RU2485330C1 - Способ генерации энергии - Google Patents
Способ генерации энергии Download PDFInfo
- Publication number
- RU2485330C1 RU2485330C1 RU2011146309/06A RU2011146309A RU2485330C1 RU 2485330 C1 RU2485330 C1 RU 2485330C1 RU 2011146309/06 A RU2011146309/06 A RU 2011146309/06A RU 2011146309 A RU2011146309 A RU 2011146309A RU 2485330 C1 RU2485330 C1 RU 2485330C1
- Authority
- RU
- Russia
- Prior art keywords
- fuel
- adsorber
- products
- converter
- power plant
- Prior art date
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A30/00—Adapting or protecting infrastructure or their operation
- Y02A30/27—Relating to heating, ventilation or air conditioning [HVAC] technologies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/62—Absorption based systems
- Y02B30/625—Absorption based systems combined with heat or power generation [CHP], e.g. trigeneration
Landscapes
- Hydrogen, Water And Hydrids (AREA)
- Exhaust Gas After Treatment (AREA)
- Separation Of Gases By Adsorption (AREA)
- Fuel Cell (AREA)
Abstract
Изобретение относится к энергетике. Способ генерации энергии, в котором в энергоустановку подают кислородсодержащий окислитель, а также водородсодержащее газообразное топливо, по меньшей мере, часть продуктов окисления топлива, выходящих из энергоустановки, направляют в теплоприемник, в котором продукты нагревают последовательно конвертер, в котором за счет нагрева получают газообразное топливо из смеси исходного горючего с водяным паром, а затем нагревают первую секцию адсорбера, в котором поток горючего увлажняется водяным паром, выходящим из сорбента, после чего продукты направляют на вход во вторую секцию адсорбера, в которой поток продуктов охлаждают с извлечением из него в сорбент водяного пара. Вход горючего в первую и вторую секции адсорбера периодически переключают с режима нагрева на режим охлаждения. Изобретение позволяет снизить расход горючего, улучшить экономические показатели энергоустановок и систем энергообеспечения. 8 з.п. ф-лы, 3 ил.
Description
Изобретение относится преимущественно к способам преобразования энергии горючего (углеводороды, метанол, этанол и другие виды) в механическую (электрическую) энергию, преимущественно к стационарным и транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для энергоустановок, снабженных тепловым двигателем или газовой турбиной или электрохимическим генератором.
Известны способы преобразования энергии горючего (углеводороды, метанол, этанол и другие виды) в механическую (электрическую) энергию, в том числе, в транспортных энергоустановках, преобразующих первичную энергию в электрическую. Значительный потенциал имеют электрохимические генераторы, которые выгодно отличаются высокой эффективностью. Из особенностей работы энергогенерирующих систем известна проблема увеличения эффективности энергоисточника за счет утилизации сбросного тепла. Предложены способы генерации энергии, включающие утилизацию сбросного тепла в тепло- или парогенерирующих аппаратах, вырабатывающих дополнительную энергию для сторонних потребителей. В то же время во многих случаях такие способы не могут быть применены в силу ограничений по сторонним потребителям или по экономическим соображениям. Наиболее серьезные ограничения возникают, например, для транспортных энергоустановок или систем автономного энергообеспечения удаленных объектов. Таким образом, возникает задача создания способов преобразования энергии, энергоустановок и систем, способных обеспечивать высокую эффективность генерации энергии вне зависимости от наличия сторонних потребителей тепла и электроэнергии.
Известен, в частности, способ производства электрической энергии из природного газа, с использованием топливного элемента на твердом оксиде, содержащий стадии электрохимического окисления природного газа, прошедшего предварительное расширение и нагрев природного газа выходящим из топливного элемента потоком (патент РФ на изобретение №2199172, дата публикации 20.02.2003). Недостатком данного способа и устройства является низкий КПД.
Предложен также способ генерации энергии в силовой установке, содержащей газотурбинный двигатель. Сущность изобретения: после насоса горючее (метанол, жидкие водород или метан) за счет бросового тепла за основной турбиной в теплообменнике в эндотермической реакции в присутствии катализатора газифицируется (при 250°С) на смесь газов H2 и СО, которая подается на дополнительную турбину, механически связанную с дополнительным компрессором, газы и воздух после которых при из соотношении, близком к стехиометрическому, поступают в камеру сгорания, выполненную в виде полости сопла эжектора, входной патрубок низкого давления которого связан с выходом основного компрессора, как и вход дополнительного компрессора, а выход подключен к входу основной турбины. Часть смеси газов после дополнительной турбины поступает на вход основной турбины и полые ее лопатки, на передних кромках которых выполнены щели для выхода смеси газов в газовоздушный тракт основной турбины (патент РФ на изобретение №2066777, дата публикации 20.09.1996 - прототип). Недостатком данного способа и устройства также является низкий КПД.
В то же время известен каталитический способ осуществления реакции паровой конверсии горючего (этанола) с целью получения синтез-газа или обогащенной водородом газовой смеси, которая может использоваться, например, в качестве топлива для топливных элементов (патент РФ на изобретение №2177366, дата публикации 2000.12.09). Сущность изобретения: способ осуществляется в реакторе с двумя фиксированными слоями катализатора. В качестве катализатора первого слоя используют катализатор, содержащий в качестве активного компонента металл 1Б группы Периодической системы (медь, серебро, золото) и/или благородный металл, выбранный из группы, состоящей из платины, палладия, рутения, родия, иридия, нанесенный на графитоподобный углеродный носитель, катализатор первого слоя содержит активный компонент в количестве не менее 0,05 мас.%. В качестве катализатора второго слоя используют катализатор, содержащий металл VIII группы Периодической системы, выбранный из группы, состоящей из никеля, платины, палладия, рутения, родия, иридия. В реакционную смесь, поступающую на второй слой катализатора, предварительно вводят кислород или двуокись углерода с концентрацией не выше 50 об.%. Изобретение позволяет повысить эффективность процесса паровой конверсии горючего путем расширения видов исходного сырья за счет использования водно-этанольных смесей, содержащих метанол, и предотвращения дезактивации катализаторов и образования побочных продуктов. Недостатком способа является необходимость дополнительного подвода воды к энергоустановке и затраты горючего на покрытие эндотермичности реакции паровой конверсии горючего.
Задача изобретения - создать способ генерации энергии в энергоустановке, в котором расширены функциональные возможности способа, снижен расход горючего, улучшены экономические показатели энергоустановок и систем энергообеспечения.
Поставленная задача решается тем, что в способе генерации энергии, в котором в энергоустановку подают кислородсодержащий окислитель, а также водородсодержащее газообразное топливо, по меньшей мере, часть продуктов окисления топлива, выходящих из энергоустановки, направляют в теплоприемник, в котором продукты окисления топлива нагревают последовательно конвертер, в котором за счет нагрева получают газообразное топливо из смеси исходного горючего с водяным паром, а затем нагревают первую секцию адсорбера, в котором поток горючего увлажняют водяным паром, выходящим из адсорбера, после чего продукты окисления топлива направляют на вход во вторую секцию адсорбера, в которой поток продуктов окисления топлива охлаждают и сорбируют из него водяной пар.
Кроме того:
- вход горючего в первую и вторую секции адсорбера периодически переключают с режима нагрева на режим охлаждения;
- в конвертере реакцию получения газообразного топлива проводят с использованием катализатора;
- исходное горючее выбирают из ряда, содержащего природный газ, углеводороды, диметиловый эфир, метанол, аммиак, этиловый спирт или их смеси;
- теплоприемник при отключенной подаче горючего периодически продувают воздухом или продуктами окисления топлива;
- перед подачей в сорбент горючее нагревают и/или испаряют за счет охлаждения продуктов окисления топлива;
- нагрев конвертера продуктами осуществляют путем прямой прокачки продуктов окисления топлива через конвертер при отключенной подаче горючего;
- охлаждение продуктов окисления топлива, проходящих через адсорбер, осуществляют с помощью водяного теплоносителя, отделенного от продуктов газонепроницаемой поверхностью;
- в конвертере проводят нейтрализацию вредных веществ, содержащихся в продукте окисления топлива;
- в качестве энергоустановки используют тепловой двигатель или газовую турбину или электрохимический генератор;
- в качестве сорбента в адсорбере используют цеолит или силикагель или композитные сорбенты, состоящие из матрицы с открытыми порами и помещенного в эти поры гигроскопичного вещества;
- температурный режим конвертера поддерживают изменением подачи в теплоприемник горючего или продуктов окисления топлива.
На фиг.1 дана схема реализации способа, где 1 - секционированный теплоприемник,
2 - конвертер, 3 - секционированный адсорбер, 4 - воздух, 5 - продукты окисления топлива, 6 - горючее, 7 - газообразное топливо, 8 - первая секция адсорбера, 9 - вторая секция адсорбера, 10 - третья секция адсорбера.
На фиг.2 показана зависимость изменения температуры продуктов окисления топлива 5 и горючего 6 вдоль секционированного теплоприемника 1.
На фиг.3 дан разрез секционированного адсорбера с отдельными секциями 8, 9 и 10, работающими в различных режимах.
Примером реализации изобретения служит способ генерации энергии, описанный ниже.
В излагаемом примере осуществления изобретения в качестве горючего 6 применяется диметиловый эфир, что позволяет охарактеризовать особенности реализации изобретения применительно к процессам применения жидкого горючего в различных транспортных или стационарных энергоустановках, с возможностью предварительной паровой конверсии горючего 6 в конвертере 2 с получением и окислением образующегося при паровой конверсии синтез-газа до смеси водорода и диоксида углерода, составляющих газообразное топливо 7, вступающего в реакцию с окислителем при генерации энергии в энергоустановке.
Способ осуществляется следующим образом.
В качестве энергоустановки могут быть использованы тепловой двигатель или газовая турбина или электрохимический генератор, в которых газообразное топливо 7 окисляется окислителем, например, воздухом 4 с образованием продуктов окисления топлива 5, подаваемых в секционированный теплоприемник 1.
Выходящие из энергоустановки продукты окисления топлива 5 подают на охлаждение в секционированный теплоприемник 1, в котором продукты окисления топлива 5, содержащие водяной пар и диоксид углерода, нагревают последовательно конвертер 2, в котором за счет нагрева на катализаторе из смеси диметилового эфира 6 с водяным паром получают газообразное топливо 7 (смесь водорода и диоксид углерода). Затем продукты 5 нагревают первую секцию 8 секционированного адсорбера 3, насыщенного водяным паром, после чего продукты 5 направляют на вход во вторую секцию 9 секционированного адсорбера 3, в которой поток продуктов 5, содержащий водяной пар и диоксид углерода, охлаждают с извлечением в сорбент водяного пара. Нагрев секционированного адсорбера 3 первой секции 8 вызывает выделение из него ранее адсорбированной воды, которая выходит в поток горючего 6, приводя к образованию смеси диметилового эфира 6 с водяным паром, поступающей на паровую конверсию в конвертер 2, в котором за счет нагрева продуктами 5 (показаны штриховой линией) из диметилового эфира 6 и водяного пара получают газообразное топливо 7 (смесь водорода и диоксида углерода). Во второй секции 9 секционированного адсорбера 3 из продуктов 5 производят извлечение водяного пара путем сорбции, например, в цеолите. Поскольку сорбция вызывает выделение тепла, а нагрев цеолита снижает его сорбционную емкость, секционированный адсорбер 3 второй секции 9 охлаждают. Перед подачей в первую секцию 8 секционированного адсорбера 3 диметиловый эфир 6, подаваемый на энергоустановку, нагревают и испаряют путем его нагрева продуктами 5 при рабочем давлении энергоустановки.
Насыщение сорбента водяным паром и выделение водяного пара производят при периодическом переключении секций секционированного адсорбера 3 в режимы сорбции и десорбции. В то время как в первую секцию 8 секционированного адсорбера 3 подают диметиловый эфир 6, во второй секции 9 секционированного адсорбера 3 из продуктов 5, охлажденных в конвертере 2, производят извлечение водяного пара с одновременным охлаждением, например, за счет окружающего воздуха 4 или водяного теплоносителя, который затем может охлаждаться в воздушном радиаторе. Может в этом режиме использоваться и третья секция 10 секционированного адсорбера 3, в которой производят предварительное охлаждение при отключенных потоках горючего 6 и продуктов 5.
Конверсию диметилового эфира 6 осуществляют при 150-450°C, 1-100 атм (в зависимости, в первую очередь, от типа энергоустановки) и мольном отношении вода / диметиловый эфир (H2O/ДМЭ) 2-10.
Процесс протекает по реакциям:
суммарная реакция:
Как видно из примера, получение обогащенной по водороду газовой смеси взаимодействием диметилового эфира (ДМЭ) 6 и водяного пара в присутствии катализатора в конвертере 2 позволяет примерно в два раза увеличить поток водорода в топливе 7 с одновременным увеличением массы и расхода рабочего тела в энергоустановке за счет водяного пара.
В качестве каталитической системы в конвертере 2 может применяться состав, в котором в качестве катализатора гидратации ДМЭ используются гетерополикислоты (ГПК) или их соли, нанесенные на носитель; в качестве катализатора паровой конверсии метанола - известные медьсодержащие катализаторы, например Cu-Zn-Al - катализатор синтеза метанола, Cu-Zn-Al (Cr) или Cu-Mg-катализаторы паровой конверсии CO (Патент РФ N 2165790, дата приоритета: 13.03.2000).
В варианте применения способа в сочетании с двигателем внутреннего сгорания характерной мощностью 80 кВт применение способа позволит полезно использовать почти 100 кВт сбросного тепла продуктов из более чем 200 кВт тепловой энергии, выбрасываемой двигателем в окружающую среду.
Соответствующий расход горючего (диметилового эфира) 6 при номинальном режиме двигателя составит около 2.4 кг/ч, что потребует расхода водяного пара на конверсию около 40 г/мин. При частоте переключения секций секционированного адсорбера 3 около 20 ч-1 такой расход может быть обеспечен насадкой цеолита массой около 600 г и объемом около 2 л.
Помимо снижения необходимого запаса воды на конверсию горючего (диметилового эфира) 6 на 48-60 л в расчете на суточный цикл, применение способа позволит снизить расход горючего (диметилового эфира) 6 примерно на 4-5 т/год в расчете на один двигатель.
В качестве исходного горючего 6 может быть выбрано вещество из ряда, содержащего природный газ, углеводороды, диметиловый эфир, метанол, аммиак, этиловый спирт или их смеси.
В процессе работы энергоустановки в атмосферу выделяется много ядовитых химических веществ, из которых самые опасные - монооксид углерода (СО), несгоревшие углеводороды (СН) и оксиды азота (NO, NO2). Поэтому целесообразно использовать катализатор конвертера 2 для нейтрализации вредных веществ, содержащихся в продукте. Катализатор конвертера 2 может представлять из себя керамический блок, пронизанный продольными порами-сотами, на поверхность которых нанесен активный каталитический слой, например из металлов, содержащих платину, палладий и родий с разветвленной поверхностью площадью до 20-40 тыс.кв.м. Для нейтрализации также необходима относительно высокая температура - около 250°С, а с учетом экзотермической реакции катализатор может разогреваться до рабочих температур от 400 до 800°С, обеспечивающих оптимальные условия для максимальной эффективности. С указанной целью конвертер 2 также может периодически переключаться с режима конверсии горючего 6 на режим нейтрализации, для чего в конвертере поток влажного горючего 6 в режиме нейтрализации заменяется на поток продуктов 5.
В процессе реализации излагаемого способа генерации энергии могут использоваться также возможности нагрева теплоприемника 1 с помощью внешнего подвода тепла, например, продуктами сгорания горючего 5, или за счет электроаккумуляторов.
Таким образом, указанный способ позволит повысить возможности генерации энергии, снизить расход топлива, улучшить экономические показатели энергоустановок и систем энергообеспечения.
Claims (9)
1. Способ генерации энергии, в котором в энергоустановку подают кислородсодержащий окислитель, а также водородсодержащее газообразное топливо, отличающийся тем, что, по меньшей мере, часть продуктов окисления топлива, выходящих из энергоустановки, направляют в теплоприемник, в котором продукты окисления топлива нагревают последовательно конвертер, в котором за счет нагрева получают газообразное топливо из смеси исходного горючего с водяным паром, а затем нагревают первую секцию адсорбера, в котором поток горючего увлажняют водяным паром, выходящим из адсорбера, после чего продукты окисления топлива направляют на вход во вторую секцию адсорбера, в которой поток продуктов окисления топлива охлаждают и сорбируют из него водяной пар, при этом вход горючего в первую и вторую секции адсорбера периодически переключают с режима нагрева на режим охлаждения.
2. Способ по п.1, отличающийся тем, что в конвертере реакцию получения газообразного топлива проводят с использованием катализатора.
3. Способ по п.1, отличающийся тем, что исходное горючее выбирают из ряда, содержащего природный газ, углеводороды, диметиловый эфир, метанол, аммиак, этиловый спирт или их смеси.
4. Способ по п.1, отличающийся тем, что перед подачей в адсорбер горючее нагревают и/или испаряют за счет охлаждения продуктов окисления топлива.
5. Способ по п.1, отличающийся тем, что охлаждение продуктов окисления топлива, проходящих через адсорбер, осуществляют с помощью водяного теплоносителя, отделенного от продуктов газонепроницаемой поверхностью.
6. Способ по п.1, отличающийся тем, что в конвертере проводят нейтрализацию вредных веществ, содержащихся в продукте окисления топлива.
7. Способ по п.1, отличающийся тем, что в качестве энергоустановки используют тепловой двигатель или газовую турбину или электрохимический генератор.
8. Способ по п.1, отличающийся тем, что в качестве сорбента в адсорбере используют цеолит, или силикагель, или композитные сорбенты, состоящие из матрицы с открытыми порами и помещенного в эти поры гигроскопичного вещества.
9. Способ по п.1, отличающийся тем, что температурный режим конвертера поддерживают изменением подачи в теплоприемник горючего или продуктов окисления топлива.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011146309/06A RU2485330C1 (ru) | 2011-11-16 | 2011-11-16 | Способ генерации энергии |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011146309/06A RU2485330C1 (ru) | 2011-11-16 | 2011-11-16 | Способ генерации энергии |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011146309A RU2011146309A (ru) | 2013-05-27 |
RU2485330C1 true RU2485330C1 (ru) | 2013-06-20 |
Family
ID=48786372
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011146309/06A RU2485330C1 (ru) | 2011-11-16 | 2011-11-16 | Способ генерации энергии |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2485330C1 (ru) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1752163A3 (ru) * | 1990-05-08 | 1994-01-15 | Институт высоких температур научного объединения "Ивтан" | Способ комбинированного преобразования энергии |
RU2066777C1 (ru) * | 1992-11-17 | 1996-09-20 | Шевцов Валентин Федорович | Двигатель |
RU2177366C1 (ru) * | 2000-12-09 | 2001-12-27 | Институт катализа им. Г.К. Борескова СО РАН | Катализатор и способ получения синтез-газа или обогащенной водородом газовой смеси из водно-спиртовых смесей |
RU2280925C2 (ru) * | 2000-10-30 | 2006-07-27 | Квестэйр Текнолоджиз Инк. | Разделение газов с высоким энергетическим кпд для топливных элементов |
US20100080754A1 (en) * | 2008-09-29 | 2010-04-01 | Iep | Process for producing hydrogen with complete capture of co2 and recycling unconverted methane |
US7947120B2 (en) * | 2007-05-18 | 2011-05-24 | Exxonmobil Research And Engineering Company | Temperature swing adsorption of CO2 from flue gas using a parallel channel contractor |
-
2011
- 2011-11-16 RU RU2011146309/06A patent/RU2485330C1/ru not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1752163A3 (ru) * | 1990-05-08 | 1994-01-15 | Институт высоких температур научного объединения "Ивтан" | Способ комбинированного преобразования энергии |
RU2066777C1 (ru) * | 1992-11-17 | 1996-09-20 | Шевцов Валентин Федорович | Двигатель |
RU2280925C2 (ru) * | 2000-10-30 | 2006-07-27 | Квестэйр Текнолоджиз Инк. | Разделение газов с высоким энергетическим кпд для топливных элементов |
RU2177366C1 (ru) * | 2000-12-09 | 2001-12-27 | Институт катализа им. Г.К. Борескова СО РАН | Катализатор и способ получения синтез-газа или обогащенной водородом газовой смеси из водно-спиртовых смесей |
US7947120B2 (en) * | 2007-05-18 | 2011-05-24 | Exxonmobil Research And Engineering Company | Temperature swing adsorption of CO2 from flue gas using a parallel channel contractor |
US20100080754A1 (en) * | 2008-09-29 | 2010-04-01 | Iep | Process for producing hydrogen with complete capture of co2 and recycling unconverted methane |
Also Published As
Publication number | Publication date |
---|---|
RU2011146309A (ru) | 2013-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mendes et al. | Enhancing the production of hydrogen via water–gas shift reaction using Pd-based membrane reactors | |
Wu et al. | Modeling of a novel SOFC-PEMFC hybrid system coupled with thermal swing adsorption for H2 purification: Parametric and exergy analyses | |
Han et al. | Purifier-integrated methanol reformer for fuel cell vehicles | |
El-Shafie et al. | Energy and exergy analysis of hydrogen production from ammonia decomposition systems using non-thermal plasma | |
CN110739471B (zh) | 基于重整制氢装置与燃料电池的热电联供系统 | |
Chiu et al. | Hydrogen-rich gas with low-level CO produced with autothermal methanol reforming providing a real-time supply used to drive a kW-scale PEMFC system | |
Ortiz et al. | Optimization of power and hydrogen production from glycerol by supercritical water reforming | |
RU2561755C2 (ru) | Способ работы и устройство газотурбинной установки | |
CN114466815A (zh) | 用于二氧化碳的转化的工艺 | |
Prigent | On board hydrogen generation for fuel cell powered electric cars. A review of various available techniques | |
CN105720285B (zh) | 一种封闭式燃料电池氢源系统 | |
Basile et al. | An experimental investigation on methanol steam reforming with oxygen addition in a flat Pd–Ag membrane reactor | |
Hedayati et al. | Exergetic study of catalytic steam reforming of bio-ethanol over Pd–Rh/CeO2 with hydrogen purification in a membrane reactor | |
CN107302100A (zh) | 一种基于乙醇重整制氢的氢燃料电池系统及其发电方法 | |
KR20240056511A (ko) | 연료 전지를 작동하기 위해 메탄올 또는 암모니아로부터 고순도 수소를 얻는 방법 및 장치 | |
CN103373705B (zh) | 中低温太阳热能品位提升与co2一体化分离的方法和装置 | |
JP4728837B2 (ja) | 水素供給システム | |
JP2010235736A (ja) | 合成燃料製造システム | |
RU2485330C1 (ru) | Способ генерации энергии | |
WO2017051610A1 (ja) | 内燃機関 | |
Cai et al. | Integrating a Pd-Ag membrane for hydrogen purification and recirculation in a direct ammonia fueled SOFC-PEMFC system | |
CN106374124A (zh) | 一种利用甲醇催化氧化进行加热的重整室 | |
JP7613954B2 (ja) | 燃料電池から排出されるオフガスの処理システムおよび処理方法 | |
KR101136234B1 (ko) | 폐열을 이용한 바이오가스 개질 시스템 및 바이오가스 개질 방법 | |
RU2515477C2 (ru) | Способ получения водорода |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PC41 | Official registration of the transfer of exclusive right |
Effective date: 20160405 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20161117 |