RU2497577C2 - Система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления - Google Patents
Система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления Download PDFInfo
- Publication number
- RU2497577C2 RU2497577C2 RU2010145470/04A RU2010145470A RU2497577C2 RU 2497577 C2 RU2497577 C2 RU 2497577C2 RU 2010145470/04 A RU2010145470/04 A RU 2010145470/04A RU 2010145470 A RU2010145470 A RU 2010145470A RU 2497577 C2 RU2497577 C2 RU 2497577C2
- Authority
- RU
- Russia
- Prior art keywords
- nitrogen oxides
- catalyst
- ammonia
- scr catalyst
- exhaust gas
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 190
- 230000001988 toxicity Effects 0.000 title claims abstract description 31
- 231100000419 toxicity Toxicity 0.000 title claims abstract description 31
- 238000010531 catalytic reduction reaction Methods 0.000 title claims description 5
- 230000003247 decreasing effect Effects 0.000 title 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims abstract description 237
- 239000007789 gas Substances 0.000 claims abstract description 89
- 239000010457 zeolite Substances 0.000 claims abstract description 55
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 51
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 49
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 47
- 150000001875 compounds Chemical class 0.000 claims abstract description 23
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 19
- 229910052684 Cerium Inorganic materials 0.000 claims abstract description 18
- -1 zeolite compound Chemical class 0.000 claims abstract description 17
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical class [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims abstract description 11
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910001928 zirconium oxide Inorganic materials 0.000 claims abstract description 9
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910001930 tungsten oxide Inorganic materials 0.000 claims abstract description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 130
- 229910021529 ammonia Inorganic materials 0.000 claims description 65
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 26
- 238000000576 coating method Methods 0.000 claims description 24
- 239000011248 coating agent Substances 0.000 claims description 20
- 230000003647 oxidation Effects 0.000 claims description 16
- 238000007254 oxidation reaction Methods 0.000 claims description 16
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 14
- 230000003197 catalytic effect Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 13
- 239000004215 Carbon black (E152) Substances 0.000 claims description 9
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 8
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 8
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910001657 ferrierite group Inorganic materials 0.000 claims description 2
- 229910052680 mordenite Inorganic materials 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 239000002245 particle Substances 0.000 claims description 2
- 239000004071 soot Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 abstract description 36
- 230000009467 reduction Effects 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 8
- 229910000420 cerium oxide Inorganic materials 0.000 abstract description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 3
- 238000010327 methods by industry Methods 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000010949 copper Substances 0.000 description 13
- 238000006722 reduction reaction Methods 0.000 description 12
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 9
- 229910052802 copper Inorganic materials 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 7
- 238000011144 upstream manufacturing Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 238000007323 disproportionation reaction Methods 0.000 description 4
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000011149 active material Substances 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000003139 buffering effect Effects 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 231100001261 hazardous Toxicity 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 150000003682 vanadium compounds Chemical class 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical group 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 229940003372 compro Drugs 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012812 general test Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- WIKYUJGCLQQFNW-UHFFFAOYSA-N prochlorperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 WIKYUJGCLQQFNW-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/30—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/7615—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0093—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20776—Tungsten
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/40—Mixed oxides
- B01D2255/407—Zr-Ce mixed oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/064—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing iron group metals, noble metals or copper
- B01J29/072—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0246—Coatings comprising a zeolite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0248—Coatings comprising impregnated particles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0682—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/18—Ammonia
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/033—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
- F01N3/035—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biomedical Technology (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Exhaust Gas After Treatment (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
Изобретение относится к системе (способ и устройство) снижения токсичности содержащих оксиды азота и углеводороды отработавших газов (ОГ) дизельных двигателей путем добавления аммиака или разлагающегося до него соединения в поток ОГ с последующим его пропусканием над двумя последовательно расположенными катализаторами селективного каталитического восстановления (СКВ-катализаторами). Первый СКВ-катализатор, расположенный с входной стороны, эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и содержит оксид вольфрама WO3 и гомогенный смешанный оксид церия и циркония (Ce, Zr)O2, при этом по меньшей мере частично окисляет содержащиеся в ОГ углеводороды. Второй, расположенный с выходной стороны, СКВ-катализатор содержит медьзамещенное цеолитное соединение и эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и одновременно накапливает избыточный аммиак. Предлагаемая в изобретении система снижения токсичности ОГ отличается хорошими начальными рабочими характеристиками при низких температурах и одновременно высокой производительностью по превращению оксидов азота в максимально широком интервале температур. 2 н. и 15 з.п. ф-лы, 4 ил., 1 пр.
Description
Настоящее изобретение относится к системе (к способу и устройству) снижения токсичности отработавших газов (ОГ) двигателей внутреннего сгорания (ДВС) с использованием катализаторов селективного каталитического восстановления (СКВ-катализаторов) и дозируемого в выпускной тракт аммиака или разлагающегося до него соединения в качестве восстановителя.
ОГ дизельных двигателей и работающих на обедненных топливовоздушных смесях бензиновых двигателей наряду с обычными вредными газами, к которым относятся моноксид углерода СО, углеводороды HC и оксиды азота NOx, содержат также кислород в сравнительно большом количестве, которое может достигать 15 об.%. Моноксид углерода и углеводороды можно путем окисления легко превращать в безвредные вещества. Восстановление же оксидов азота до азота из-за высокого содержания кислорода в ОГ является гораздо более сложной задачей.
Одним из известных способов удаления оксидов азота из ОГ в присутствии кислорода является способ селективного каталитического восстановления (сокращенно СКВ) аммиаком, который можно также получать m situ из соединения-предшественника, такого, например, как мочевина. При реализации этого способа происходит компропорциопирование оксидов азота аммиаком с образованием азота на пригодном для этого катализаторе, сокращенно называемом СКВ-катализатором.
В EP 0385164 описаны так называемые сплошные катализаторы для селективного восстановления оксидов азота аммиаком, которые наряду с диоксидом титана и по меньшей мере одним оксидом вольфрама, кремния, бора, алюминия, фосфора, циркония, бария, иттрия, лантана или церия содержат дополнительный компонент, выбранный из группы, включающей оксиды ванадия, ниобия, молибдена, железа и меди.
В US 4961917 описаны каталитические композиции для восстановления оксидов азота аммиаком, которые наряду с цеолитами, в которых соотношение между диоксидом кремния и оксидом алюминия составляет по меньшей мере 10 и которые имеют ансамбль пор, которые соединяются между собой во всех пространственных направлениях и имеют средний кинетический диаметр по меньшей мере 7 ангстрем, содержат железо и/или медь в качестве промоторов. В EP 1495804 и US 6914026 описаны способы повышения стойкости подобных систем на основе цеолитов в условиях гидротермального старения.
Общим для СКВ-каталитических композиций, описанных в указанных публикациях, отражающих существующий уровень техники, является то, что они обеспечивают высокую степень превращения оксидов азота только в определенном интервале температур, часто лишь при температуре выше 350°C. Превращение оксидов азота оптимально протекает, как правило, только в сравнительном узком интервале температур. Такой оптимум превращения оксидов азота является типичным для СКВ-катализаторов и обусловлен механизмом их действия.
При применении на автомобилях СКВ-катализатор из-за постоянно изменяющегося режима работы ДВС работает в варьирующихся в широких пределах условиях. Однако для соблюдения законодательно установленных норм на предельно допустимые показатели выброса вредных веществ с ОГ должна обеспечиваться максимально высокая степень превращения оксидов азота при высокой селективности даже в тех рабочих точках, которые лежат вне оптимума превращения оксидов азота на СКВ-катализаторе. Полное и селективное превращение оксидов азота при низких температурах должно обеспечиваться точно так же, как и селективное и полное превращение больших количеств оксидов азота в очень горячих ОГ, образующихся, например, при работе двигателя в режиме полной нагрузки.
По этой причине СКВ-катализаторы, например, типа тех, составы которых описаны в EP 0385164 или US 4961917, иногда используют в сочетании с еще одним катализатором восстановления оксидов азота с другим интервалом рабочих температур с целью надежно обеспечить возможность удаления оксидов азота при всех рабочих температурах, которые отработавшие газы могут иметь при работе двигателя во всех возможных режимах и который охватывает интервал от 200 до 600°C.
Так, в частности, в US 2006/0039843 А1 описана система снижения токсичности ОГ, содержащая дозирующее устройство для подачи аммиака или его предшественника и первый носитель с СКВ-каталитически активным покрытием с входной стороны и с покрытием из задерживающего аммиак катализатора с выходной стороны. В одном из предпочтительных вариантов между дозирующим устройством для подачи аммиака или его предшественника и первым носителем расположен второй СКВ-катализатор. С целью обеспечить достаточно высокую степень превращения оксидов азота в качестве СКВ-катализаторов в такой системе предпочтительно используют ванадийсодержащие СКВ-катализаторы и/или СКВ-катализаторы на основе цеолитов.
В EP 1795724 также описана система снижения токсичности ОГ, содержащая дозирующее устройство для подачи раствора мочевины в качестве разлагающегося до аммиака соединения и два последовательно расположенных СКВ-катализатора. Расположенный с входной стороны катализатор активен при высоких температурах и в предпочтительном варианте содержит оксид ванадия, а расположенный с выходной стороны катализатор активен при низких температурах и в предпочтительном варианте содержит Cu-, Fe-, Co- или Ag-содержащий цеолит либо Cu-, Fe-, Co- или Ag-содержащий глинозем.
Применение ванадийсодержащих катализаторов токсикологически опасно из-за высокой летучести соединений ванадия в кислородсодержащей влажной атмосфере при повышенных температурах.
В EP 0393905, соответственно US 5516497 описаны способы превращения оксидов азота взаимодействием с аммиаком в газовом потоке, заключающиеся в (I) пропускании содержащего NOx и аммиак газового потока через первую катализаторную зону, содержащую промотированный железом и/или медью первый цеолит, и (II) пропускании образовавшегося в результате газового потока со сниженным содержанием оксидов азота, содержащего не прореагировавший аммиак, через вторую катализаторную зону, также содержащую промотированный железом и/или медью второй цеолит. Обе катализаторные зоны различаются между собой содержанием промоторов и тем самым согласно указанным публикациям различаются между собой своими функциями: первая зона, содержащая железо и/или медь в количестве до 1 мас.%, эффективно катализирует восстановление оксидов азота аммиаком, тогда как вторая зона, содержащая железо и/или медь в количестве более 1 мас.%, эффективно катализирует окисление аммиака до азота.
Применение систем исключительно на основе цеолитсодержащих СКВ-катализаторов сопряжено с исключительно высокими расходами в связи с высокой стоимостью цеолитного сырья.
В WO 2008/006427 описан СКВ-катализатор, состоящий из двух последовательно расположенных на одном носителе зон из каталитически активных материалов. Такие зоны различаются между собой разными характеристиками (профилями) превращения оксидов азота в СКВ-реакции, при этом эффективность превращения оксидов азота на каталитически активном материале, который образует зону, с которой сначала контактируют нейтрализуемые ОГ, выше в области более высоких температур, чем эффективность превращения оксидов азота на каталитически активном материале, который образует последующую зону, с которой затем контактируют нейтрализуемые ОГ. Подобный катализатор отличается тем, что зона, с которой сначала контактируют ОГ, содержит железозамещенные цеолиты, а последующая зона, с которой затем контактируют ОГ, содержит замещенный переходным металлом цеолит или оксид переходного металла, выбранный из группы, включающей пентаоксид ванадия, триоксид вольфрама, диоксид титана и их комбинации, либо содержит замещенный переходным металлом цеолит и оксид переходного металла, выбранный из группы, включающей пентаоксид ванадия, триоксид вольфрама, диоксид титана и их комбинации.
Катализаторы подобного типа обладают плохими начальными рабочими характеристиками, т.е. низкой каталитической активностью в начальный период работы двигателя, когда его ОГ имеют температуру ниже начальной рабочей температуры катализатора, прежде всего имеют температуру ниже 300°C. Помимо этого степень превращения NOx на СКВ-катализаторах, состоящих преимущественно из цеолитных соединений, ухудшается при наличии остатков несгоревших углеводородов в нейтрализуемых ОГ.
В основу настоящего изобретения была положена задача разработать основанную на СКВ-технологии систему снижения токсичности ОГ (способ и устройство) для снижения содержания оксидов азота в содержащих еще несгоревшие углеводороды ОГ дизельных двигателей, которая обладала бы хорошими начальными рабочими характеристиками при низких температурах и одновременно высокой производительностью по превращению оксидов азота в максимально широком интервале температур. Такая система снижения токсичности ОГ не должна содержать токсикологически опасных компонентов, таких как ванадий, и помимо этого должна быть рентабельной.
Указанная задача решается с помощью способа снижения токсичности содержащих оксиды азота и углеводороды ОГ дизельных двигателей, заключающегося в том, что (а) из не относящегося к выпускному тракту источника в содержащий оксиды азота и углеводороды поток ОГ добавляют аммиак или разлагающееся до него соединение, (б) содержащий оксиды азота, углеводороды и аммиак или разлагающееся до него соединение поток ОГ пропускают над первым, расположенным с входной стороны СКВ-катализатором, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и при этом по меньшей мере частично окисляет содержащиеся в ОГ углеводороды, и (в) выходящие со стадии (б) ОГ пропускают над вторым, расположенным с выходной стороны СКВ-катализатором, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и одновременно накапливает избыточный аммиак. Для осуществления предлагаемого в изобретении способа предлагается устройство для снижения токсичности ОГ, предназначенное для снижения содержания оксидов азота в ОГ работающих на обедненных смесях ДВС и содержащее в комбинации между собой расположенные в указанной последовательности (1) устройство для добавления аммиака или разлагающегося до него соединения из не относящегося к выпускному тракту источника в содержащий оксиды азота поток ОГ, а также источник аммиака или разлагающегося до него соединения, (2) первый СКВ-катализатор, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и не содержит ни ванадиевых, ни цеолитных соединений, и (3) второй, безванадиевый СКВ-катализатор, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и содержит медьзамещенное (Cu-замещенное) цеолитное соединение.
Предлагаемая в изобретении система снижения токсичности ОГ (способ и устройство) обеспечивает возможность эффективного снижения содержания оксидов азота даже в содержащих углеводороды ОГ в широком интервале температур от 150 до 500°C (в так называемом "рабочем интервале"). Такая система по сравнению с СКВ-системами полностью на основе цеолитов, например, по сравнению с системами, описанными в WO 2008/006427 или EP 0393905, отличается, с одной стороны, значительным стоимостным преимуществом, а с другой стороны, улучшенными начальными рабочими характеристиками в интервале низких температур ниже 300°C. При этом в предлагаемой в изобретении системе не используются ванадиевые соединения, применение которых токсикологически опасно.
Согласно данным, полученным авторами настоящего изобретения, улучшение начальных рабочих характеристик обусловлено тем, что в качестве первого СКВ-катализатора используют каталитическую композицию, способную по меньшей мере частично окислять содержащиеся в ОГ углеводороды без их накапливания в больших количествах. По наблюдениям, эффективное компропорционирование оксидов азота аммиаком на безванадиевых катализаторах согласно уровню техники не происходит, пока ОГ содержат углеводороды. Особо ярко выраженный характер подобное ухудшение начальных рабочих характеристик при нейтрализации содержащих углеводороды ОГ носит при применении цеолитсодержащих СКВ-катализаторов. В таких катализаторах происходит накапливание углеводородов в пористом скелете цеолитных соединений. Полагают, что такие накопленные углеводороды по меньшей мере частично блокируют активные в протекающей с участием аммиака СКВ-реакции реакционные центры в катализаторе, что препятствует компропорционированию оксидов азота аммиаком.
При создании изобретения неожиданно было установлено далее, что предлагаемое в изобретении устройство позволяет согласовывать параметры дозирования аммиака, соответственно разлагающегося до него соединения с динамическим изменением режимов работы двигателя автомобиля. Полагают, что отвечающее текущим потребностям дозирование восстановителя удается обеспечить лишь благодаря предлагаемому в изобретении использованию расположенного с входной стороны безцеолитного и безванадиевого первого СКВ-катализатора, активного в интервале температур от 300 до 500°C, в комбинации с расположенным после него, вторым СКВ-катализатором, который проявляет максимум своей активности в интервале температур от 150 до 400°C и который, кроме того, способен накапливать избыточный аммиак: благодаря улучшенным начальным рабочим характеристикам первый, расположенный с входной стороны СКВ-катализатор исключительно гибко реагирует на изменяющееся содержание оксидов азота и восстановителя и без задержки способствует взаимодействию поступающих оксидов азота с имеющимся в распоряжении аммиаком. Последующий же, активный при низких температурах катализатор, способный накапливать аммиак в определенном количестве, обладает буферизующим действием в отношении кратковременного дозирования аммиака в избытке или недостатке, которое возможно при согласовании дозируемого количества восстановителя с изменениями режимов работы двигателя. Подобное буферизующее действие обеспечивается, с одной стороны, за счет накопления дозированного в избытке аммиака в цеолите, а с другой стороны, за счет высвобождения аммиака в возможно недостающем количестве из цеолитного накопителя. Поскольку расположенный с входной стороны СКВ-катализатор согласно изобретению окисляет присутствующие в ОГ углеводороды, предотвращается эпизодическое блокирование последующего цеолитсодержащего СКВ-катализатора или задержка в начале превращения на нем оксидов азота в ходе протекающей с участием аммиака СКВ-реакции вследствие накапливания им углеводородов.
Подобный неожиданный эффект достигается благодаря последовательному расположению двух СКВ-катализаторов в устройстве для снижения токсичности ОГ, заявленном в п.7 формулы изобретения. При этом каждый из обоих СКВ-катализаторов может присутствовать в виде покрытия на инертном носителе. С учетом ограниченного монтажного пространства, имеющегося в автомобиле, первый и второй СКВ-катализаторы предпочтительно наносить в виде покрытия на один и тот же носитель. При этом в предпочтительном варианте первый СКВ-катализатор образует расположенную с входной стороны зону с покрытием на носителе, а второй СКВ-катализатор образует расположенную с выходной стороны зону с покрытием на носителе. Выполненное по подобному предпочтительному варианту предлагаемое в изобретении устройство для снижения токсичности ОГ схематично показано на фиг.1.
Соотношение между длинами обеих зон с каталитическими покрытиями определяется при этом удалением окончательного, подразделенного на зоны катализатора от двигателя и тем самым преобладающей в среднем при обычной эксплуатации двигателя температуры ОГ в предлагаемом в изобретении устройстве. При этом длина расположенной с выходной стороны зоны с покрытием из цеолитсодержащего катализатора не должна быть меньше некоторой критической длины во избежание слишком значительного ограничения описанного выше буферизующего действия в отношении прорывов аммиака, с одной стороны, и прорывов оксидов азота, с другой стороны. При выборе длины передней зоны важную роль играет содержание углеводородов в ОГ по ходу их потока перед предлагаемым в изобретении устройством. Соотношение между длинами расположенной с входной стороны зоны с каталитическим покрытием и расположенной с выходной стороны зоны с каталитическим покрытием предпочтительно должно составлять от 0,1 до 3, особенно предпочтительно от 0,5 до 2. В том случае, когда преобладающая в среднем температура ОГ составляет около 300°C и когда ОГ не содержат углеводороды в экстремально высоких количествах, соотношение между длинами расположенной с входной стороны зоны с каталитическим покрытием и расположенной с выходной стороны зоны с каталитическим покрытием в наиболее предпочтительном варианте составляет от 0,8 до 1,5.
В качестве первого, расположенного с входной стороны СКВ-катализатора следует использовать каталитическую композицию, которая эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и обладает свойством по меньшей мере частично окислять углеводороды и которая при этом не содержит ни ванадиевые, ни цеолитные соединения. В предпочтительных вариантах выполнения этого первого СКВ-катализатора он содержит оксид вольфрама WO3 и гомогенный смешанный оксид церия и циркония (Се, Zr)O2, при этом содержание оксида вольфрама WO3 может составлять от 5 до 25 мас.%, а содержание гомогенного смешанного оксида церия и циркония (Се, Zr)O2 может составлять от 50 до 95 мас.%, в каждом случае в пересчете на общее количество первого СКВ-катализатора без учета массы инертного носителя. В предпочтительном варианте содержание оксида вольфрама WO3 в первом СКВ-катализаторе составляет от 7 до 17 мас.%, особенно предпочтительно от 10 до 15 мас.%, в пересчете на общее количество первого СКВ-катализатора без учета массы инертного носителя. Содержание же гомогенного смешанного оксида церия и циркония (Се, Zr)O2 в первом СКВ-катализаторе в предпочтительном варианте составляет от 60 до 90 мас.%, особенно предпочтительно от 70 до 90 мас.%, в пересчете на общее количество первого СКВ-катализатора без учета массы инертного носителя. Пригодны гомогенные смешанные оксиды церия и циркония (Ce, Zr)O2, в которых массовое соотношение между диоксидом церия CeO2 и диоксидом циркония ZrO2 составляет от 0,43 до 2,33. Более предпочтительно использовать смешанные оксиды, в которых массовое соотношение между CeO2 и ZrO2 составляет от 0,67 до 1,5. Особенно предпочтительны твердые растворы из диоксида церия и диоксида циркония с соотношением между CeO2 и ZrO2 от 0,8 до 1,2.
В качестве второго, расположенного с выходной стороны СКВ-катализатора используют каталитическую композицию, которая эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и содержит медьзамещенный (Cu-замещенный) цеолит. Наряду с медью в качестве замещающего металла можно также использовать серебро (Ag), золото (Au) или платину (Pt), однако предпочтительна медь. Содержание замещающего металла может составлять от 2 до 10 мас.% в пересчете на общее количество используемого цеолитного соединения. В предпочтительном варианте используемое цеолитное соединение содержит медь в количестве от 3 до 8 мас.%, особенно предпочтительно от 4 до 6 мас.%, при этом пригодное для применения цеолитное соединение предпочтительно выбирать из группы, включающей бета-цеолит (β-цеолит), цеолит типа Y, ZSM-5, ZSM-20, ферриерит и морденит.
Описанное выше устройство для снижения токсичности ОГ пригодно для осуществления способа снижения токсичности содержащих оксиды азота и углеводороды ОГ дизельных двигателей, заявленного в п.1 формулы изобретения. Такой предлагаемый в изобретении способ заключается в выполнении трех основных стадий, а именно:
(а) из не относящегося к выпускному тракту источника в содержащий оксиды азота и углеводороды поток ОГ добавляют аммиак или разлагающееся до него соединение,
(б) содержащий оксиды азота, углеводороды и аммиак или разлагающееся до него соединение поток ОГ пропускают над первым, расположенным с входной стороны СКВ-катализатором, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и при этом по меньшей мере частично окисляет содержащиеся в ОГ углеводороды, и
(в) выходящие со стадии (б) ОГ пропускают над вторым, расположенным с выходной стороны СКВ-катализатором, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и одновременно накапливает избыточный аммиак.
Не относящийся к выпускному тракту источник аммиака или разлагающегося до него соединения может представлять собой, например, размещенный в автомобиле и заполненный аммиаком баллон высокого давления. Подобный источник аммиака или разлагающегося до него соединения равным образом может представлять собой емкость с водным раствором мочевины или раствором карбамата аммония либо иные известные из уровня техники сравнимые устройства.
При осуществлении предлагаемого в изобретении способа высокие показатели степени превращения оксидов азота прежде всего при работе двигателя в режимах, для которых характерно образование более холодных ОГ, достигаются в том случае, когда содержащий оксиды азота и углеводороды поток ОГ пропускают перед добавлением в него аммиака или разлагающегося до пего соединения на стадии (а) над катализатором окисления, который окисляет по меньшей мере часть содержащегося в оксидах азота NO до NO2. При изменении при этом соотношения NO2/NOx в ОГ таким образом, что оно в потоке ОГ перед его пропусканием на стадии (б) над первым, расположенным с входной стороны СКВ-катализатором составляет от 0,3 до 0,7, степень превращения оксидов азота достигает особо высоких значений. Наиболее же высоких значений степень превращения оксидов азота достигает в том случае, когда соотношение NO2/NOx в ОГ перед их пропусканием на стадии (б) над первым, расположенным с входной стороны СКВ-катализатором устанавливают на величину в пределах от 0,4 до 0,6, соответственно на 0,5.
При наличии предшествующего катализатора окисления предлагаемая в изобретении система снижения токсичности ОГ также проявляет свои неожиданные преимущества, которые уже рассмотрены выше и которые обусловлены особой комбинацией отличительных особенностей предлагаемого в изобретении способа, соответственно устройства. Сказанное относится прежде всего к периоду пуска холодного дизельного двигателя и его прогрева, а также к его работе в режиме холостого хода и принудительного холостого хода, когда несгоревшие углеводороды попадают из двигателя в систему выпуска ОГ в столь большом количестве, что их полное превращение на предшествующем катализаторе окисления невозможно.
Помимо этого аммиак или разлагающееся до него соединение предпочтительно добавлять на стадии (а) в поток ОГ в таком количестве, при котором соотношение NH3/NOx в потоке ОГ перед его пропусканием на стадии (б) над первым, расположенным с входной стороны СКВ-катализатором составляет от 0,8 до 1,2.
Поток ОГ после его пропускания на стадии (в) над вторым, расположенным с выходной стороны СКВ-катализатором при необходимости можно затем пропускать над катализатором окисления, который селективно катализирует окисление аммиака до азота. Подобный катализатор окисления, иногда называемый также задерживающим аммиак катализатором, в предпочтительных вариантах расположен на носителе, отфильтровывающем частицы сажи.
Ниже изобретение более подробно рассмотрено на некоторых примерах и сравнительных примерах со ссылкой на прилагаемые к описанию графические материалы, на которых, в частности, показано:
на фиг.1 - схематичный вид выполненного по предпочтительному варианту предлагаемого в изобретении устройства для снижения токсичности ОГ с устройством (1) для добавления аммиака или разлагающегося до него соединения в поток ОГ (направление которого обозначено стрелкой "→") из не относящегося к выпускному тракту источника (2), с первым СКВ-катализатором (3), который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C, и со вторым СКВ-катализатором (4), который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C,
на фиг.2 - график изменения степени превращения оксидов азота в содержащих углеводороды ОГ в каталитически активных устройствах со свежеприготовленными катализаторами, имеющих расположенную с входной стороны катализаторную зону с первым СКВ-катализатором и расположенную с выходной стороны катализаторную зону со вторым СКВ-катализатором, при этом соотношение между длинами катализ аторных зон равно 1, через VK1 обозначено известное устройство с катализатором на основе V2O3/TiO2/WO3 перед катализатором на основе Cu-замещенного цеолита, через VK2 обозначено известное устройство с катализатором на основе Fe-замещенного цеолита перед катализатором на основе Cu-замещенного цеолита, через K1 обозначено предлагаемое в изобретении каталитически активное устройство с катализатором на основе WO3/(Се, Zr)O2 перед катализатором на основе Cu-замещенного цеолита,
на фиг.3 - график, отражающий влияние соотношения между длинами катализаторных зон на степень превращения оксидов азота в предлагаемых в изобретении каталитически активных устройствах, имеющих расположенную с входной стороны катализаторную зону 1 с первым СКВ-катализатором и расположенную с выходной стороны катализаторную зону 2 со вторым СКВ-катализатором, при этом через K1 обозначено устройство с соотношением в нем между длинами зон 1 и 2, равным 1, и со свежеприготовленными катализаторами, через K2 обозначено устройство с соотношением в нем между длинами зон 1 и 2, равным 0,5, и со свежеприготовленными катализаторами, через КГ обозначено устройство с соотношением в нем между длинами зон 1 и 2, равным 1, и с подвергнутыми предварительной термообработке катализаторами, через K2' обозначено устройство с соотношением в нем между длинами зон 1 и 2, равным 0,5, и с подвергнутыми предварительной термообработке катализаторами, и
на фиг.4 - график изменения температуры перед и за катализатором при целенаправленном сжигании углеводородов на СКВ-катализаторе, содержащем Cu-замещенный цеолит.
Приготовление исследуемых катализаторов
Одной из важных отличительных особенностей предлагаемой в изобретении системы снижения токсичности ОГ является последовательное в направлении потока ОГ расположение двух СКВ-катализаторов, которые особо эффективно катализируют СКВ-реакцию в разных интервалах температур. В предпочтительных вариантах выполнения предлагаемой в изобретении системы снижения токсичности ОГ оба последовательно расположенных СКВ-катализатора выполнены в виде покрытий, нанесенных на один и тот же носитель с получением в результате единственного каталитически активного устройства с двумя катализаторными зонами.
В представленных ниже примерах и сравнительных примерах изготавливают подобные каталитически активные устройства с двумя катализаторными зонами. Во всех приведенных ниже сравнительных примерах и примерах такие устройства изготавливают следующим образом.
На носитель в виде инертного керамического сотового элемента с объемом 0,04 л, с длиной 76,2 мм и с плотностью расположения каналов 62 канала на см2 (толщина стенок каналов 0,17 мм) обычным методом погружения наносят содержащее первый СКВ-катализатор покрытие, доходящее до заданной точки вдоль продольной протяженности инертного носителя. Затем на еще не имеющую покрытия часть сотового элемента наносят содержащее второй СКВ-катализатор покрытие с получением в результате двух катализаторных зон, которые примыкают одна к другой, но взаимно, не перекрываются.
Ниже указаны компоненты, содержащиеся в покрытиях обеих катализаторных зон, и соотношение между их длинами.
Сравнительный пример 1
Описанным выше способом изготавливали устройство VK1 с двумя следующими катализаторными зонами:
Покрытие, содержащее первый СКВ-катализатор: зона 1 | Имеющийся в продаже СКВ-катализатор на основе V2O5/TiO2/WO3, содержащий V2O5 в количестве 1,75 мас.%. Удельная масса покрытия: 280 г/л (в пересчете на объем носителя в части, где расположена зона 1) |
Покрытие, содержащее второй СКВ-катализатор: зона 2 | Медьзамещенное β-цеолитное соединение с содержанием Cu 5 мас.% в пересчете на общую массу замещенного цеолитного соединения. Удельная масса покрытия: 175 г/л (в пересчете на объем носителя в части, где расположена зона 2) |
Соотношение между длиной зоны 1 и длиной зоны 2 (зона 1 расположена с входной стороны, зона 2 расположена с выходной стороны) | 1 |
Сравнительный пример 2
Описанным выше способом изготавливали устройство VK2 с двумя следующими катализаторными зонами:
Покрытие, содержащее первый СКВ-катализатор: зона 1 | Железозамещенный цеолит ZSM5 с содержанием Fe 3 мас.% в пересчете на общую массу замещенного цеолитного соединения. Удельная масса покрытия: 160 г/л (в пересчете на объем носителя в части, где расположена зона 1) |
Покрытие, содержащее второй СКВ-катализатор: зона 2 | Медьзамещенное β-цеолитное соединение с содержанием Cu 5 мас.% в пересчете на общую массу замещенного цеолитного соединения. Удельная масса покрытия: 175 г/л (в пересчете на объем носителя в части, где расположена зона 2) |
Соотношение между длиной зоны 1 и длиной зоны 2 (зона 1 расположена с входной стороны, зона 2 расположена с выходной стороны) | 1 |
Пример 1
Изготавливали четыре каталитически активных устройства с катализаторными зонами, покрытия в которых имели следующий состав:
Покрытие, содержащее первый СКВ-катализатор: зона 1 |
WO3/(Ce, Zr)O2 Удельная масса покрытия: 200 г/л (в пересчете на объем носителя в части, где расположена зона 1) |
Покрытие, содержащее второй СКВ-катализатор: зона 2 |
Медьзамещенное β-цеолитпое соединение с содержанием Cu 5 мас.% в пересчете на общую массу замещенного цеолитного соединения. Удельная масса покрытия: 175 г/л (в пересчете на объем носителя в части, где расположена зона 2) |
Для приготовления смешанного оксида WO3/(Ce, Zr)O2 для зоны 1 гомогенный смешанный оксид церия и циркония (изготовитель: MEL, удельная поверхность, определяемая методом Брунауэра-Эммета-Теллера по адсорбции азота (БЭТ-поверхность), 82 м2/г) с содержанием диоксида церия 48 мас.% в пересчете на общее количество смеси активировали для СКВ-реакции путем введения вольфрама. С этой целью сначала определяли то количество воды, которое способен впитать смешанный оксид церия и циркония без утраты материалом своей сыпучести. В соответствующем количестве воды растворяли метавольфрамат аммония в количестве, которое соответствовало 10%-ному по массе количеству триоксида вольфрама в пересчете на общее количество приготавливаемого активированного смешанного оксида церия и циркония. Гомогенный смешанный оксид церия и циркония пропитывали приготовленным таким путем вольфрамсодержавшим раствором до заполнения пор и затем для термической фиксации вольфрама в течение 2 ч выдерживали в печи при 500°C в воздушной атмосфере. Полученный таким путем материал суспендировали в воде, размалывали и для образования катализаторной зоны соответствующей длины наносили на керамический сотовый элемент.
Изготовленные таким путем устройства различались между собой соотношением между длинами катализаторных зон:
Условное обозначение устройств | Соотношение между длиной зоны 1 и длиной зоны 2 (зона 1 расположена с входной стороны, зона 2 расположена с выходной стороны) |
K1; K1' | 1 |
K2; K2' | 0,5 |
Устройства K1 и K2 испытывали в свежеприготовленном состоянии катализаторов.
Устройства K1' и K2' перед исследованием каталитических свойств подвергали предварительной термообработке, для чего их в течение 48 ч выдерживали в проточной печи при температуре 650°C в атмосфере азота с 10%-ным по объему содержанием кислорода и 10%-ным по объему содержанием водяного пара.
Экспериментальные исследования по определению степени превращения оксидов азота
Все изготовленные в сравнительных примерах 1 и 2 и в примере 1 устройства для определения степени превращения в них оксидов азота испытывали в лабораторной системе выпуска модельных ОГ. Испытания при этом проводили при следующих условиях:
Состав модельного газа | |
NO [об.част./млн] | 500 |
NH3 [об.част./млн] | 450 |
O2 [об.част./млн] | 5 |
H2O [об.част./млн] | 1,3 |
HC (СО1) [об.част./млн] | 200 |
CO [об.част./млн] | 200 |
N2 | остальное |
Общие условия испытаний | |
Среднечасовая скорость подачи газа (СЧСПГ) [ч-1] | 30000 |
Температура [°C] | 500; 450; 400; 350; 300; 250; 200; 175; 150 |
Кондиционирование перед началом измерений | атмосфера модельного газа, 600°C, несколько минут |
В ходе измерений пригодными методами анализа определяли концентрацию оксидов азота в модельном газе за катализатором. На основании данных об известном содержании оксидов азота в ОГ, которое проверяли в начале каждого цикла испытаний путем анализа состава ОГ перед катализатором, и на основании данных об измеренном содержании оксидов азота в ОГ за катализатором следующим образом рассчитывали степень превращения оксидов азота на катализаторе при каждом значении температуры, при которой проводили измерение:
где cвх/вых(NOx)= cвх/вых(NO)+ cвх/вых(NO2)+ cвх/вых(N2O)…
Для оценки СКВ-активности исследовавшихся материалов строили графики зависимости полученных значений степени превращения оксидов азота
от измеренной перед катализатором температуры.
На фиг.2 в графическом виде представлены результаты испытания известных из уровня техники устройств VK1 и VK2 в сравнении с предлагаемым в изобретении устройством K1 с катализаторами в свежеприготовленном состоянии. У всех этих устройств соотношение между длинами первой, расположенной с входной стороны катализаторной зоны и второй, расположенной с выходной стороны катализаторной зоны равнялось 1.
Устройство VK2 с исключительно цеолитными СКВ-катализаторами, изготовленное в соответствии с примером 2 в публикации WO 2008/006427, характеризуется наинизшей степенью превращения NOx. Предлагаемое в изобретении устройство K1 обладает примерно такой же характеристикой эффективности превращения в нем NOx, что и устройство VK1, но при этом не содержит в первой СКВ-катализаторной зоне токсикологически опасные ванадиевые соединения.
Влияние соотношения между длинами катализаторных зон на характеристики превращения NOx исследовали в тех же экспериментальных условиях, но с использованием модельного газа без углеводородов и моноксида углерода. Результаты испытания предлагаемых в изобретении устройств с катализаторами в свежеприготовленном состоянии и в состоянии после предварительной термообработки в графическом виде представлены на фиг.3. У устройства K1 (с катализаторами в свежеприготовленном состоянии), соответственно K1' (с катализаторами в состоянии после предварительной термообработки) соотношение между длинами катализаторных зон равнялось 1. У устройства K2 (с катализаторами в свежеприготовленном состоянии), соответственно K2' (с катализаторами в состоянии после предварительной термообработки) длина расположенной с выходной стороны зоны со вторым СКВ-катализатором была вдвое больше длины расположенной с входной стороны зоны с первым СКВ-катализатором (соотношение между длинами катализаторпых зон равняется 0,5).
В устройствах с катализаторами в свежеприготовленном состоянии изменение длины катализаторпых зон не оказывает существенного влияния на степень превращения оксидов азота в интервале низких температур до 250°C. При более же высоких температурах степень превращения оксидов азота в устройстве K2 (соотношение между длинами катализаторных зон составляет 0,5) несколько ниже и слегка уменьшается при температурах выше 400°C вследствие переокисления аммиака до N2O в расположенной с выходной стороны и содержащей Cu-замещенный цеолит зоне.
По результатам испытания устройств с катализаторами в состоянии после предварительной термообработки устройство K2' обладает явными преимуществами в интервале низких температур до 300°C. Выше этой температуры ситуация меняется на обратную.
Идеальное соотношение между длинами катализаторных зон, соответственно соотношение между объемами первого и второго СКВ-катализаторов в решающей степени зависит от условий целевого применения. При применении в преимущественно низкотемпературных условиях (Т<300°C) соотношение между длинами катализаторных зон (соотношение между объемами первого и второго СКВ-катализаторов) предпочтительно смещать в сторону увеличения расположенной с выходной стороны зоны до значений менее 1. При применении же в высокотемпературных условиях расположенный с входной стороны СКВ-катализатор следует выполнять больших размеров, чем расположенный с выходной стороны, второй СКВ-катализатор.
Экспериментальные исследования способности второго, расположенного с выходной стороны СКВ-катализатора катализировать окисление углеводородов (HC)
Способность второго, расположенного с выходной стороны СКВ-катализатора окислять углеводороды исследовали на не подразделенном на зоны устройстве, а на устройстве VK3 с единственным катализатором. Для изготовления устройства VK3 на инертный керамический сотовый элемент обычным методом погружения наносили покрытие, содержавшее медьзамещенное β-цеолитное соединение с содержанием Cu 5 мас.% в пересчете на общую массу замещенного цеолитного соединения. Сотовый элемент имел объем 0,04 л, длину 76,2 мм и плотность расположения каналов 62 капала на см2.
Толщина стенок каналов составляла 0,17 мм.
Для возможности оценки влияния неполного окисления углеводородов па первом СКВ-катализаторе и влияния последствий сгорания накопленных в цеолите углеводородов на второй катализатор исследовали обусловленную подобным сгоранием углеводородов экзотерму. С этой целью катализатор в устройстве VK3 сначала целенаправленно "насыщали" содержащими углеводороды ОГ при температуре 100°C. Содержавшиеся в ОГ углеводороды накапливались при этом в цеолитной структуре. После этого насыщенный углеводородами катализатор устройства VK3 в течение 10 мин предварительно кондиционировали при 100°C в атмосфере модельного газа, содержавшего О2 в количестве 10 об.%, CO2 в количестве 10 об.% и H2O в количестве 5 об.% в азоте, и повышали температуру со 100 до 400°C. На фиг.4 показан график изменения температуры перед и за катализатором устройства VK3. Характер изменения температуры в устройстве с катализатором свидетельствует о том, что процесс сгорания углеводородов начинается при температуре примерно 260°C перед катализатором. Обусловленная этим экзотерма приводит к повышению температуры в устройстве с катализатором до уровня свыше 800°C. Столь высокая термическая нагрузка обычно приводит к повреждению скелетной структуры цеолита, и поэтому вследствие подобного сгорания углеводородов на расположенном с выходной стороны СКВ-катализаторе следует ожидать явного снижения его СКВ-активности.
Сказанное означает, что длительная стойкость системы снижения токсичности ОГ с двумя СКВ-катализаторами при наличии углеводородов в ОГ в решающей степени зависит также от того, насколько эффективно содержащиеся в ОГ углеводороды могут окисляться на первом, расположенном с входной стороны СКВ-катализаторе. Расположенный в предлагаемой в изобретении системе предпочтительно с входной стороны СКВ-катализатор обладает хорошей, сравнимой с вацадийсодержащим СКВ-катализатором активностью по окислению углеводородов, но при этом не содержит токсикологически опасные соединения. Полагают, что в соответствии с этим предлагаемая в изобретении система дополнительно к явно лучшим по сравнению с известными из уровня техники полностью цеолитными системами начальными рабочими характеристиками в СКВ-реакции обладает также лучшей длительной стойкостью.
Claims (17)
1. Способ снижения токсичности содержащих оксиды азота и углеводороды отработавших газов (ОГ) дизельных двигателей, заключающийся в том, что
(а) из не относящегося к выпускному тракту источника в содержащий оксиды азота и углеводороды поток ОГ добавляют аммиак или разлагающееся до него соединение,
(б) содержащий оксиды азота, углеводороды и аммиак или разлагающееся до него соединение поток ОГ пропускают над первым, расположенным с входной стороны катализатором селективного каталитического восстановления (СКВ-катализатором), который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и содержит оксид вольфрама WO3 и гомогенный смешанный оксид церия и циркония (Ce, Zr)O2, при этом по меньшей мере частично окисляет содержащиеся в ОГ углеводороды, и
(в) выходящие со стадии (б) ОГ пропускают над вторым, расположенным с выходной стороны СКВ-катализатором, содержащим медьзамещенное (Cu-замещенное) цеолитное соединение, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и одновременно накапливает избыточный аммиак.
(а) из не относящегося к выпускному тракту источника в содержащий оксиды азота и углеводороды поток ОГ добавляют аммиак или разлагающееся до него соединение,
(б) содержащий оксиды азота, углеводороды и аммиак или разлагающееся до него соединение поток ОГ пропускают над первым, расположенным с входной стороны катализатором селективного каталитического восстановления (СКВ-катализатором), который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и содержит оксид вольфрама WO3 и гомогенный смешанный оксид церия и циркония (Ce, Zr)O2, при этом по меньшей мере частично окисляет содержащиеся в ОГ углеводороды, и
(в) выходящие со стадии (б) ОГ пропускают над вторым, расположенным с выходной стороны СКВ-катализатором, содержащим медьзамещенное (Cu-замещенное) цеолитное соединение, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и одновременно накапливает избыточный аммиак.
2. Способ по п.1, отличающийся тем, что содержащий оксиды азота и углеводороды поток ОГ перед добавлением в него аммиака или разлагающегося до него соединения на стадии (а) пропускают над катализатором окисления, который катализирует окисление по меньшей мере части содержащегося в оксидах азота NO до NO2.
3. Способ по п.2, отличающийся тем, что соотношение NO2/NOx в ОГ изменяют таким образом, что оно в потоке ОГ перед его пропусканием на стадии (б) над первым, расположенным с входной стороны СКВ-катализатором составляет от 0,3 до 0,7.
4. Способ по п.1, отличающийся тем, что аммиак или разлагающееся до него соединение добавляют на стадии (а) в поток ОГ в таком количестве, при котором соотношение NH3/NOx в потоке ОГ перед его пропусканием на стадии (б) над первым, расположенным с входной стороны СКВ-катализатором составляет от 0,8 до 1,2.
5. Способ по п.4, отличающийся тем, что поток ОГ после его пропускания на стадии (в) над вторым, расположенным с выходной стороны СКВ-катализатором пропускают над катализатором окисления, который селективно катализирует окисление аммиака до азота.
6. Способ по п.5, отличающийся тем, что катализатор окисления располагают на носителе, отфильтровывающем частицы сажи.
7. Устройство для снижения токсичности отработавших газов (ОГ), предназначенное для уменьшения содержания оксидов азота в ОГ работающих на обедненных смесях двигателей внутреннего сгорания и содержащее в комбинации между собой расположенные в указанной последовательности
(1) устройство для добавления аммиака или разлагающегося до него соединения из не относящегося к выпускному тракту источника в содержащий оксиды азота поток ОГ, а также источник аммиака или разлагающегося до него соединения,
(2) первый катализатор селективного каталитического восстановления (СКВ-катализатор), который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и содержит оксид вольфрама WO3 и гомогенный смешанный оксид церия и циркония (Се, Zr)O2, и
(3) второй, безванадиевый СКВ-катализатор, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и содержит медьзамещенное (Cu-замещенное) цеолитное соединение.
(1) устройство для добавления аммиака или разлагающегося до него соединения из не относящегося к выпускному тракту источника в содержащий оксиды азота поток ОГ, а также источник аммиака или разлагающегося до него соединения,
(2) первый катализатор селективного каталитического восстановления (СКВ-катализатор), который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 300 до 500°C и содержит оксид вольфрама WO3 и гомогенный смешанный оксид церия и циркония (Се, Zr)O2, и
(3) второй, безванадиевый СКВ-катализатор, который эффективно катализирует компропорционирование оксидов азота аммиаком в интервале температур от 150 до 400°C и содержит медьзамещенное (Cu-замещенное) цеолитное соединение.
8. Устройство для снижения токсичности ОГ по п.7, отличающееся тем, что каждый из обоих СКВ-катализаторов присутствует в виде покрытия на инертном носителе.
9. Устройство для снижения токсичности ОГ по п.7, отличающееся тем, что первый и второй СКВ-катализаторы нанесены в виде покрытия на один и тот же носитель.
10. Устройство для снижения токсичности ОГ по п.9, отличающееся тем, что первый СКВ-катализатор образует расположенную с входной стороны зону с покрытием на носителе, а второй СКВ-катализатор образует расположенную с выходной стороны зону с покрытием на носителе.
11. Устройство для снижения токсичности ОГ по п.10, отличающееся тем, что соотношение между длинами расположенной с входной стороны зоны с каталитическим покрытием и расположенной с выходной стороны зоны с каталитическим покрытием составляет от 0,1 до 3.
12. Устройство для снижения токсичности ОГ по п.7, отличающееся тем, что первый СКВ-катализатор содержит оксид вольфрама WO3 и гомогенный смешанный оксид церия и циркония (Се, Zr)O2.
13. Устройство для снижения токсичности ОГ по п.12, отличающееся тем, что содержание оксида вольфрама WO3 в первом СКВ-катализаторе составляет от 5 до 25 мас.% в пересчете на общее количество первого СКВ-катализатора без учета массы инертного носителя.
14. Устройство для снижения токсичности ОГ по п.12, отличающееся тем, что содержание гомогенного смешанного оксида церия и циркония (Се, Zr)O2 в первом СКВ-катализаторе составляет от 50 до 95 мас.% в пересчете на общее количество первого СКВ-катализатора без учета массы инертного носителя.
15. Устройство для снижения токсичности ОГ по п.14, отличающееся тем, что массовое соотношение между диоксидом церия (CeO2) и диоксидом циркония (ZrO2) в гомогенном смешанном оксиде церия и циркония (Се, Zr)O2 составляет от 0,43 до 2,33.
16. Устройство для снижения токсичности ОГ по п.7, отличающееся тем, что второй СКВ-катализатор содержит медьзамещенное (Cu-замещенное) цеолитное соединение с содержанием Cu от 2 до 10 мас.% в пересчете на общую массу цеолитного соединения.
17. Устройство для снижения токсичности ОГ по п.15, отличающееся тем, что цеолитное соединение выбрано из группы, включающей бета-цеолит (β-цеолит), цеолит типа Y, ZSM-5, ZSM-20, фериерит и морденит.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPEP08007163 | 2008-04-11 | ||
EP08007163A EP2116293B1 (de) | 2008-04-11 | 2008-04-11 | Abgasreinigungssystem zur Behandlung von Motorenabgasen mittels SCR-Katalysator |
PCT/EP2009/001997 WO2009124643A1 (de) | 2008-04-11 | 2009-03-18 | Abgasreinigungssystem zur behandlung von motorenabgasen mittels scr-katalysator |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2010145470A RU2010145470A (ru) | 2012-05-20 |
RU2497577C2 true RU2497577C2 (ru) | 2013-11-10 |
Family
ID=39726930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2010145470/04A RU2497577C2 (ru) | 2008-04-11 | 2009-03-18 | Система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления |
Country Status (10)
Country | Link |
---|---|
US (1) | US8863507B2 (ru) |
EP (1) | EP2116293B1 (ru) |
JP (1) | JP5528426B2 (ru) |
KR (1) | KR101542754B1 (ru) |
CN (1) | CN101998878B (ru) |
AT (1) | ATE460973T1 (ru) |
BR (1) | BRPI0911258A2 (ru) |
DE (1) | DE502008000454D1 (ru) |
RU (1) | RU2497577C2 (ru) |
WO (1) | WO2009124643A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2664905C2 (ru) * | 2013-12-30 | 2018-08-23 | Джонсон Мэтти Паблик Лимитед Компани | Способы селективного каталитического восстановления с использованием легированных оксидов церия(iv) |
RU2666722C1 (ru) * | 2013-11-25 | 2018-09-12 | Умикоре Аг Унд Ко. Кг | Катализатор селективного каталитического восстановления |
RU2698817C2 (ru) * | 2014-08-15 | 2019-08-30 | Джонсон Мэтти Паблик Лимитед Компани | Зонированный катализатор для обработки отработавшего газа |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009141895A1 (ja) | 2008-05-20 | 2009-11-26 | イビデン株式会社 | 排ガス浄化装置 |
WO2009141875A1 (ja) * | 2008-05-20 | 2009-11-26 | イビデン株式会社 | ハニカム構造体 |
EP2335810B1 (de) * | 2009-12-11 | 2012-08-01 | Umicore AG & Co. KG | Selektive katalytische Reduktion von Stickoxiden im Abgas von Dieselmotoren |
CN102844112B (zh) | 2010-04-20 | 2015-05-13 | 尤米科尔股份公司及两合公司 | 用于在废气中选择性催化还原氮氧化物的新的混合氧化物 |
JP5715450B2 (ja) * | 2011-03-09 | 2015-05-07 | テイカ株式会社 | 窒素酸化物選択還元触媒とその製造方法 |
US8844267B2 (en) * | 2011-03-17 | 2014-09-30 | GM Global Technology Operations LLC | Method and system for controlling a nitrogen oxide (NOx) conversion efficiency monitor |
EP2590730B1 (en) * | 2011-05-31 | 2014-06-25 | Johnson Matthey Public Limited Company | Dual function catalytic filter |
WO2012168277A1 (de) | 2011-06-07 | 2012-12-13 | Umicore Ag & Co. Kg | Katalysator zur selektiven katalytischen reduktion von stickoxiden im abgas von dieselmotoren |
US8789356B2 (en) * | 2011-07-28 | 2014-07-29 | Johnson Matthey Public Limited Company | Zoned catalytic filters for treatment of exhaust gas |
GB2493987B (en) | 2011-08-26 | 2014-03-19 | Jc Bamford Excavators Ltd | An engine system |
DE102011085952A1 (de) * | 2011-11-08 | 2013-05-08 | Robert Bosch Gmbh | SCR-Katalysatorsystem und Verfahren zu seinem Betrieb |
GB201200783D0 (en) | 2011-12-12 | 2012-02-29 | Johnson Matthey Plc | Substrate monolith comprising SCR catalyst |
US9101877B2 (en) | 2012-02-13 | 2015-08-11 | Siemens Energy, Inc. | Selective catalytic reduction system and process for control of NOx emissions in a sulfur-containing gas stream |
JP2013241859A (ja) * | 2012-05-18 | 2013-12-05 | Isuzu Motors Ltd | 排気ガス浄化システム及び排気ガス浄化方法 |
US10512901B2 (en) * | 2013-03-14 | 2019-12-24 | Basf Corporation | Selective catalytic reduction catalyst system |
US9021794B2 (en) * | 2013-03-15 | 2015-05-05 | Cummins Intellectual Property, Inc. | Decomposition chamber |
US8904765B2 (en) * | 2013-04-19 | 2014-12-09 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Internal combustion engine |
US9517457B2 (en) | 2013-10-30 | 2016-12-13 | Cummins Inc. | Aftertreatment systems with reduced N2O generation |
US10335736B2 (en) | 2013-12-11 | 2019-07-02 | Cataler Corporation | Exhaust gas purification material |
WO2015087816A1 (ja) * | 2013-12-11 | 2015-06-18 | 株式会社キャタラー | 排ガス浄化材 |
US10850265B2 (en) | 2014-06-18 | 2020-12-01 | Basf Corporation | Molecular sieve catalyst compositions, catalytic composites, systems, and methods |
US9889437B2 (en) * | 2015-04-15 | 2018-02-13 | Basf Corporation | Isomorphously substituted catalyst |
US9764313B2 (en) | 2014-06-18 | 2017-09-19 | Basf Corporation | Molecular sieve catalyst compositions, catalyst composites, systems, and methods |
US10113462B2 (en) | 2015-04-24 | 2018-10-30 | Cummins Inc. | Advanced exhaust aftertreatment system architecture |
EP3281699A1 (de) | 2016-08-11 | 2018-02-14 | Umicore AG & Co. KG | Partikelfilter mit scr-aktiver beschichtung |
GB2555695A (en) * | 2016-08-25 | 2018-05-09 | Johnson Matthey Plc | Reduced sulfation impact on CU-SCRS |
EP3296009B1 (de) | 2016-09-20 | 2019-03-27 | Umicore AG & Co. KG | Partikelfilter mit scr-aktiver beschichtung |
GB201716063D0 (en) * | 2017-03-30 | 2017-11-15 | Johnson Matthey Plc | A catalyst for treating an exhaust gas, an exhaust system and a method |
GB2602770B (en) | 2017-06-06 | 2022-12-28 | Cummins Emission Solutions Inc | Systems and methods for mixing exhaust gases and reductant in an aftertreatment system |
DE102017006059A1 (de) * | 2017-06-27 | 2018-12-27 | Daimler Ag | Abgasanlage für einen Kraftwagen |
JP2019035360A (ja) * | 2017-08-14 | 2019-03-07 | いすゞ自動車株式会社 | 排気ガス浄化システム |
EP3498993A1 (de) * | 2017-12-15 | 2019-06-19 | Umicore Ag & Co. Kg | Kombination eines zeolithbasierten scr mit einem manganbasierten scr im bypass |
US11300030B2 (en) | 2018-07-06 | 2022-04-12 | Cummins Emission Solutions Inc. | Decomposition chamber for aftertreatment systems |
US12012885B2 (en) | 2018-07-24 | 2024-06-18 | Basf Corporation | SCR catalyst for the treatment of an exhaust gas of a diesel engine |
US10808588B2 (en) * | 2019-01-31 | 2020-10-20 | Hyundai Motor Company | After treatment system and after treatment method for lean-burn engine |
GB2609163B (en) | 2020-05-08 | 2023-08-23 | Cummins Emission Solutions Inc | Configurable aftertreatment systems including a housing |
CN116348195A (zh) | 2020-10-22 | 2023-06-27 | 康明斯排放处理公司 | 排气后处理系统 |
US12123337B2 (en) | 2021-03-18 | 2024-10-22 | Cummins Emission Solutions Inc. | Aftertreatment systems |
DE112022004119T5 (de) | 2021-08-23 | 2024-07-11 | Cummins Emission Solutions Inc. | Auslassprobenahmesystem für Nachbehandlungssystem |
USD1042545S1 (en) | 2022-04-21 | 2024-09-17 | Cummins Emission Solutions Inc. | Aftertreatment system |
USD1042544S1 (en) | 2022-04-21 | 2024-09-17 | Cummins Emission Solutions Inc. | Aftertreatment system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2108140C1 (ru) * | 1996-06-24 | 1998-04-10 | Александр Юрьевич Логинов | Способ очистки отработавших газов |
US20060039843A1 (en) * | 2004-08-23 | 2006-02-23 | Engelhard Corporation | Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia |
RU2278281C2 (ru) * | 2000-11-06 | 2006-06-20 | Умикор АГ унд Ко. КГ | Устройство и способ для обработки отработавших газов, образующихся при работе двигателя на бедных смесях, селективным каталитическим восстановлением окислов азота |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10020170C1 (de) | 2000-04-25 | 2001-09-06 | Emitec Emissionstechnologie | Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement |
DE3906136C1 (ru) | 1989-02-28 | 1990-08-09 | Degussa Ag, 6000 Frankfurt, De | |
US5024981A (en) | 1989-04-20 | 1991-06-18 | Engelhard Corporation | Staged metal-promoted zeolite catalysts and method for catalytic reduction of nitrogen oxides using the same |
US4961917A (en) * | 1989-04-20 | 1990-10-09 | Engelhard Corporation | Method for reduction of nitrogen oxides with ammonia using promoted zeolite catalysts |
US6471924B1 (en) * | 1995-07-12 | 2002-10-29 | Engelhard Corporation | Method and apparatus for NOx abatement in lean gaseous streams |
JP3483687B2 (ja) * | 1995-11-29 | 2004-01-06 | 日野自動車株式会社 | 排ガス浄化装置 |
US6125629A (en) | 1998-11-13 | 2000-10-03 | Engelhard Corporation | Staged reductant injection for improved NOx reduction |
US6689709B1 (en) | 2000-11-15 | 2004-02-10 | Engelhard Corporation | Hydrothermally stable metal promoted zeolite beta for NOx reduction |
US6914026B2 (en) | 2001-09-07 | 2005-07-05 | Engelhard Corporation | Hydrothermally stable metal promoted zeolite beta for NOx reduction |
GB0220645D0 (en) * | 2002-09-05 | 2002-10-16 | Johnson Matthey Plc | Exhaust system for a lean burn ic engine |
DE10300298A1 (de) * | 2003-01-02 | 2004-07-15 | Daimlerchrysler Ag | Abgasnachbehandlungseinrichtung und -verfahren |
JP4236543B2 (ja) * | 2003-09-08 | 2009-03-11 | 本田技研工業株式会社 | 窒素酸化物の接触分解のための触媒と方法 |
WO2005028826A1 (ja) * | 2003-09-19 | 2005-03-31 | Nissan Diesel Motor Co., Ltd. | エンジンの排気浄化装置 |
US7585477B2 (en) * | 2003-11-11 | 2009-09-08 | Honda Motor Co., Ltd. | Catalyst and method for catalytic reduction of nitrogen oxides |
US7438876B2 (en) * | 2003-12-02 | 2008-10-21 | Cichanowicz J Edward | Multi-stage heat absorbing reactor and process for SCR of NOx and for oxidation of elemental mercury |
JP4427356B2 (ja) * | 2004-02-27 | 2010-03-03 | 東京濾器株式会社 | 窒素酸化物浄化用触媒システム及び窒素酸化物浄化方法 |
JP2006057578A (ja) | 2004-08-23 | 2006-03-02 | Hino Motors Ltd | 排気浄化装置 |
US7393511B2 (en) * | 2005-02-16 | 2008-07-01 | Basf Catalysts Llc | Ammonia oxidation catalyst for the coal fired utilities |
JP2007032472A (ja) * | 2005-07-28 | 2007-02-08 | Hitachi Ltd | 尿素水を用いた排気処理装置 |
US7685809B2 (en) * | 2005-10-03 | 2010-03-30 | Caterpillar Inc. | On-board ammonia generation and exhaust after treatment system using same |
US7624569B2 (en) * | 2005-10-03 | 2009-12-01 | Caterpillar Inc. | Engine system including multipe engines and method of operating same |
US8568678B2 (en) * | 2006-07-08 | 2013-10-29 | Umicore Ag & Co. Kg | Structured SCR catalyst for the reduction of nitrogen oxides in the exhaust gas from lean-burn engines using ammonia as reducing agent |
DE102006031724B3 (de) * | 2006-07-08 | 2008-04-30 | Umicore Ag & Co. Kg | Strukturierter SCR-Katalysator zur Reduktion von Stickoxiden im Abgas von Magermotoren unter Verwendung von Ammoniak als Reduktionsmittel |
WO2008049491A1 (de) * | 2006-10-23 | 2008-05-02 | Umicore Ag & Co. Kg | Vanadiumfreier katalysator zur selektiven katalytischen reduktion und verfahren zu seiner herstellung |
JP2007239752A (ja) * | 2007-03-30 | 2007-09-20 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
US20100115930A1 (en) * | 2008-11-07 | 2010-05-13 | Gm Global Technology Operations, Inc. | Exhaust after treatment system |
-
2008
- 2008-04-11 AT AT08007163T patent/ATE460973T1/de active
- 2008-04-11 EP EP08007163A patent/EP2116293B1/de active Active
- 2008-04-11 DE DE502008000454T patent/DE502008000454D1/de active Active
-
2009
- 2009-03-18 BR BRPI0911258A patent/BRPI0911258A2/pt active Search and Examination
- 2009-03-18 CN CN2009801128014A patent/CN101998878B/zh active Active
- 2009-03-18 JP JP2011503356A patent/JP5528426B2/ja not_active Expired - Fee Related
- 2009-03-18 US US12/937,089 patent/US8863507B2/en active Active
- 2009-03-18 KR KR1020107022525A patent/KR101542754B1/ko active IP Right Grant
- 2009-03-18 WO PCT/EP2009/001997 patent/WO2009124643A1/de active Application Filing
- 2009-03-18 RU RU2010145470/04A patent/RU2497577C2/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2108140C1 (ru) * | 1996-06-24 | 1998-04-10 | Александр Юрьевич Логинов | Способ очистки отработавших газов |
RU2278281C2 (ru) * | 2000-11-06 | 2006-06-20 | Умикор АГ унд Ко. КГ | Устройство и способ для обработки отработавших газов, образующихся при работе двигателя на бедных смесях, селективным каталитическим восстановлением окислов азота |
US20060039843A1 (en) * | 2004-08-23 | 2006-02-23 | Engelhard Corporation | Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2666722C1 (ru) * | 2013-11-25 | 2018-09-12 | Умикоре Аг Унд Ко. Кг | Катализатор селективного каталитического восстановления |
RU2664905C2 (ru) * | 2013-12-30 | 2018-08-23 | Джонсон Мэтти Паблик Лимитед Компани | Способы селективного каталитического восстановления с использованием легированных оксидов церия(iv) |
RU2698817C2 (ru) * | 2014-08-15 | 2019-08-30 | Джонсон Мэтти Паблик Лимитед Компани | Зонированный катализатор для обработки отработавшего газа |
Also Published As
Publication number | Publication date |
---|---|
KR101542754B1 (ko) | 2015-08-07 |
CN101998878B (zh) | 2013-06-12 |
EP2116293B1 (de) | 2010-03-17 |
JP5528426B2 (ja) | 2014-06-25 |
WO2009124643A1 (de) | 2009-10-15 |
KR20100134644A (ko) | 2010-12-23 |
US8863507B2 (en) | 2014-10-21 |
ATE460973T1 (de) | 2010-04-15 |
DE502008000454D1 (de) | 2010-04-29 |
EP2116293A1 (de) | 2009-11-11 |
RU2010145470A (ru) | 2012-05-20 |
CN101998878A (zh) | 2011-03-30 |
US20110146237A1 (en) | 2011-06-23 |
JP2011518658A (ja) | 2011-06-30 |
BRPI0911258A2 (pt) | 2015-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2497577C2 (ru) | Система снижения токсичности отработавших газов двигателя с использованием катализатора селективного каталитического восстановления | |
US8883100B2 (en) | Particle reduction with combined SCR and NH3 slip catalyst | |
EP2382031B2 (en) | Emissions treatment systems and methods with catalyzed scr filter and downstream scr catalyst | |
US8544260B2 (en) | Emissions treatment systems and methods with catalyzed SCR filter and downstream SCR catalyst | |
US10493434B2 (en) | NOx adsorber catalyst, methods and systems | |
RU2504668C2 (ru) | Выхлопная система для двигателя внутреннего сгорания, работающего на бедных смесях | |
US7767176B2 (en) | Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia | |
KR101572824B1 (ko) | 배기 가스 내의 NOx를 처리하기 위한 방법 및 그를 위한 시스템 | |
US7313911B2 (en) | Method of removing nitrogen oxides from the exhaust gas of a lean-burn internal combustion engine and exhaust-gas purification system therefor | |
JP5875586B2 (ja) | ディーゼルエンジンの排ガスから窒素酸化物を除去するための触媒 | |
US20200332691A1 (en) | Combination of a Zeolite-Based SCR Catalyst with a Manganese-Based SCR Catalyst in the Bypass | |
JP2017214930A (ja) | Scr触媒を備えたリーンバーン内燃機関用排気システム | |
US9095816B2 (en) | Catalyst for removing nitrogen oxides from the exhaust gas of diesel engines | |
US20120247088A1 (en) | Exhaust gas after-treatment system | |
JP2004511691A (ja) | ジーゼルエンジンからの窒素酸化物および粒状物の増強された減少のための排気システム | |
US20110120093A1 (en) | Process and apparatus for purifying exhaust gases from an internal combustion engine | |
JP7152401B2 (ja) | 酸化バナジウムを含有するscr触媒装置、及び鉄を含有するモレキュラーシーブ | |
GB2552072A (en) | Vanadium catalysts for high engine-out NO2 systems | |
JP7434282B2 (ja) | 窒素酸化物還元用触媒 | |
US9694320B2 (en) | SCR catalytic converter having improved NOx conversion | |
WO2018065353A1 (en) | Catalyst article and method for the abatement of ammonia and nitrogen oxides | |
Grubert et al. | NO x adsorber catalyst, methods and systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200319 |