воздухом до полного высыхания и постоянной массы с получением пленки, разрезание полученной пленки на части и упаковку; второй включает растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора в магнитной мешалке до полного растворения, заливку в устройство подачи, подачу на капилляр напряжением 5-40 кВ, сбор волокна на приемное устройство с получением нетканого материала, разрезание полученного нетканого материала на части и упаковку; третий из вариантов способа включает этап экструдирования сополимера лактид-гликолида с получением нити и последующим изготовлением из нити тканого материала, этап растворения сополимера лактид-гликолида в органическом растворителе, растворение фармакологически активного вещества, смешивание и гомогенизацию таких растворов с получением итогового раствора, и этап погружения в итоговый раствор тканного материала с последующим его охлаждением и сушкой; четвертый из заявленных вариантов способа включает растворение сополимера лактид-гликолида в этилацетате, добавление фармакологически активного вещества в буфере, перемешивание, центрифугирование полученной смеси, удаление супернатанта с растворением осадка в этилацетате, получением суспензии и приготовлением на ее основе спрея.
Предпочтительные, но не обязательные варианты реализации первого, второго и третьего вариантов способа предполагают соотношение лактида и гликолида выбрать в пределах от 95:5 до 5:95, предпочтительно 75:25, наиболее предпочтительно 50:50; использование в качестве сополимера лактид-гликолид-полиэтиленгликоль (ПЭГ) или - лактид-гликолид-поливинилпирролидон (ПВП), где ПЭГ или ПВП имеет молекулярную массу от 400 до 40000 Да; дополнительное использование в качестве пластификаторов веществ из группы ε-капролактон, сложные эфиры дикарбоновые кислоты, глицерин, в качестве эмульгаторов - веществ из группы полоксамер, твин-80 (полиоксиэтилен-сорбитан моноолеат); использование для создания заданных параметров высвобождения фармакологически активного вещества аэросила и/или диметилсульфоксида, а в качестве органического растворителя -веществ, выбранных из группы, включающей дихлорметан, хлороформ, хлористый метилен, этилацетат, тетрагидрофуран, диметилсульфоксид, диметилформамид, ацетон или их смеси; кроме того, фармакологически активным веществом может являться терапевтическое или диагностическое средство, при этом в случае, если фармакологически активное вещество является терапевтическим средством, его выбирают из группы, включающей ранозаживляющие средства; противомикробные средства; обезболивающие и анестезирующие средства местного действия; противовоспалительные средства; трофические факторы; лекарства для лечения привыкания и злоупотребления лекарственными средствами; лекарства для лечения привыкания и злоупотребления табаком; лекарства для лечения привыкания и злоупотребления алкоголем; гормональные средства; стимуляторы; лекарства против ожирения; кардиотропные средства, в случае, если фармакологически активное вещество является диагностическим средством, то это средство для диагностики в радиационной медицине и/или лучевой терапии; следует также отметить, что для предотвращения изменения рН в кислую сторону первый-третий варианты заявленного способа могут дополнительно характеризоваться использованием волластонита или биогласса (bioglass 45S5).
Изобретение иллюстрируется фиг.1 с графиком регенерации тканей.
Возможность достижения поставленного результата обусловлена тем, что сополимеры лактида и гликолида являются поддающимися биологическому разложению полимерами, цепи которых состоят из звеньев молочной и гликолевой кислот, процентное содержание которых оказывает влияние на скорость разложения и, как следствие, высвобождения фармакологически активного вещества. Молекула полилактида является оптически активной, D и L-изомеры могут присутствовать в любых пропорциях, исключением является сополимер L-лактида и D-лактида с относительным содержанием звеньев 50/50. Молекулярная масса сополимеров может варьироваться от 30000 до 100000 Да (массы определены методом гель-проникающей хроматографией). Также возможен синтез олигомеров с молекулярной массой от 2500 до 10000 Да. Для повышения биодеградируемости могут использоваться сополимеры, содержащие помимо сополимеров полилактидов и/или полигликолидов полиэтиленгликоли (ПЭГ) различной молекулярной массы, начиная от 400 Да до 40000 Да.
В общем виде, согласно заявленным вариантам способа, могут быть получены трансдермальные терапевтически системы (ТТС), на основе сополимера лактид-гликолида и, при необходимости, дополнительно полиэтиленгликоля, и/или поливинилпиролидона различной молекулярной массы, и/или пластификатора, и/или поверхностно-активных веществ, и/или аэросила, и/или диметилсульфоксида (ДМСО), в который добавлено фармакологически активное вещество, при этом в общем виде такие способы подразделяются на:
- метод испарения органического растворителя;
- метод электроспиннинга;
- метод получения композитных материалов;
- получение спрея.
Пример 1. Получение биодеградируемой ТТС методом испарения органического растворителя.
1.1. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=10000 Да) и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф, сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
1.2. Растворяли 486 мг сополимера лактид-гликолид-ε-капролактона (71:22:7; М=5000 Да) и 15 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
1.3. Растворяли 972 мг сополимера лактид-гликолид-ПЭГ (50:45:5; М=50000 Да; МПЭГ=1000 Да) и 20 мг фармакологически активного вещества в 60 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф, сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
1.4. Растворяли 972 мг сополимера лактид-гликолид-ПЭГ-ε-капролактона (70:20:5:5; М=60000 Да; МПЭГ1000 Да) и 20 мг фармакологически активного вещества в 100 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
1.5. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=70000 Да), 10 мг глицерина и 10 мг фармакологически активного вещества в 30 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
1.6. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=80000 Да), 20 мл полоксамера 188 и 15 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалки до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
1.7. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=90000 Да), 10 мг аэросила и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
1.8. Растворяли 195 мг сополимера лактид-гликолида (50:50; М=100000 Да), 10 мл диметилсульфоксид (ДМСО) и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, затем раствор сушили горячим воздухом до полного высыхания, после чего помещали в вакуумный шкаф и сушили от остатков ацетона до постоянной массы. Полученную пленку разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
Пример 2. Получение биодеградируемой ТТС методом электроспиннинга.
2.1. Растворяли 1 г сополимера лактид-гликолида (50:50; М=35000 Да) и 10 мг фармакологически активного вещества в 10 мл этилацетата; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
2.2. Растворяли 1 г сополимера лактид-гликолид-ε-капролактона (75:20:5; М=40000 Да) и 15 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
2.3. Растворяли 1 г сополимера лактид-гликолид-ПЭГ (50:45:5; М=50000 Да; МПЭГ=1000 Да) и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
2.4. Растворяли 1,0 г сополимера лактид-гликолид-ПЭГ-ε-капролактона (70:20:5:5; М=60000 Да; МПЭГ=1000 Да) и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
2.5. Растворяли 1 г сополимера лактид-гликолида (50:50; М=70000 Да), 0,2 мг глицерина и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
2.6. Растворяли 1 г сополимера лактид-гликолида (50:50; М=80000 Да), 0,2 мл полоксамера 188 и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
2.7. Растворяли 1 г сополимера лактид-гликолида (50:50; М=90000 Да), 0,2 мг аэросила и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
2.8. Растворяли 1 г сополимера лактид-гликолида (50:50; М=100000 Да), 0,2 мл ДМСО и 10 мг фармакологически активного вещества в 10 мл ацетона; полученный раствор тщательно перемешивали на магнитной мешалке до полного растворения, заливали в устройство подачи, подавали на капилляр напряжением 20 кВ и собирали волокна на приемное устройство. Полученный нетканый материал разрезали на части и помещали в стерильный полиэтиленовый мешок, который потом запаивали.
Пример 3. Получение биодеградируемой ТТС методом композитных материалов.
3.1. 5 г сополимера лактид-гликолида (50:50; М=50000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.
Растворяли 196 мг сополимера лактид-гликолида (50:50; М=40000 Да) в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал, полученный на ткацком станке и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.
3.2. 5 г сополимера лактид-гликолида (75:25; М=50000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.
Растворяли 196 мг сополимера лактид-гликолида (50:50; М=60000 Да) в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.
3.3. 5 г сополимера лактид-гликолид-ε-капролактона (75:20:5; М=70000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.
Растворяли 196 мг сополимера лактид-гликолида (50:50; М=80000 Да) в 30 мл хлороформа; 10 мг фамкакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.
3.4. 5 г сополимера лактид-гликолид-ПЭГ (70:25:5; М=90000 Да; МПЭГ=1000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.
Растворяли 196 мг сополимера лактид-гликолида (50:50; M=30000 Да) в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.
3.5. 5 г сополимера лактид-гликолид-ПЭГ-ε-капролактона (70:20:5:5; М=50000 Да; МПЭГ=1000 Да) засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.
Растворяли 196 мг сополимера лактид-гликолида (50:50; М=30000 Да) в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.
3.6. 5 г сополимера лактид-гликолида (50:50; М=30000 Да), 0,1 г аэросила засыпали в экструдер, нагретый до 100°C; затем на выходе из фильеры нить собирали на барабан и на ткацком станке готовили тканый материал.
Растворяли 196 мг сополимера лактид-гликолида (50:50; М=60000 Да), в 30 мл хлороформа; 10 мг фармакологически активного вещества растворяли в 4 мл воды очищенной; смешивали полученные растворы и гомогенизировали при 16000 об/мин. В полученный раствор опускали тканный материал и сразу же охлаждали жидким азотом при -196°C. Полученный композитный материал с фармакологически активным веществом помещали в лиофильную сушку и сушили при -85°C.
4. Получение спрея с фармакологически активным веществом на основе сополимеров молочной и гликолевой кислот
5 г сополимера лактид-гликолида растворяют в 20 мл этилацетата, добавляют 20 мг фармакологическиактивного вещества в буфере, интенсивно перемешивают, полученную смесь центрифугируют, удаляют супернатант, осадок растворяют в 40 мл этилацетата, получая суспензию, на основе которой готовят спрей пригодный для распыления на кожу.
Для исследования эффективности полученных трансдермальных терапевтических систем в виде пленок, нетканого материала, пластырей, содержащих сополимер лактид-гликолида и ацексамовую кислоту в качестве ранозаживляющего фармакологически активного вещества, моделировали раневую поверхность удалением у животных шерсти на месте нанесения раны, затем скальпелем вырезался кусок кожи для получения полнослойной раны размером 225 мм2.
Для эксперимента использовали взрослых самцов крыс Вистар весом 200-250 г в течении 1 недели выдерживали с целью акклиматизации в клетках группами по 5 особей. Животных делили на 3 группы по 6 животных в каждой группе:
1 группа контрольная; животные со стандартными полнослойными ранами (225 мм2) на боковой поверхности тела, которым на область дефекта не воздействуют никакими физическими и химическими факторами.
2 группа, животные со стандартными полнослойными ранами (225 мм2) на боковой поверхности тела, которым на область дефекта наносят спрей «Пантенол».
3 группа, животные со стандартными полнослойными ранами (225 мм2) на боковой поверхности тела, которым на область дефекта наносят полимерную пленку, содержащую сополимер лактид-гликолида (50:50 М=30000 Да) и ацексамовую кислоту в соответствии с заявленными вариантами способа (фиг.1).
Исследование вели в течение 15 дней. Ежедневно измеряли площадь ран у всех экспериментальных животных. У всех животных были взяты мазки-отпечатки с поверхности ран через 6, 12 и 24 часа. У всех животных была взята биопсия через 5, 10 15 сутки с последующим изготовлением гистологических препаратов по стандартным прописям.
Нижеследующие примеры иллюстрируют также возможность реализации заявленных ТТС с различными фармакологически активными веществами.
Пример 4. Анальгетическая активность веществ, высвобождаемых из ТТС.
Тест «отдергивания хвоста». Животное помещали в индивидуальную пластиковую камеру, хвост погружали на 5 см в воду с температурой 55±1°C. В тесте фиксировали латентный период избавления от болевого раздражителя -период времени (сек), в течение которого животное выдергивало хвост из воды полностью. Максимальное время предъявления болевого раздражителя - 30 сек. Исходную болевую чувствительность определяли как среднее арифметическое из показателей, зафиксированных на 60, 40, и 20 минут до применения ТТС. Латентный период избавления от болевого раздражителя фиксировали через 20, 40, 60 и 120 минут после применения. Анальгетическую активность оценивали по изменению латентного периода реакции по формуле: А=ЛПоп-ЛПисх, где ЛПоп - латентный период избавления после применения ТТС, ЛПисх- среднее арифметическое латентных периодов избавления до применения ТТС.
Проводили аппликацию ТТС самцам нелинейных белых крыс весом 200-300 г. Контрольным животным аппликацию не проводили. Полученные результаты приведены в таблице 1.
Таблица 1 | ||||||
Испытуемый образец | Отдергивание хвоста (изменение чувствительности, сек) | |||||
20 мин | 40 мин | 60 мин | 90 мин | 120 мин | ||
Контроль | 0.5±0.1 | 0.5±0.1 | 0.3±0.1 | 0.2±0.1 | -0.1±0.1 | |
ТТС, полученная методом испарения | 1 мг/кг | 11±1.2* | 12.4±1.6* | 12.8±1.4* | 6.7±0.7* | 4.5±0.3* |
ТТС, полученная методом электроспиннинга | 1 мг/кг | 5,7±0.7* | 7.5±0.8* | 5.3±0.6* | 4.1±0.5* | 4.3±0.4* |
ТТС, представляющая собой композитный материал | 1 мг/кг | 4,7±0.9* | 5.2±1.4* | 4.3±0.7* | 2.1±0.6 | 0.2±0.1 |
фармакологически активное вещество - индометацин | 10 мг/кг | 4.2±1.6* | 3.9±1.2* | 2.9±1.9 | 1.9±1.2 | 0.7±0.3 |
* - достоверность по сравнению с контролем при Р<0,05. |
Из представленных результатов следует, что применение ТТС вызывает достоверное увеличение латентного периода реакции отдергивания хвоста в ответ на болевое раздражение.
Пример 5. Испытания эффективности ТТС в тесте воспаления, вызванного конканавалином А.
Реакция воспаления на конканавалин А (Кон А) основана на способности пектинов растительного происхождения высвобождать медиаторы воспаления. Делали аппликацию ТТС или вводили известный противовоспалительный агент в/б за 20 минут до Кон А. Кон А вводили субплантарно в дозе 100 мкг/20 г массы тела (20 мкл раствора в концентрации 5 мг/мл), в контрлатеральную конечность - тот же объем физиологического раствора. Через 1 час мышей забивали, определяли массу лап и подсчитывали индекс реакции воспаления (Ир) по формуле: Ир=(Роп-Рк)*100/Рк, где Роп - масса стопы задней лапы, в подушечку которой вводили Кон А, Рк - физиологический раствор. Статистически достоверную разницу между данными опытных и контрольных групп, превышающая 20%, считали значимой (Любимов Б.И. и др. 2000).
Контрольным животным вводили внутрибрюшинно дистиллированную воду. Полученные результаты приведены в таблице 2.
Таблица 2 | ||
Испытуемый образец | Воспаление, вызванное конканавалином А (индекс реакции) | |
Контроль | 16,4±1,5 | |
ТТС, полученная методом испарения | 10 мг/кг | 9,2±1,1* |
ТТС, полученная методом электроспиннинга | 10 мг/кг | 13,1±2,4* |
ТТС, представляющая собой композитный материал | 10 мг/кг | 8,7±2,2* |
фармакологически активное вещество - диклофенак Na | 10 мг/кг | 13,7±1,6* |
* - достоверность по сравнению с контролем при Р<0,05. |
Полученные результаты показывают, что применение противовоспалительного агента в ТТС по сравнению с его в/б вызывает достоверное снижение индекса воспалительной реакции в ответ на введение конканавалина А.
Пример 6. Изучение противомикробной активности В качестве активного компонента для ТТС был взят Хлорамфеникол 3% Изучение противомикробной активности проводили в соответствии с требованиями ГФ XI, in vitro методом диффузии в агар. Стерильные чашки Петри устанавливали на строго горизонтальную поверхность, наливали в них 2% мясопептонный агар (рН=7,2-7,4) в количестве 20 мл для создания оптимальной толщины слоя, равной 4-5 мм. Для тех видов микробов, которые не растут на мясопептонном агаре, как, например, стрептококки, пневмококки и другие, применяли 5% кровяной или сывороточный агар. Перед посевом чашки со средой подсушивали в термостате.
Толстый слой агара засеивали 1-2 мл взвеси испытуемых микроорганизмов и растирали шпателем до равномерного распределения микроорганизмов по всей поверхности чашки Петри и на одинаковом расстоянии. Излишек взвеси полностью удаляли, подсушивали в течение 30 мин. Затем сверлом (d=6 мм) проделывали отверстия на расстоянии 2,5 см от стенки чашки Петри и на одинаковых расстояниях друг от друга, которые затем заполняли исследуемыми объектами. После этого чашки ставили в термостат при 37°C не переворачивая, строго горизонтально, чтобы образовались круглые зоны.
Лекарственное вещество диффундирует из полимерного носителя в агар, формируя вокруг диска зону угнетения роста чувствительных к нему микроорганизмов, четко выделяющуюся на фоне сплошного роста. Через 24 часа измеряли диаметры зоны угнетения роста. Полученные результаты приведены в таблице 3.
Таблица 3 | ||||
Тест-культуры | Размеры задержки роста по диаметру, мм | |||
TTC, полученная методом испарения | TTC, полученная методом электроспиннинга | ТТС, представляющая собой композитный материал | фармакологически активное вещество - хлорамфеникол | |
Staphylococcus aureus 209p | 20 | 18 | 22 | 21 |
Staphylococcus aureus Type | 16 | 14 | 14 | 15 |
Staphylococcus epidermidis Wood-46 | 27 | 25 | 33 | 32 |
Escherichia coli 675 | 10 | 9 | 12 | 11 |
Escherichia paracoli | 10 | 12 | 12 | 11 |
Proteus vulgaris | 25 | 20 | 22 | 22 |
Bacillus subtillus L2 | 23 | 23 | 24 | 23 |
Bacillus anthracoides 96 | 15 | 13 | 16 | 17 |
Критерий Крускала-Уоллиса Р>0,05
Более 10 - высокая активность, 10 - умеренная активность, менее 10 - отсутствие активности.
Результаты эксперимента свидетельствуют о противомикробной активности активного компонента, входящего в состав ТТС. Противомикробная активность в форме ТТС не уступает по величине противомикробной активности хлорамфеникола.
Claims (33)
1. Способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора до полного растворения, высушивание горячим воздухом до полного высыхания и постоянной массы с получением пленки, разрезание полученной пленки на части и упаковку, при этом соотношение лактида и гликолида выбирают в пределах от 95:5 до 5:95, предпочтительно 75:25, наиболее предпочтительно 50:50.
2. Способ по п.1, в котором используют сополимер лактид-гликолид-полиэтиленгликоль (ПЭГ), где ПЭГ имеет молекулярную массу от 400 до 40000 Да.
3. Способ по п.1, в котором дополнительно используют в качестве пластификаторов вещества из группы ε-капролактон, сложные эфиры дикарбоновые кислоты, глицерин, поливинилпирролидоны различной молекулярной массы.
4. Способ по п.1, в котором дополнительно используют в качестве эмульгаторов вещества из группы полоксамер, твин-80 (полиоксиэтилен-сорбитан моноолеат).
5. Способ по п.1, в котором дополнительно для создания заданных параметров высвобождения фармакологически активного вещества используют аэросил и/или диметилсульфоксид.
6. Способ по п.1, в котором в качестве органического растворителя используют вещество, выбранное из группы, включающей дихлорметан, хлороформ, хлористый метилен, этилацетат, тетрагидрофуран, диметилсульфоксид, диметилформамид, ацетон или их смеси.
7. Способ по п.1, в котором фармакологически активным веществом является терапевтическое или диагностическое средство.
8. Способ по п.7, в котором фармакологически активное вещество является терапевтическим средством, выбранным из группы, включающей ранозаживляющие средства; противомикробные средства; обезболивающие и анестезирующие средства местного действия; противовоспалительные средства; трофические факторы; лекарства для лечения привыкания и злоупотребления лекарственными средствами; лекарства для лечения привыкания и злоупотребления табаком; лекарства для лечения привыкания и злоупотребления алкоголем; гормональные средства; стимуляторы; лекарства против ожирения; кардиотропные средства.
9. Способ по п.7, в котором фармакологически активное вещество является диагностическим средством для диагностики в радиационной медицине и/или лучевой терапии.
10. Способ по любому из пп.1-9, в котором дополнительно используют волластонит или биогласс для предотвращения изменения рН в кислую сторону.
11. Способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий растворение сополимера лактид-гликолида и фармакологически активного вещества в органическом растворителе, перемешивание полученного раствора в магнитной мешалке до полного растворения, подачу на капилляр напряжением 5-40 кВ, сбор волокна на приемное устройство с получением нетканого материала, разрезание полученного нетканого материала на части и упаковку.
12. Способ по п.11, в котором соотношение лактида и гликолида выбрано в пределах от 95:5 до 5:95, предпочтительно 75:25, наиболее предпочтительно 50:50.
13. Способ по п.11, в котором используют сополимер лактид-гликолид-ПЭГ или ПВП, где ПЭГ или ПВП имеют молекулярную массу от 400 до 40000 Да.
14. Способ по п.11, в котором дополнительно используют в качестве пластификаторов вещества из группы ε-капролактон, сложные эфиры дикарбоновые кислоты, глицерин.
15. Способ по п.11, в котором дополнительно используют в качестве эмульгаторов вещества из группы полоксамер, твин-80 (полиоксиэтилен-сорбитан моноолеат).
16. Способ по п.11, в котором дополнительно для создания заданных параметров высвобождения фармакологически активного вещества используют аэросил и/или диметилсульфоксид.
17. Способ по п.11, в котором в качестве органического растворителя используют вещество, выбранное из группы, включающей дихлорметан, хлороформ, хлористый метилен, этилацетат, тетрагидрофуранэтилацетат или ацетон.
18. Способ по п.11, в котором фармакологически активным веществом является терапевтическое или диагностическое средство.
19. Способ по п.18, в котором фармакологически активное вещество является терапевтическим средством, выбранным из группы, включающей ранозаживляющие средства; противомикробные средства; обезболивающие и анестезирующие средства местного действия; противовоспалительные средства; трофические факторы; лекарства для лечения привыкания и злоупотребления лекарственными средствами; лекарства для лечения привыкания и злоупотребления табаком; лекарства для лечения привыкания и злоупотребления алкоголем; гормональные средства; стимуляторы; лекарства против ожирения; кардиотропные средства.
20. Способ по п.18, в котором фармакологически активное вещество является диагностическим средством для диагностики в радиационной медицине и/или лучевой терапии.
21. Способ по любому из пп.11-20, в котором дополнительно используют волластонит или биогласс для предотвращения изменения рН в кислую сторону.
22. Способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий этап экструдирования сополимера лактид-гликолида с получением нити и последующего изготовления из нити тканого материала, этапы растворения сополимера лактид-гликолида в органическом растворителе, растворения фармакологически активного вещества, смешивание и гомогенизацию полученных растворов с получением итогового раствора и этап погружения в итоговый раствор тканого материала с последующим его охлаждением и сушкой.
23. Способ по п.22, в котором соотношение лактида и гликолида выбрано в пределах от 95:5 до 5:95, предпочтительно 75:25, наиболее предпочтительно 50:50.
24. Способ по п.22, в котором используют сополимер лактид-гликолид-ПЭГ, где ПЭГ имеет молекулярную массу от 400 до 40000 Да.
25. Способ по п.22, в котором дополнительно используют в качестве пластификаторов вещества из группы ε-капролактон, сложные эфиры дикарбоновые кислоты, глицерин.
26. Способ по п.22, в котором дополнительно используют в качестве эмульгаторов вещества из группы полоксамер, твин-80 (полиоксиэтилен-сорбитан моноолеат).
27. Способ по п.22, в котором дополнительно для создания заданных параметров высвобождения фармакологически активного вещества используют аэросил и/или диметилсульфоксид.
28. Способ по п.22, в котором в качестве органического растворителя используют вещество, выбранное из группы, включающей дихлорметан, хлороформ, хлористый метилен, этилацетат, тетрагидрофуранэтилацетат или ацетон.
29. Способ по п.22, в котором фармакологически активным веществом является терапевтическое или диагностическое средство.
30. Способ по п.29, в котором фармакологически активное вещество является терапевтическим средством, выбранным из группы, включающей ранозаживляющие средства; противомикробные средства; обезболивающие и анестезирующие средства местного действия; противовоспалительные средства; трофические факторы; лекарства для лечения привыкания и злоупотребления лекарственными средствами; лекарства для лечения привыкания и злоупотребления табаком; лекарства для лечения привыкания и злоупотребления алкоголем; гормональные средства; стимуляторы; лекарства против ожирения; кардиотропные средства.
31. Способ по п.29, в котором фармакологически активное вещество является диагностическим средством для диагностики в радиационной медицине и/или лучевой терапии.
32. Способ по любому из пп.22-31, в котором дополнительно используют волластонит или биогласс для предотвращения изменения рН в кислую сторону.
33. Способ получения трансдермальной терапевтической системы на основе сополимеров молочной и гликолевой кислот, включающий растворение сополимера лактид-гликолида в этилацетате, добавление фармакологически активного вещества в буфере, перемешивание, центрифугирование полученной смеси, удаление супернатанта с растворением осадка в этилацетате, получение суспензии и приготовление на ее основе спрея.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012133277/15A RU2508094C1 (ru) | 2012-08-03 | 2012-08-03 | Способы получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот (варианты) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012133277/15A RU2508094C1 (ru) | 2012-08-03 | 2012-08-03 | Способы получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот (варианты) |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2508094C1 true RU2508094C1 (ru) | 2014-02-27 |
Family
ID=50152050
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012133277/15A RU2508094C1 (ru) | 2012-08-03 | 2012-08-03 | Способы получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот (варианты) |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2508094C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2110991C1 (ru) * | 1990-05-18 | 1998-05-20 | Бракко Интернэшнл Б.В. | Микрошарики микронного или субмикронного размера с полимерной оболочкой и способ их изготовления |
US6117949A (en) * | 1998-10-01 | 2000-09-12 | Macromed, Inc. | Biodegradable low molecular weight triblock poly (lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties |
RU2177785C2 (ru) * | 1994-08-04 | 2002-01-10 | Квадрант Холдингс Кембридж Лимитед | Твердые системы доставки для контролируемого высвобождения включенных в них молекул и способы их приготовления |
RU2380092C2 (ru) * | 2004-01-30 | 2010-01-27 | Кориум Интернэшнл, Инк. | Быстро растворяющаяся пленка для доставки активного агента |
-
2012
- 2012-08-03 RU RU2012133277/15A patent/RU2508094C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2110991C1 (ru) * | 1990-05-18 | 1998-05-20 | Бракко Интернэшнл Б.В. | Микрошарики микронного или субмикронного размера с полимерной оболочкой и способ их изготовления |
RU2177785C2 (ru) * | 1994-08-04 | 2002-01-10 | Квадрант Холдингс Кембридж Лимитед | Твердые системы доставки для контролируемого высвобождения включенных в них молекул и способы их приготовления |
US6117949A (en) * | 1998-10-01 | 2000-09-12 | Macromed, Inc. | Biodegradable low molecular weight triblock poly (lactide-co-glycolide) polyethylene glycol copolymers having reverse thermal gelation properties |
RU2380092C2 (ru) * | 2004-01-30 | 2010-01-27 | Кориум Интернэшнл, Инк. | Быстро растворяющаяся пленка для доставки активного агента |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Basar et al. | Novel poly (ε-caprolactone)/gelatin wound dressings prepared by emulsion electrospinning with controlled release capacity of Ketoprofen anti-inflammatory drug | |
Padmakumar et al. | Electrospun polymeric core–sheath yarns as drug eluting surgical sutures | |
Lotfipour et al. | Freeze-thaw-induced cross-linked PVA/chitosan for oxytetracycline-loaded wound dressing: The experimental design and optimization | |
Zhu et al. | Anti-neoplastic cytotoxicity of SN-38-loaded PCL/Gelatin electrospun composite nanofiber scaffolds against human glioblastoma cells in vitro | |
US11771648B2 (en) | Carrier for oromucosal administration of physiologically active substances | |
EP3569260A1 (en) | Non-woven fabric bandage and a method for the production of a non-woven fabric bandage | |
Korelidou et al. | 3D-printed reservoir-type implants containing poly (lactic acid)/poly (caprolactone) porous membranes for sustained drug delivery | |
Wold et al. | Fabrication of biodegradable polymeric nanofibers with covalently attached NO donors | |
Martinelli et al. | Release behavior and antibiofilm activity of usnic acid-loaded carboxylated poly (L-lactide) microparticles | |
Morise et al. | Scopolamine loaded in natural rubber latex as a future transdermal patch for sialorrhea treatment | |
CN107530276A (zh) | 使用电纺丝制造含有药物的可生物降解的纤维状物质的方法 | |
Mofidfar et al. | Electrospun transdermal patch for contraceptive hormone delivery | |
Soufdoost et al. | Surgical suture assembled with tadalafil/polycaprolactone drug-delivery for vascular stimulation around wound: validated in a preclinical model | |
US20050272697A1 (en) | Composition and method for treating post-surgical pain | |
WO2016074115A1 (zh) | 核/壳结构载药纳米防粘连膜及其制备方法 | |
Darabian et al. | Improvement in mechanical properties and biodegradability of PLA using poly (ethylene glycol) and triacetin for antibacterial wound dressing applications | |
Sowjanya et al. | Polymers used in the designing of controlled drug delivery system | |
Chen et al. | Injectable electrospun fiber-hydrogel composite sequentially releasing clonidine and ropivacaine for prolonged and walking regional analgesia | |
Painuly et al. | Effect on in-vitro release of individual and dual contraceptive drug loading from gelatin electrospun fibers | |
JP6720447B2 (ja) | 酸感受性薬剤の送達のための薬剤送達系 | |
Khaloo Kermani et al. | A promising antibacterial wound dressing made of electrospun poly (glycerol sebacate)(PGS)/gelatin with local delivery of ascorbic acid and pantothenic acid | |
Subramanian et al. | Fabrication and evaluation of chitosan-gelatin composite film as a drug carrier for in vitro transdermal delivery | |
RU2508094C1 (ru) | Способы получения трансдермальных терапевтических систем на основе сополимеров молочной и гликолевой кислот (варианты) | |
JP2016530272A (ja) | 微小球体を含む局部用薬物パッチ | |
Barani et al. | Sustained release of a thiosemicarbazone from antibacterial electrospun poly (lactic‐co‐glycolic acid) fiber mats |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180804 |