RU2479629C2 - Продукция гликопротеинов с модифицированным фукозилированием - Google Patents
Продукция гликопротеинов с модифицированным фукозилированием Download PDFInfo
- Publication number
- RU2479629C2 RU2479629C2 RU2009136982/10A RU2009136982A RU2479629C2 RU 2479629 C2 RU2479629 C2 RU 2479629C2 RU 2009136982/10 A RU2009136982/10 A RU 2009136982/10A RU 2009136982 A RU2009136982 A RU 2009136982A RU 2479629 C2 RU2479629 C2 RU 2479629C2
- Authority
- RU
- Russia
- Prior art keywords
- glcnac
- host cell
- catalytic domain
- fused
- man
- Prior art date
Links
- 102000003886 Glycoproteins Human genes 0.000 title claims abstract description 102
- 108090000288 Glycoproteins Proteins 0.000 title claims abstract description 102
- 230000033581 fucosylation Effects 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title description 17
- 239000013598 vector Substances 0.000 claims abstract description 78
- 230000003197 catalytic effect Effects 0.000 claims abstract description 55
- 230000000694 effects Effects 0.000 claims abstract description 48
- 238000006243 chemical reaction Methods 0.000 claims abstract description 40
- 241000235058 Komagataella pastoris Species 0.000 claims abstract description 29
- 108020004414 DNA Proteins 0.000 claims abstract description 28
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 28
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 26
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 26
- 150000001413 amino acids Chemical class 0.000 claims abstract description 24
- 230000001105 regulatory effect Effects 0.000 claims abstract description 9
- 108010027343 Glycoprotein 6-alpha-L-fucosyltransferase Proteins 0.000 claims abstract description 6
- 108091026890 Coding region Proteins 0.000 claims abstract 2
- 210000004027 cell Anatomy 0.000 claims description 167
- 102000004190 Enzymes Human genes 0.000 claims description 39
- 108090000790 Enzymes Proteins 0.000 claims description 39
- 210000002288 golgi apparatus Anatomy 0.000 claims description 36
- 210000002472 endoplasmic reticulum Anatomy 0.000 claims description 34
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 19
- 108010070113 alpha-1,3-mannosyl-glycoprotein beta-1,2-N-acetylglucosaminyltransferase I Proteins 0.000 claims description 9
- 108020001507 fusion proteins Proteins 0.000 claims description 9
- 102000037865 fusion proteins Human genes 0.000 claims description 9
- 108010083819 mannosyl-oligosaccharide 1,3 - 1,6-alpha-mannosidase Proteins 0.000 claims description 8
- 101000918297 Caenorhabditis elegans Exostosin-2 homolog Proteins 0.000 claims description 7
- 102100021771 Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase Human genes 0.000 claims description 7
- 108010009689 mannosyl-oligosaccharide 1,2-alpha-mannosidase Proteins 0.000 claims description 7
- 102000003838 Sialyltransferases Human genes 0.000 claims description 6
- 108090000141 Sialyltransferases Proteins 0.000 claims description 6
- 108090001042 Hydro-Lyases Proteins 0.000 claims description 5
- 102000004867 Hydro-Lyases Human genes 0.000 claims description 5
- 108010046068 N-Acetyllactosamine Synthase Proteins 0.000 claims description 2
- 108010039255 alpha 1,6-mannosyltransferase Proteins 0.000 claims description 2
- 108090000623 proteins and genes Proteins 0.000 abstract description 75
- 102000004169 proteins and genes Human genes 0.000 abstract description 39
- 102100021266 Alpha-(1,6)-fucosyltransferase Human genes 0.000 abstract description 11
- 101000830049 Drosophila melanogaster GDP-mannose 4,6 dehydratase Proteins 0.000 abstract 2
- LQEBEXMHBLQMDB-UHFFFAOYSA-N GDP-L-fucose Natural products OC1C(O)C(O)C(C)OC1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C3=C(C(N=C(N)N3)=O)N=C2)O1 LQEBEXMHBLQMDB-UHFFFAOYSA-N 0.000 abstract 1
- LQEBEXMHBLQMDB-JGQUBWHWSA-N GDP-beta-L-fucose Chemical compound O[C@H]1[C@H](O)[C@H](O)[C@H](C)O[C@@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C3=C(C(NC(N)=N3)=O)N=C2)O1 LQEBEXMHBLQMDB-JGQUBWHWSA-N 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical group C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 77
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 74
- 241000282414 Homo sapiens Species 0.000 description 57
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 45
- 230000014509 gene expression Effects 0.000 description 41
- 229940088598 enzyme Drugs 0.000 description 38
- GRHWEVYJIHXESA-HBHDJDHDSA-N beta-D-Galp-(1->4)-beta-D-GlcpNAc-(1->2)-alpha-D-Manp-(1->3)-[beta-D-Galp-(1->4)-beta-D-GlcpNAc-(1->2)-alpha-D-Manp-(1->6)]-beta-D-Manp-(1->4)-beta-D-GlcpNAc-(1->4)-beta-D-GlcpNAc Chemical compound O[C@@H]1[C@@H](NC(=O)C)[C@H](O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@H]3[C@@H]([C@@H](O)[C@H](O[C@H]4[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O4)O)[C@@H](CO)O3)NC(C)=O)[C@H](O)[C@@H](CO[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@H]3[C@@H]([C@@H](O)[C@H](O[C@H]4[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O4)O)[C@@H](CO)O3)NC(C)=O)O2)O)[C@@H](CO)O1 GRHWEVYJIHXESA-HBHDJDHDSA-N 0.000 description 35
- 235000018102 proteins Nutrition 0.000 description 34
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 33
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 33
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 30
- 238000000034 method Methods 0.000 description 30
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 26
- 239000012634 fragment Substances 0.000 description 26
- 241000206602 Eukaryota Species 0.000 description 25
- 101000920675 Rattus norvegicus Erythropoietin Proteins 0.000 description 23
- 239000002773 nucleotide Substances 0.000 description 22
- 125000003729 nucleotide group Chemical group 0.000 description 22
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 21
- WYUKJASPBYYQRJ-VSJOFRJTSA-N beta-D-GlcpNAc-(1->2)-alpha-D-Manp-(1->3)-[beta-D-GlcpNAc-(1->2)-alpha-D-Manp-(1->6)]-beta-D-Manp-(1->4)-beta-GlcpNAc-(1->4)-beta-D-GlcpNAc Chemical compound O[C@@H]1[C@@H](NC(=O)C)[C@H](O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)NC(C)=O)[C@H](O)[C@@H](CO[C@@H]3[C@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O3)NC(C)=O)O2)O)[C@@H](CO)O1 WYUKJASPBYYQRJ-VSJOFRJTSA-N 0.000 description 21
- 108090000765 processed proteins & peptides Proteins 0.000 description 21
- 108020004705 Codon Proteins 0.000 description 20
- 108700026244 Open Reading Frames Proteins 0.000 description 17
- 102000004357 Transferases Human genes 0.000 description 14
- 108090000992 Transferases Proteins 0.000 description 14
- 102000004196 processed proteins & peptides Human genes 0.000 description 14
- 235000001014 amino acid Nutrition 0.000 description 13
- 229940024606 amino acid Drugs 0.000 description 13
- 238000012546 transfer Methods 0.000 description 13
- 108010019236 Fucosyltransferases Proteins 0.000 description 12
- 108010062427 GDP-mannose 4,6-dehydratase Proteins 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 102000006471 Fucosyltransferases Human genes 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 229920001184 polypeptide Polymers 0.000 description 11
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 10
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 10
- 241000233866 Fungi Species 0.000 description 9
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000010353 genetic engineering Methods 0.000 description 9
- 108091008146 restriction endonucleases Proteins 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 101000819490 Homo sapiens Alpha-(1,6)-fucosyltransferase Proteins 0.000 description 8
- 241000235648 Pichia Species 0.000 description 8
- 210000004102 animal cell Anatomy 0.000 description 8
- 239000002299 complementary DNA Substances 0.000 description 8
- 230000001225 therapeutic effect Effects 0.000 description 8
- 230000035897 transcription Effects 0.000 description 8
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 7
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 7
- 125000000311 mannosyl group Chemical group C1([C@@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 7
- 241000894007 species Species 0.000 description 7
- RYXGNICFFBWCJA-LRRROBGASA-N (2S,4S,5R,6R)-5-acetamido-4-hydroxy-2-[(2R,3S,4S,5R)-2,4,5,6-tetrahydroxy-1-oxohexan-3-yl]oxy-6-[(1R,2R)-1,2,3-trihydroxypropyl]oxane-2-carboxylic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O[C@H]([C@@H](O)C=O)[C@@H](O)[C@H](O)CO)(O[C@H]1[C@H](O)[C@H](O)CO)C(O)=O RYXGNICFFBWCJA-LRRROBGASA-N 0.000 description 6
- 230000004988 N-glycosylation Effects 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 108010001671 galactoside 3-fucosyltransferase Proteins 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 108020003175 receptors Proteins 0.000 description 6
- 102000005962 receptors Human genes 0.000 description 6
- 235000000346 sugar Nutrition 0.000 description 6
- 230000014616 translation Effects 0.000 description 6
- 108010083651 3-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase Proteins 0.000 description 5
- TXCIAUNLDRJGJZ-BILDWYJOSA-N CMP-N-acetyl-beta-neuraminic acid Chemical compound O1[C@@H]([C@H](O)[C@H](O)CO)[C@H](NC(=O)C)[C@@H](O)C[C@]1(C(O)=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(N=C(N)C=C2)=O)O1 TXCIAUNLDRJGJZ-BILDWYJOSA-N 0.000 description 5
- 241001138401 Kluyveromyces lactis Species 0.000 description 5
- 241000699660 Mus musculus Species 0.000 description 5
- 108010081778 N-acylneuraminate cytidylyltransferase Proteins 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 101150023212 fut8 gene Proteins 0.000 description 5
- 229930182830 galactose Natural products 0.000 description 5
- 230000013595 glycosylation Effects 0.000 description 5
- 238000006206 glycosylation reaction Methods 0.000 description 5
- 239000001963 growth medium Substances 0.000 description 5
- 239000003550 marker Substances 0.000 description 5
- 238000001840 matrix-assisted laser desorption--ionisation time-of-flight mass spectrometry Methods 0.000 description 5
- 239000013612 plasmid Substances 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 101710098620 Alpha-1,2-fucosyltransferase Proteins 0.000 description 4
- 241000894006 Bacteria Species 0.000 description 4
- TXCIAUNLDRJGJZ-UHFFFAOYSA-N CMP-N-acetyl neuraminic acid Natural products O1C(C(O)C(O)CO)C(NC(=O)C)C(O)CC1(C(O)=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(N=C(N)C=C2)=O)O1 TXCIAUNLDRJGJZ-UHFFFAOYSA-N 0.000 description 4
- 101100184475 Candida albicans (strain SC5314 / ATCC MYA-2876) MNN24 gene Proteins 0.000 description 4
- 241000255601 Drosophila melanogaster Species 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 101000987586 Homo sapiens Eosinophil peroxidase Proteins 0.000 description 4
- 101100488151 Kluyveromyces lactis (strain ATCC 8585 / CBS 2359 / DSM 70799 / NBRC 1267 / NRRL Y-1140 / WM37) YEA4 gene Proteins 0.000 description 4
- 101150093457 MNN2 gene Proteins 0.000 description 4
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical group CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 239000013604 expression vector Substances 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 102000044890 human EPO Human genes 0.000 description 4
- 210000003734 kidney Anatomy 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- LKKMLIBUAXYLOY-UHFFFAOYSA-N 3-Amino-1-methyl-5H-pyrido[4,3-b]indole Chemical compound N1C2=CC=CC=C2C2=C1C=C(N)N=C2C LKKMLIBUAXYLOY-UHFFFAOYSA-N 0.000 description 3
- 108010078791 Carrier Proteins Proteins 0.000 description 3
- 101001030665 Dictyostelium discoideum GDP-L-fucose synthase Proteins 0.000 description 3
- 241001149959 Fusarium sp. Species 0.000 description 3
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 102100030483 Histatin-1 Human genes 0.000 description 3
- 101000830048 Homo sapiens GDP-mannose 4,6 dehydratase Proteins 0.000 description 3
- 101001082500 Homo sapiens Histatin-1 Proteins 0.000 description 3
- 101001021281 Homo sapiens Protein HEXIM1 Proteins 0.000 description 3
- 108060003951 Immunoglobulin Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 241000699670 Mus sp. Species 0.000 description 3
- 241000221961 Neurospora crassa Species 0.000 description 3
- 241000320412 Ogataea angusta Species 0.000 description 3
- 102000004316 Oxidoreductases Human genes 0.000 description 3
- 108090000854 Oxidoreductases Proteins 0.000 description 3
- 102000000447 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Human genes 0.000 description 3
- 108010055817 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Proteins 0.000 description 3
- 241000235061 Pichia sp. Species 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 210000000805 cytoplasm Anatomy 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 235000011187 glycerol Nutrition 0.000 description 3
- 102000018358 immunoglobulin Human genes 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 230000003248 secreting effect Effects 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- 102100040842 3-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase FUT3 Human genes 0.000 description 2
- CERZMXAJYMMUDR-QBTAGHCHSA-N 5-amino-3,5-dideoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid Chemical compound N[C@@H]1[C@@H](O)CC(O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO CERZMXAJYMMUDR-QBTAGHCHSA-N 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 241000228245 Aspergillus niger Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000222122 Candida albicans Species 0.000 description 2
- 241001674013 Chrysosporium lucknowense Species 0.000 description 2
- 206010014561 Emphysema Diseases 0.000 description 2
- 102000003951 Erythropoietin Human genes 0.000 description 2
- 108090000394 Erythropoietin Proteins 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- 101710193897 Galactose transporter Proteins 0.000 description 2
- 101710103223 Galactose-proton symporter Proteins 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 101000739046 Homo sapiens RNA-binding protein PNO1 Proteins 0.000 description 2
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 2
- 241000170280 Kluyveromyces sp. Species 0.000 description 2
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 2
- 102000007330 LDL Lipoproteins Human genes 0.000 description 2
- 108010007622 LDL Lipoproteins Proteins 0.000 description 2
- 241001599018 Melanogaster Species 0.000 description 2
- 101100013699 Mus musculus Fut8 gene Proteins 0.000 description 2
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 2
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 2
- 241001452677 Ogataea methanolica Species 0.000 description 2
- 241001489174 Ogataea minuta Species 0.000 description 2
- 108091034117 Oligonucleotide Proteins 0.000 description 2
- 101100013703 Rattus norvegicus Fut8 gene Proteins 0.000 description 2
- 241000206572 Rhodophyta Species 0.000 description 2
- 241000235088 Saccharomyces sp. Species 0.000 description 2
- 102000013275 Somatomedins Human genes 0.000 description 2
- 101100013701 Sus scrofa FUT8 gene Proteins 0.000 description 2
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 2
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 2
- 241000499912 Trichoderma reesei Species 0.000 description 2
- LFTYTUAZOPRMMI-CFRASDGPSA-N UDP-N-acetyl-alpha-D-glucosamine Chemical compound O1[C@H](CO)[C@@H](O)[C@H](O)[C@@H](NC(=O)C)[C@H]1OP(O)(=O)OP(O)(=O)OC[C@@H]1[C@@H](O)[C@@H](O)[C@H](N2C(NC(=O)C=C2)=O)O1 LFTYTUAZOPRMMI-CFRASDGPSA-N 0.000 description 2
- LFTYTUAZOPRMMI-UHFFFAOYSA-N UNPD164450 Natural products O1C(CO)C(O)C(O)C(NC(=O)C)C1OP(O)(=O)OP(O)(=O)OCC1C(O)C(O)C(N2C(NC(=O)C=C2)=O)O1 LFTYTUAZOPRMMI-UHFFFAOYSA-N 0.000 description 2
- 101150044776 URA5 gene Proteins 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 229940095731 candida albicans Drugs 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 229940105423 erythropoietin Drugs 0.000 description 2
- -1 for example Chemical compound 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 210000004962 mammalian cell Anatomy 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 229950006780 n-acetylglucosamine Drugs 0.000 description 2
- CERZMXAJYMMUDR-UHFFFAOYSA-N neuraminic acid Natural products NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO CERZMXAJYMMUDR-UHFFFAOYSA-N 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 101150061302 och1 gene Proteins 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 210000004739 secretory vesicle Anatomy 0.000 description 2
- 230000009450 sialylation Effects 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 210000003412 trans-golgi network Anatomy 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 101150079396 trpC2 gene Proteins 0.000 description 2
- VRYALKFFQXWPIH-HSUXUTPPSA-N 2-deoxy-D-galactose Chemical compound OC[C@@H](O)[C@H](O)[C@H](O)CC=O VRYALKFFQXWPIH-HSUXUTPPSA-N 0.000 description 1
- GMJHZZCVWDJKFB-UHFFFAOYSA-N 4-(4-aminophenyl)benzene-1,3-diamine Chemical compound C1=CC(N)=CC=C1C1=CC=C(N)C=C1N GMJHZZCVWDJKFB-UHFFFAOYSA-N 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 1
- 102100021335 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase 9 Human genes 0.000 description 1
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 1
- 241001466460 Alveolata Species 0.000 description 1
- 102400000068 Angiostatin Human genes 0.000 description 1
- 108010079709 Angiostatins Proteins 0.000 description 1
- 108090000672 Annexin A5 Proteins 0.000 description 1
- 102000004121 Annexin A5 Human genes 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 240000006439 Aspergillus oryzae Species 0.000 description 1
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 1
- 241000228257 Aspergillus sp. Species 0.000 description 1
- 241000151861 Barnettozyma salicaria Species 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000244203 Caenorhabditis elegans Species 0.000 description 1
- 101100130886 Candida albicans (strain SC5314 / ATCC MYA-2876) MNT1 gene Proteins 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000195628 Chlorophyta Species 0.000 description 1
- 102100024539 Chymase Human genes 0.000 description 1
- 229940119334 Chymase inhibitor Drugs 0.000 description 1
- 108090000227 Chymases Proteins 0.000 description 1
- 241000251571 Ciona intestinalis Species 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 208000014567 Congenital Disorders of Glycosylation Diseases 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 241000199914 Dinophyceae Species 0.000 description 1
- 241000255313 Drosophila pseudoobscura Species 0.000 description 1
- 108010076282 Factor IX Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 241000223218 Fusarium Species 0.000 description 1
- 241000567178 Fusarium venenatum Species 0.000 description 1
- 108010093031 Galactosidases Proteins 0.000 description 1
- 102000002464 Galactosidases Human genes 0.000 description 1
- 102100039835 Galactoside alpha-(1,2)-fucosyltransferase 1 Human genes 0.000 description 1
- 102100040837 Galactoside alpha-(1,2)-fucosyltransferase 2 Human genes 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108010056771 Glucosidases Proteins 0.000 description 1
- 102000004366 Glucosidases Human genes 0.000 description 1
- 108010015899 Glycopeptides Proteins 0.000 description 1
- 102000002068 Glycopeptides Human genes 0.000 description 1
- 108030002309 Glycoprotein 3-alpha-L-fucosyltransferases Proteins 0.000 description 1
- 108010054017 Granulocyte Colony-Stimulating Factor Receptors Proteins 0.000 description 1
- 102100039622 Granulocyte colony-stimulating factor receptor Human genes 0.000 description 1
- 108010092372 Granulocyte-Macrophage Colony-Stimulating Factor Receptors Proteins 0.000 description 1
- 102000016355 Granulocyte-Macrophage Colony-Stimulating Factor Receptors Human genes 0.000 description 1
- 108010051696 Growth Hormone Proteins 0.000 description 1
- 206010053759 Growth retardation Diseases 0.000 description 1
- HSRJKNPTNIJEKV-UHFFFAOYSA-N Guaifenesin Chemical compound COC1=CC=CC=C1OCC(O)CO HSRJKNPTNIJEKV-UHFFFAOYSA-N 0.000 description 1
- 241000243976 Haemonchus Species 0.000 description 1
- 101000893701 Homo sapiens 3-galactosyl-N-acetylglucosaminide 4-alpha-L-fucosyltransferase FUT3 Proteins 0.000 description 1
- 101000819503 Homo sapiens 4-galactosyl-N-acetylglucosaminide 3-alpha-L-fucosyltransferase 9 Proteins 0.000 description 1
- 101001052793 Homo sapiens GDP-L-fucose synthase Proteins 0.000 description 1
- 101000885616 Homo sapiens Galactoside alpha-(1,2)-fucosyltransferase 1 Proteins 0.000 description 1
- 101000893710 Homo sapiens Galactoside alpha-(1,2)-fucosyltransferase 2 Proteins 0.000 description 1
- 101500025568 Homo sapiens Saposin-D Proteins 0.000 description 1
- 102000009438 IgE Receptors Human genes 0.000 description 1
- 108010073816 IgE Receptors Proteins 0.000 description 1
- 101000668058 Infectious salmon anemia virus (isolate Atlantic salmon/Norway/810/9/99) RNA-directed RNA polymerase catalytic subunit Proteins 0.000 description 1
- 102000004374 Insulin-like growth factor binding protein 3 Human genes 0.000 description 1
- 108090000965 Insulin-like growth factor binding protein 3 Proteins 0.000 description 1
- 108010072255 Integrin alpha3beta1 Proteins 0.000 description 1
- 108010047761 Interferon-alpha Proteins 0.000 description 1
- 102000006992 Interferon-alpha Human genes 0.000 description 1
- 102000003996 Interferon-beta Human genes 0.000 description 1
- 108090000467 Interferon-beta Proteins 0.000 description 1
- 102000008070 Interferon-gamma Human genes 0.000 description 1
- 108010074328 Interferon-gamma Proteins 0.000 description 1
- 102100031413 L-dopachrome tautomerase Human genes 0.000 description 1
- 101710093778 L-dopachrome tautomerase Proteins 0.000 description 1
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 208000030514 Leukocyte adhesion deficiency type II Diseases 0.000 description 1
- 241000237354 Lymnaea Species 0.000 description 1
- 108010090665 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase Proteins 0.000 description 1
- PKVZBNCYEICAQP-UHFFFAOYSA-N Mecamylamine hydrochloride Chemical compound Cl.C1CC2C(C)(C)C(NC)(C)C1C2 PKVZBNCYEICAQP-UHFFFAOYSA-N 0.000 description 1
- 208000007343 Melanotic Neuroectodermal Tumor Diseases 0.000 description 1
- 241000243190 Microsporidia Species 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- SQVRNKJHWKZAKO-LUWBGTNYSA-N N-acetylneuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)CC(O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-LUWBGTNYSA-N 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 230000004989 O-glycosylation Effects 0.000 description 1
- 241000489470 Ogataea trehalophila Species 0.000 description 1
- 241000826199 Ogataea wickerhamii Species 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 102000008108 Osteoprotegerin Human genes 0.000 description 1
- 108010035042 Osteoprotegerin Proteins 0.000 description 1
- 102100038551 Peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase Human genes 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 241000199919 Phaeophyceae Species 0.000 description 1
- 241000530350 Phaffomyces opuntiae Species 0.000 description 1
- 241000195887 Physcomitrella patens Species 0.000 description 1
- 241000235062 Pichia membranifaciens Species 0.000 description 1
- 102000029797 Prion Human genes 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 102100037294 RNA-binding protein PNO1 Human genes 0.000 description 1
- 108090001066 Racemases and epimerases Proteins 0.000 description 1
- 102000004879 Racemases and epimerases Human genes 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 101100454113 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KRE2 gene Proteins 0.000 description 1
- 241000242678 Schistosoma Species 0.000 description 1
- 102000003800 Selectins Human genes 0.000 description 1
- 108090000184 Selectins Proteins 0.000 description 1
- 102100029954 Sialic acid synthase Human genes 0.000 description 1
- 101710101071 Sialic acid synthase Proteins 0.000 description 1
- 102100038803 Somatotropin Human genes 0.000 description 1
- 108010006785 Taq Polymerase Proteins 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 101710162629 Trypsin inhibitor Proteins 0.000 description 1
- 229940122618 Trypsin inhibitor Drugs 0.000 description 1
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 1
- 101710091363 UDP-N-acetylglucosamine 2-epimerase Proteins 0.000 description 1
- 108010090473 UDP-N-acetylglucosamine-peptide beta-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 102100033782 UDP-galactose translocator Human genes 0.000 description 1
- 108010075920 UDP-galactose translocator Proteins 0.000 description 1
- 108010075202 UDP-glucose 4-epimerase Proteins 0.000 description 1
- 102100021436 UDP-glucose 4-epimerase Human genes 0.000 description 1
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 1
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 1
- 208000018756 Variant Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000370136 Wickerhamomyces pijperi Species 0.000 description 1
- 241000269368 Xenopus laevis Species 0.000 description 1
- GBXZONVFWYCRPT-KVTDHHQDSA-N [(2s,3s,4r,5r)-3,4,5,6-tetrahydroxy-1-oxohexan-2-yl] dihydrogen phosphate Chemical group OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](C=O)OP(O)(O)=O GBXZONVFWYCRPT-KVTDHHQDSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 108010061314 alpha-L-Fucosidase Proteins 0.000 description 1
- 102000012086 alpha-L-Fucosidase Human genes 0.000 description 1
- 108010012864 alpha-Mannosidase Proteins 0.000 description 1
- 102000019199 alpha-Mannosidase Human genes 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- FZCSTZYAHCUGEM-UHFFFAOYSA-N aspergillomarasmine B Natural products OC(=O)CNC(C(O)=O)CNC(C(O)=O)CC(O)=O FZCSTZYAHCUGEM-UHFFFAOYSA-N 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 208000005881 bovine spongiform encephalopathy Diseases 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000009395 breeding Methods 0.000 description 1
- 230000001488 breeding effect Effects 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 230000021164 cell adhesion Effects 0.000 description 1
- 230000012292 cell migration Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 239000003601 chymase inhibitor Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005584 early death Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 229960004222 factor ix Drugs 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 150000008195 galaktosides Chemical group 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 108010026195 glycanase Proteins 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000000122 growth hormone Substances 0.000 description 1
- 231100000001 growth retardation Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 210000005260 human cell Anatomy 0.000 description 1
- 229940100689 human protein c Drugs 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012678 infectious agent Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 102000028416 insulin-like growth factor binding Human genes 0.000 description 1
- 108091022911 insulin-like growth factor binding Proteins 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229960003130 interferon gamma Drugs 0.000 description 1
- 108010045648 interferon omega 1 Proteins 0.000 description 1
- 229960001388 interferon-beta Drugs 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 229940060155 neuac Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- XXUPLYBCNPLTIW-UHFFFAOYSA-N octadec-7-ynoic acid Chemical compound CCCCCCCCCCC#CCCCCCC(O)=O XXUPLYBCNPLTIW-UHFFFAOYSA-N 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 108040002068 peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase activity proteins Proteins 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 239000002797 plasminogen activator inhibitor Substances 0.000 description 1
- 230000007542 postnatal development Effects 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 239000008057 potassium phosphate buffer Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- AAEVYOVXGOFMJO-UHFFFAOYSA-N prometryn Chemical compound CSC1=NC(NC(C)C)=NC(NC(C)C)=N1 AAEVYOVXGOFMJO-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 210000003660 reticulum Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 125000005629 sialic acid group Chemical group 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000002753 trypsin inhibitor Substances 0.000 description 1
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 1
- 229960005356 urokinase Drugs 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/14—Fungi; Culture media therefor
- C12N1/16—Yeasts; Culture media therefor
- C12N1/18—Baker's yeast; Brewer's yeast
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/005—Glycopeptides, glycoproteins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mycology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Botany (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
Изобретение относится к области биотехнологии, в частности к рекомбинантной клетке-хозяину Pichia pastoris и гибридному вектору, который обеспечивает получение данной клетки-хозяина. Рекомбинантная клетка-хозяин Pichia pastoris включает каскад реакций фукозилирования, где ферменты составляют указанный каскад реакций. Указанная клетка-хозяин Pichia pastoris включает нуклеиновые кислоты, кодирующие ГДФ-маннозо-дегидратазу (GMD), ГДФ-кетодезоксиманнозо-эпимеразы/ГДФ-кетодезоксигалактозо-редуктазу (FX), переносчик ГДФ-фукозы (GFTr) и слитый белок, который содержит каталитический домен α1,6-фукозилтрасферазы ЕС 2.4.1.68, слитый с аминокислотами 1-36 Mnn2 S.cerevisiae. Гибридный вектор включает регуляторные элементы ДНК, которые являются функциональными в клетке-хозяине и которые функционально связаны с кодирующей последовательностью ДНК, кодирующей слитый белок, включающий аминокислоты 1-36 Mnn2 S.cerevisiae, слитый с каталитическим доменом α1,6-фукозилтрасферазы ЕС 2.4.1.68. Указанным вектором трансформируют клетку-хозяина Pichia pastoris. Предложенное изобретение позволяет создать клетку-хозяина Pichia pastoris, которая будет продуцировать гликопротеины с фукозилированными N-гликанами. 2 н. и 6 з.п. ф-лы, 6 ил., 3 пр.
Description
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
(1) Область техники
Настоящее изобретение относится к области гликобиологии, в частности к способам создания методами генетической инженерии клеток-хозяев, в которых отсутствует эндогенный каскад реакций фукозилирования N-гликанов гликопротеинов, с приданием способности продуцировать гликопротеины с фукозилированными N-гликанами.
(2) Описание известного уровня техники
Предназначенные для применения для людей терапевтические белки, которые являются гликозилированными, должны иметь сложные специфические для людей характеры N-гликозилирования. Обычно могло бы быть выгодным продуцирование терапевтических белков, используя бактериальные или эукариотические микроорганизмы, из-за (а) возможности быстрого продуцирования высоких концентраций белка; (b) возможности использования стерильных, хорошо контролируемых условий продукции (например, условий ГМФ); (c) возможности использования простых, химически определенных сред для роста; (d) легкости генетической манипуляции; (e) отсутствия заражения патогенами людей или животных; (f) возможности экспрессии широкого выбора белков, в том числе белков, плохо экспрессируемых в культуре клеток вследствие токсичности и т.п.; и (g) легкости извлечения белка (например, через секрецию в среду для культивирования). Однако прокариоты и низшие эукариоты обычно не продуцируют белки, имеющие сложные характеры N-гликозилирования. Поэтому для продуцирования терапевтических белков, как правило, используют клетки животных, если желательно, чтобы белок имел сложный характер N-гликозилирования, напоминающий характер N-гликозилирования у людей. Но существует ряд значительных недостатков в использовании клеток животных для продуцирования терапевтических белков.
Только некоторые терапевтические белки подходят для экспрессии в клетках животных (например, белки, не обладающие каким-либо цитотоксическим эффектом или другим эффектом, неблагоприятным для роста). Системы культивирования клеток животных являются обычно очень медленными, часто требуя свыше одной недели роста при тщательно контролируемых условиях для продуцирования какого-либо полезного количества представляющего интерес белка. Выходы белка, тем не менее, трудно сопоставляются с выходами белка при способах ферментации в микроорганизмах. Кроме того, для систем культивирования клеток обычно требуются сложные и дорогостоящие питательные вещества и кофакторы, такие как бычья фетальная сыворотка. Более того, рост может ограничиваться запрограммированной гибелью клеток (апоптозом).
Более того, клетки животных (в частности, клетки млекопитающих) в высокой степени чувствительны к вирусной инфекции или заражению. В некоторых случаях вирус или другой инфекционный агент может подвергать риску рост культуры, в то время как в других случаях агент может быть патогенном человека, превращающим продукт в виде терапевтического белка в продукт, негодный для его намеченного применения. Кроме того, для способов культивирования многих клеток требуется использование сложных, термочувствительных, происходящих из животных компонентов сред для роста, которые могут нести патогены, такие как прионы губчатой энцефалопатии крупного рогатого скота. Такие патогены трудно обнаружить и/или трудно удалить или полностью уничтожить без подвергания риску среды для роста. В любом случае использование клеток животных для продуцирования терапевтических белков делает необходимыми дорогие контроли качества для гарантии безопасности продукта.
Недавно было установлено, что низшие эукариоты, в частности дрожжи, можно генетически модифицировать, так чтобы они экспрессировали белки, имеющие сложные характеры N-гликозилирования, которые напоминают характер N-гликозилирования у людей или являются гуманизированными. Такие генетически модифицированные низшие эукариоты можно получить устранением выбранных эндогенных ферментов гликозилирования, которые вовлечены в продукцию N-гликанов с высоким содержанием маннозы, и введением различных комбинаций экзогенных ферментов, вовлеченных в создание сложных N-гликанов. Способы создания методами генетической инженерии дрожжей, которые продуцируют сложные N-гликаны, описаны в патенте США № 7029872 и опубликованных заявках на патенты США № 2004/0018590, 2005/0170452, 2006/0286637, 2004/0230042, 2005/0208617, 2004/0171826, 2005/0208617 и 2006/0160179. Например, можно выбрать или создать клетку-хозяина, истощенную по 1,6-маннозилтрансферазным активностям, которые в противном случае могли бы добавлять остатки маннозы на N-гликан на гликопротеине, и затем создать клетку-хозяина, включающую каждый из ферментов, вовлеченных в продукцию сложных N-гликанов, напоминающих N-гликаны человека.
Клетки животных и человека имеют каскад реакций с участием фукозилтрансферазы, который добавляет остаток фукозы к остатку GlcNAc (N-ацетилглюкозамина) на восстанавливающем конце N-гликанов на белке. Каскад реакций фукозилирования у людей состоит из ГДФ-маннозо-дегидратазы и ГДФ-кетодезоксиманнозо-эпимеразы/ГДФ-кетодезоксигалактозо-редуктазы (белка FX), обе из которых находятся в цитоплазме, которые, действуя координированным образом с общей целью, превращают ГДФ-маннозу в ГДФ-фукозу; переносчика ГДФ-фукозы, находящегося в мембране аппарата Гольджи, который переносит ГДФ-фукозу в аппарат Гольджи, и фукозилтрансферазы (Fut8), которая переносит остаток фукозы посредством образования 1,6-связи в 6 положение остатка GlcNAc на восстанавливающем конце N-гликана. В противоположность высшим эукариотам у многих низших эукариот, например дрожжей, отсутствуют ферменты, вовлеченные в каскад реакций фукозилирования, они продуцируют гликопротеины, которые не содержат фукозу (смотри, например, Bretthauer/Catellino, Biotechnol. Appl. Biochem. 30: 193-200 (1999); Rabina et al., Anal. Biochem. 286: 173-178 (2000)). Однако было установлено, что отсутствие фукозы на гликопротеинах выгодно в некоторых случаях. Например, при продукции моноклональных антител, молекул иммуноглобулинов, и родственных молекул было установлено, что удаление сахара фукозы с N-гликана иммуноглобулинов увеличивает или изменяет их связывание с выбранными рецепторами Ig, что вызывает изменения свойств, таких как антителозависимая клеточноопосредованная цитотоксичность или ADCC (смотри, например, опубликованные заявки на патенты США № 2005/0276805 и US2003/0157108).
Однако, хотя удаление фукозы с N-гликанов иммуноглобулинов, по-видимому, увеличивает активность ADCC, фукозилированные N-гликаны оказываются важными для других гликопротеинов. Например, делеция гена фукозилтрансферазы у мышей вызывает серьезное замедление роста, раннюю смерть во время постнатального развития и напоминающие эмфизему изменения в легком. Эти Fut8-/--нулевые мыши были избавлены от эмфиземаподобного фенотипа путем введения экзогенного TGF-бета 1. Кроме того, нарушенная активация, опосредуемая рецептором, была устранена введением снова гена Fut8, что демонстрирует, что фукозилирование остова является очень важным для правильного функционирования рецепторов факторов роста, таких как TGF-бета 1 и EGF (Wang et al., Meth. Enzymol. 417: 11-22 (2006)). В ткани легкого, происходящей из мышей Fut8-/-, утрата фукозилирования остова нарушает функционирование родственного рецепторам липопротеинов низкой плотности (LDL) белка-1 (LRP-1), что приводит к уменьшению эндоцитоза связывающего инсулиноподобный фактор роста (IGF) белка-3 (IGFBP-3) (Lee et al., J. Biochem. (Tokyo) 139: 391-8 (2006)). Для клеток эмбриональных фибробластов мышей Fut8-/- опосредуемая интегрином α3β1 миграция клеток отменяется и снижается активация клеток, устанавливая, что остовая фукоза является существенной для функционирования белков (Zhao et al., J. Biol. Chem., 281: 38343-38350 (2006)). Кроме того, могут быть ситуации, при которых желательно продуцирование композиций антител, в которых по крайней мере часть антител являются фукозилированными для увеличения активности ADCC. Поэтому в особых случаях будет полезным обеспечение являющихся низшими эукариотами организмов и клеток, способных продуцировать фукозилированные гликопептиды. Соответственно, разработка способов и материалов для получения клеток-хозяев, являющихся низшими эукариотами, таких как грибы и дрожжи, и, в частности, таких дрожжей, как Pichia pastoris, K. lactis и другие, могла бы способствовать разработке генетически усиленных штаммов дрожжей для рекомбинантной продукции фукозилированных гликопротеинов.
КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ
Соответственно, настоящим изобретением обеспечиваются способы и материалы для создания систем экспрессии в низших эукариотах, которые можно использовать для продукции рекомбинантных, фукозилированных гликопротеинов. В частности, обеспечиваются векторы, содержащие гены, кодирующие один или несколько ферментов, вовлеченных в каскад реакций гликозилирования у млекопитающих, и клетки-хозяева, являющиеся низшими эукариотами, которые были трансформированы векторами для получения клеток-хозяев, которые способны продуцировать фукозилированные гликопротеины. Векторы, клетки-хозяева и способы особенно хорошо адаптированы к применению в экспрессионных системах, основанных на клетках-хозяевах, являющихся дрожжами и грибами, таких как Pichia pastoris.
В одном варианте осуществления настоящим изобретением обеспечиваются способы и материалы для трансформации клеток-хозяев, являющихся низшими эукариотами, одним или несколькими векторами, кодирующими ферментативные активности для превращения ГДФ-маннозы в ГДФ-фукозу и для присоединения фукозы к N-гликану, продуцируемому клеткой-хозяином. В дальнейших вариантах осуществления настоящее изобретение включает гибридные векторы, кодирующие слитый белок, включающий каталитический домен фермента каскада реакций фукозилирования, слитый с неприродной лидерной последовательностью, которая кодирует последовательность для направленной доставки, которая направляет слитый пептид в соответствующее положение в эндоплазматическом ретикулуме, аппарате Гольджи на ранней стадии или аппарате Гольджи на поздней стадии. Например, каталитический домен фукозилтрансферазы сливают с лидерным пептидом, который направляет каталитический домен в положение внутри эндоплазматического ретикулума, аппарата Гольджи на ранней стадии или аппарата Гольджи на поздней стадии. В дальнейших вариантах осуществления клетку-хозяина, являющегося низшим эукариотом, трансформируют вектором, кодирующим ГДФ-фукозо-трансферазу, которая переносит ГДФ-фукозу из цитоплазмы внутрь аппарата Гольджи.
Настоящим изобретением обеспечивается рекомбинантная клетка-хозяин, являющийся низшим эукариотом, включающая каскад реакций фукозилирования. В конкретных аспектах клеткой-хозяином являются дрожжи или нитчатый гриб, например дрожжи Pichia sp., такие как Pichia pastoris.
В дальнейших аспектах клетка-хозяин, кроме того, не демонстрирует активность α1,6-маннозилтрансферазы по отношению к N-гликану на гликопротеине и включает каталитический домен α1,2-маннозидазы, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности α1,2-маннозидазы в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина, посредством чего при прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу Man5GlcNAc2.
В дальнейших аспектах вышеуказанная клетка-хозяин, кроме того, включает каталитический домен GlcNAc-трансферазы I, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности GlcNAc-трансферазы I в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина, посредством чего при прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу GlcNAcMan5GlcNAc2.
В дальнейших аспектах вышеуказанная клетка-хозяин, кроме того, включает каталитический домен маннозидазы II, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности маннозидазы II в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина, посредством чего при прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу GlcNAcMan3GlcNAc2.
В дальнейших аспектах вышеуказанная клетка-хозяин, кроме того, включает каталитический домен GlcNAc-трансферазы II, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности GlcNAc-трансферазы II в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина, посредством чего при прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу GlcNAc2Man3GlcNAc2.
В дальнейших аспектах вышеуказанная клетка-хозяин, кроме того, включает каталитический домен галактозотрансферазы II, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности галактозотрансферазы II в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина, посредством чего при прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу Gal2GlcNAc2Man3GlcNAc2.
В дальнейших аспектах вышеуказанная клетка-хозяин, кроме того, включает каталитический домен сиалилтрансферазы, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности сиалилтрансферазы в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина, посредством чего при прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу NANA2Gal2GlcNAc2Man3GlcNAc2.
Трансформируя вышеуказанные клетки-хозяева нуклеиновой кислотой, кодирующей конкретный гликопротеин, можно продуцировать композиции гликопротеинов, которые включают множество гликоформ, при этом каждая гликоформа включает по крайней мере один присоединенный к ней N-гликан, причем композиция гликопротеинов, тем самым, включает множество N-гликанов, в котором преобладающая гликоформа включает желаемый фукозилированый N-гликан. В зависимости от конкретного желаемого гликопротеина можно использовать способы настоящего изобретения для получения композиций гликопротеинов, в которых преобладающая N-гликоформа присутствует в количестве, превышающем на 5-80 мольных процента количество следующей самой преобладающей N-гликоформы; в дальнейших вариантах осуществления преобладающая N-гликоформа может присутствовать в количестве, превышающем на 10-40 мольных процента, 20-50 мольных процента, 30-60 мольных процента, 40-70 мольных процента, 50-80 мольных процента количество следующей самой преобладающей N-гликоформы. В других вариантах осуществления преобладающая N-гликоформа является желаемой фукозилированной N-гликоформой и присутствует в количестве, составляющем более 25 мольных процентов, более 35 мольных процентов, более 50 мольных процентов, более 60 мольных процентов или более 70 мольных процентов от общего количества N-гликанов.
Таким образом, обеспечиваются клетки-хозяева для продуцирования композиций гликопротеинов, включающих множество гликоформ, при этом каждая гликоформа включает по крайней мере один присоединенный к ней N-гликан, причем композиция гликопротеинов, тем самым, включает множество N-гликанов, в котором преобладающий N-гликан выбирают из группы, состоящей из Man5GlcNAc2, GlcNAcMan5GlcNAc2, Man3GlcNAc2, GlcNAcMan3GlcNAc2, GlcNAc2Man3GlcNAc2, GalGlcNAc2Man3GlcNAc2, Gal2GlcNAc2Man3GlcNAc2, NANAGal2GlcNAc2Man3GlcNAc2, и NANA2Gal2GlcNAc2Man3GlcNAc2.
В дальнейших аспектах более чем 25 мольных процентов множества фукозилированных N-гликанов состоит, по существу, из фукозилированной гликоформы, которую выбирают из группы, состоящей из Man5GlcNAc2, GlcNAcMan5GlcNAc2, Man3GlcNAc2, GlcNAcMan3GlcNAc2, GlcNAc2Man3GlcNAc2, GalGlcNAc2Man3GlcNAc2, Gal2GlcNAc2Man3GlcNAc2, NANAGal2GlcNAc2Man3GlcNAc2 и NANA2Gal2GlcNAc2Man3GlcNAc2.
Во все еще дальнейших аспектах более чем 25 мольных процентов, более чем 35 мольных процентов, более чем 50 мольных процентов, более чем 60 мольных процентов, более чем 75 мольных процентов или более чем 90 мольных процентов множества N-гликанов состоит, по существу, из фукозилированной гликоформы, которую выбирают из группы, состоящей из Man5GlcNAc2, GlcNAcMan5GlcNAc2, Man3GlcNAc2, GlcNAcMan3GlcNAc2, GlcNAc2Man3GlcNAc2, GalGlcNAc2Man3GlcNAc2, Gal2GlcNAc2Man3GlcNAc2, NANAGal2GlcNAc2Man3GlcNAc2 и NANA2Gal2GlcNAc2Man3GlcNAc2.
В вышеуказанной композиции гликопротеинов фукоза находится в α1,3-связи с GlcNAc на восстанавливающем конце N-гликана, α1,6-связи с GlcNAc на восстанавливающем конце N-гликана, α1,2-связи с Gal на невосстанавливающем конце N-гликана, α1,3-связи с GlcNAc на невосстанавливающем конце N-гликана или α1,4-связи с GlcNAc на невосстанавливающем конце N-гликана.
Следовательно, в конкретных аспектах вышеуказанных композиций гликопротеинов фукоза гликоформы находится в α1,3-связи или α1,6-связи с образованием гликоформы, выбираемой из группы, состоящей из Man5GlcNAc2(Fuc), GlcNAcMan5GlcNAc2(Fuc), Man3GlcNAc2(Fuc), GlcNAcMan3GlcNAc2(Fuc), GlcNAc2Man3GlcNAc2(Fuc), GalGlcNAc2Man3GlcNAc2(Fuc), Gal2GlcNAc2Man3GlcNAc2(Fuc), NANAGal2GlcNAc2Man3GlcNAc2(Fuc) и NANA2Gal2GlcNAc2Man3GlcNAc2(Fuc); в α1,3-связи или α1,4-связи с образованием гликоформы, выбираемой из группы, состоящей GlcNAc(Fuc)Man5GlcNAc2, GlcNAc(Fuc)Man3GlcNAc2, GlcNAc2(Fuc1-2)Man3GlcNAc2, GalGlcNAc2(Fuc1-2)Man3GlcNAc2, Gal2GlcNAc2(Fuc1-2)Man3GlcNAc2, NANAGal2GlcNAc2(Fuc1-2)Man3GlcNAc2 и NANA2Gal2GlcNAc2(Fuc1-2)Man3GlcNAc2; или в α1,2-связи с образованием гликоформы, выбираемой из группы, состоящей Gal(Fuc)GlcNAc2Man3GlcNAc2, Gal2(Fuc1-2)GlcNAc2Man3GlcNAc2, NANAGal2(Fuc1-2)GlcNAc2Man3GlcNAc2 и NANA2Gal2(Fuc1-2)GlcNAc2Man3GlcNAc2.
В других аспектах композиции гликопротеинов настоящего изобретения включают композиции, в которых вышеуказанная N-гликоформа присутствует на уровне, превышающем на приблизительно 5-80 мольных процентов, 10-40 мольных процентов, 20-50 мольных процентов, 30-60 мольных процентов, 40-70 мольных процентов или 50-80 мольных процентов уровень следующей самой преобладающей N-гликоформы.
Определения
Используемые здесь термины «N-гликан» и «гликоформа» используются взаимозаменяемо и относятся к N-связанному олигосахариду, например олигосахариду, который присоединен с помощью связи аспарагин-N-ацетилглюкозамин к остатку аспарагина полипептида. N-связанные гликопротеины содержат остаток N-ацетилглюкозамина, связанный с амидным азотом остатка аспарагина в белке. Преобладающими сахарами, обнаруженными на гликопротеинах, являются глюкоза (Glc), галактоза (Gal), манноза (Man), фукоза (Fuc), N-ацетилгалактозамин (GalNAc), N-ацетилглюкозамин (GlcNAc) и сиаловая кислота (например, N-ацетилнейраминовая кислота (NANA)). Процессирование сахарных групп происходит котрансляционно в просвете эндоплазматического ретикулума и продолжается в аппарате Гольджи для N-связанных гликопротеинов.
N-гликаны имеют общий пентасахаридный остов Man3GlcNAc2. N-гликаны отличаются по числу ветвей (антенн), включающих периферические сахара (например, GlcNAc, галактозу, фукозу и сиаловую кислоты), которые добавляются к остовой структуре Man3GlcNAc2, которая также упоминается как «триманнозный остов», «пентасахаридный остов» или «пауциманнозный остов». N-гликаны классифицируют в соответствии с их разветвленными составными частями (например, с высоким содержанием маннозы, сложные или гибридные). Тип N-гликана «с высоким содержанием маннозы» имеет пять или более остатков маннозы. N-гликан «сложного» типа обычно имеет по крайней мере один GlcNAc, присоединенный к маннозному плечу «триманнозного» остова с помощью 1,3-связи, и по крайней мере один GlcNAc, присоединенный к маннозному плечу «триманнозного» остова с помощью 1,6-связи. Сложные N-гликаны могут также иметь остатки галактозы и N-ацетилгалактозамина, которые необязательно модифицированы сиаловой кислотой или производными (например, «NANA» или «NeuAc», где «Neu» относится к нейраминовой кислоте, а «Ac» относится к ацетилу). Сложные N-гликаны могут также иметь внутрицепочечные замены, включающие «биссекторный» GlcNAc и остовую фукозу («Fuc»). В качестве примера, когда N-гликан включает биссекторный GlcNAc в триманнозном остове, структуру можно представить как Man3GlcNAc2(GlcNAc) или Man3GlcNAc3. Когда N-гликан включает остовую фукозу, присоединенную к триманнозному остову, структуру можно представить как Man3GlcNAc2(Fuc). Сложные N-гликаны могут также иметь множественные антенны на «триманнозном остове», часто упоминаемые как «множественные антенные гликаны». «Гибридный» N-гликан имеет по крайней мере один GlcNAc, присоединенный к крайней маннозе маннозного плеча триманнозного остова с помощью 1,3-связи, и ноль или более манноз, присоединенных к маннозному плечу триманнозного остова с помощью 1,6-связи. Различные N-гликаны также упоминаются как «гликоформы».
Используемые здесь сокращения являются обычно используемыми в данной области техники сокращениями, смотри, например, сокращения сахаров выше. Другие обычные сокращения включают «PNGase», или «гликаназу», или «глюкозидазу, все из которых относятся к пептид-N-гликозидазе F (EC 3.2.2.18).
Используемый здесь термин «контролирующая экспрессию последовательность» относится к полинуклеотидным последовательностям, которые необходимы для оказания влияния на экспрессию кодирующих последовательностей, с которыми они функционально связаны. Контролирующие экспрессию последовательности являются последовательностями, которые контролируют транскрипцию, посттранскрипционные события и трансляцию последовательностей нуклеиновых кислот. Контролирующие экспрессию последовательности включают последовательность для соответствующей инициации, терминации транскрипции, промотор и последовательности - энхансеры, действенные сигналы процессирования РНК, такие как сигналы сплайсинга и полиаденилирования, последовательности, которые стабилизируют цитоплазматическую мРНК, последовательности, которые усиливают эффективность трансляции (например, сайты связывания рибосом), последовательности, которые усиливают стабильность белка, и, при желании, последовательности, которые усиливают секрецию белка. Природа таких контролирующих последовательностей различается в зависимости от организма хозяина, у прокариот такие контролирующие последовательности, как правило, включают промотор, сайт связывания рибосом и последовательность для терминации транскрипции. Подразумевается, что термин «контролирующие последовательности» включает, как минимум, все компоненты, присутствие которых необходимо для экспрессии, и также может включать дополнительные компоненты, присутствие которых является выгодным, например лидерные последовательности и последовательности партнеров по слиянию.
Подразумевается, что используемый здесь термин «рекомбинантная клетка-хозяин» («клетка-хозяин для экспрессии», «система хозяина для экспрессии», «экспрессионная система» или просто «клетка-хозяин») относится к клетке, в которую введен рекомбинантный вектор. Следует понимать, что такие термины, как подразумевается, относятся не только к конкретной рассматриваемой клетке, но также к потомству такой клетки. Поскольку определенные модификации могут происходить в последующих поколениях вследствие или мутации, или влияний окружающей среды, такое потомство может, в действительности, не быть идентичным родительской клетке, но все еще включаться в объем используемого здесь термина «клетка-хозяин». Рекомбинантная клетка-хозяин может быть выделенной клеткой или линией клеток, выращиваемой в культуре, или может быть клеткой, постоянно находящейся в живой ткани или организме.
Термин «эукариотическая» относится к содержащей ядро клетке или организму и включает клетки насекомых, клетки растений, клетки млекопитающих, клетки животных и клетки низших эукариот.
Термин «клетки низших эукариот» включает дрожжи, грибы, воротничковые жгутиконосцы, микроспоридии, альвеоляты (например, динофлагелляты), страменопилы (например, бурые водоросли, простейшие), родофиты (например, красные водоросли), растения (например, зеленые водоросли, клетки растений, мох) и другие одноклеточные организмы. Дрожжи и грибы включают, но без ограничения, Pichia pastoris, Pichia finlandica, Pichia trehalophila, Pichia koclamae, Pichia membranaefaciens, Pichia minuta (Ogataea minuta, Pichia lindneri), Pichia opuntiae, Pichia termotolerans, Pichia salictaria, Pichia guercuum, Pichia pijperi, Pichia stiptis, Pichia methanolica, Pichia sp., Saccharomyces cerevisiae, Saccharomyces sp., Hansenula polymorpha, Kluyveromyces sp., Kluyveromyces lactis, Candida albicans, Aspergillus nidulans, Aspergillus niger, Aspergillus oryzae, Trichoderma reesei, Chrysosporium lucknowense, Fusarium sp., Fusarium gramineum, Fusarium venenatum, Physcomitrella patens и Neurospora crassa, Pichia sp., любой Saccharomyces sp., Hansenula polymorpha, любой Kluyveromyces sp., Candida albicans, любой Aspergillus sp., Trichoderma reesei, Chrysosporium lucknowense, любой Fusarium sp., и Neurospora crassa.
Используемый здесь термин «пептид» относится к короткому полипептиду, например полипептиду, длина которого обычно меньше приблизительно 50 аминокислот и более обычно меньше приблизительно 30 аминокислот. Используемый здесь термин охватывает аналоги и миметики, которые воспроизводят структурную и, следовательно, биологическую функцию.
Предполагается, что используемый здесь термин «в преобладающей степени» или такие варианты, как «преобладающий» или «который является преобладающим», означают разновидность гликана, которая присутствует в наибольшем молярном проценте (%) общего количества N-гликанов после того, как гликопротеин был обработан N-гликозидазой и высвободившиеся гликаны проанализированы с помощью масс-спектрометрии, например MALDI-TOF MS. Другими словами, выражением «в преобладающей степени» определяется, что индивидуальный объект, такой как конкретная гликоформа, присутствует в большем молярном проценте, чем какой-либо другой индивидуальный объект. Например, если композиция состоит из разновидности А, присутствующей в 40 молярных процентах, разновидности В, присутствующей в 35 молярных процентах, и разновидности С, присутствующей в 25 молярных процентах, композиция включает в преобладающей степени разновидность А.
Кроме случаев, определенных особо, все технические и научные термины, используемые здесь, имеют значение, одинаковое со значением, в котором они обычно понимаются специалистом со средним уровнем компетентности в области техники, к которой относится это изобретение. Ниже описываются приводимые в качестве примеров способы и материалы, хотя при осуществлении на практике настоящего изобретения могут также использоваться способы и материалы, схожие с описанными здесь способами или материалами или эквивалентные им, и они будут очевидны квалифицированным в данной области техники специалистам. Все публикации и другие ссылки, упоминаемые здесь, полностью включены посредством ссылки. В конфликтной ситуации будут руководствоваться описанием настоящего изобретения, в том числе определениями. Материалы, способы и примеры являются только иллюстрацией и не означают ограничение.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На фиг. 1 иллюстрируется каскад реакций фукозилирования, представленный во многих клетках высших эукариот.
На фиг. 2 демонстрируются стадии глико-инженерии, требуемые для получения рекомбинантных дрожжей, способных продуцировать фукозилированные гликопротеины. Эндогенная ГДФ-манноза, присутствующая в цитоплазме дрожжей, превращается в ГДФ-фукозу под действием ГДФ-маннозо-дегидратазы (GMD) и бифункционального фермента FX. Впоследствии продукт перемещается в аппарат Гольджи с помощью переносчика ГДФ-фукозы (GFTr), и фукоза переносится на акцепторный гликан с помощью α-1,6-фукозилтрансферазы (FUT8). Ферменты показаны голубым текстом, а промежуточные метаболические продукты - черным текстом. ГДФ-kdMan (ГДФ-4-кето-6-дезоксиманноза) и ГДФ-kdGal (ГДФ-4-кето-6-дезоксигалактоза) являются промежуточными продуктами при превращении ГДФ-маннозы в ГДФ-фукозу.
На фиг. 3А демонстрируются векторы, используемые при создании штаммов дрожжей, продуцирующих фукозилированные гликопротеины. Изображен экспрессионный вектор pSH995, в который введены гены биосинтеза и переноса фукозы. Введение генов, требуемых для биосинтеза и переноса фукозы, в pSH995 приводило к получению вектора pSH1022.
На фиг. 3В демонстрируется вектор pSH1022. В (В) показаны фланкирующие районы локусов TRP2, используемые для интеграции генов в геном Pichia; преобладающий селектируемый маркер NATr; экспрессирующая GAPDH-CYC кассета и основа плазмиды pUC19.
На фиг. 4А демонстрируется изображение, полученное при анализе MALDI-TOF N-гликанов, высвободившихся из EPO крысы, демонстрирующее, что штамм YSH661 Pichia pastoris (штамм RDP974, трансформированный вектором pSH1022, содержащим гены для каскада реакций фукозилирования) продуцировал rEPO, включающий N-гликаны Gal2GlcNAc2Man3GlcNAc2(Fuc) и Gal2GlcNAc2Man3GlcNAc2. N-гликаны Gal2GlcNAc2Man3GlcNAc2(Fuc) находятся внутри прямоугольника.
На фиг. 4В демонстрируется изображение, полученное при анализе MALDI-TOF N-гликанов, высвободившихся из EPO крысы, демонстрирующее, что контрольный штамм YSH660 (штамм RDP974, трансформированный контрольным вектором pSH995) продуцировал только rEPO с нефукозилированными N-гликанами или N-гликанами без фукозы Gal2GlcNAc2Man3GlcNAc2.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Настоящим изобретением обеспечиваются способы и материалы для создания методами генетической инженерии клеток-хозяев, способных продуцировать белки гликопротеины, которые имеют фукозилированные N-гликаны. Хотя способы и материалы продемонстрированы с помощью примеров в дрожжах Pichia pastoris, которые не обладают эндогенным каскадом реакций фукозилирования, способы и материалы можно также использовать для создания методами генетической инженерии других низших эукариот, таких как грибы, прокариот и таких высших эукариот, которые не имеют эндогенного каскада реакций фукозилирования, например клеток насекомых. В других вариантах осуществления способы и материалы можно использовать для создания методами генетической инженерии клеток высших эукариот, которые не имеют эндогенного каскада реакций фукозилирования, но в которых желательно увеличить степень фукозилирования, присутствующую в гликопротеинах, продуцируемых такими клетками-хозяевами.
Как правило, способ настоящего изобретения включает получение клетки-хозяина, способной продуцировать фукозилированные гликопротеины, путем введения в клетку-хозяина нуклеиновых кислот, кодирующих такие ферменты или ферментативные активности, которые вовлечены в каскад реакций фукозилирования, которые при введении в клетку-хозяина будут предоставлять клетке способность продуцировать фукозилированные гликопротеины. Эти нуклеиновые кислоты включают, например, нуклеиновые кислоты, кодирующие ГДФ-маннозо-4,6-дегидратазную активность, ГДФ-кетодезоксиманнозо-эпимеразную активность/ГДФ-кетодезоксигалактозо-редуктазную активность, белок-переносчик ГДФ-фукозы и фукозилтрансферазную активность. Общий вид каскада реакций фукозилирования у высших эукариот показан на фиг. 1.
ГДФ-маннозо-4,6-дегидратаза (GMD) (EC 4.2.1.47), превращающая ГДФ-маннозу в ГДФ-4-кето-6-дезоксиманнозу в присутствии НАД, была идентифицирована в ряде видов. GMD человека (hGMD) кодируется нуклеотидной последовательностью, показанной в SEQ ID NO: 1, и имеет аминокислотную последовательность, показанную в SEQ ID NO: 2. Гомологичные гены с ГДФ-маннозо-дегидратазной активностью включают GMD свиньи (Broschat et al., Eur. J. Biochem., 153(2): 397-401 (1985)), GMD Caenorhabditis elegans и GMD Drosophila melanogaster (смотри, например, Rhomberg et al., FEBS J., 273: 2244-56 (2006)), Arabidopsis thaliana (смотри, например, Nakayama et al., Glycobiology, 13: 673-80 (2003)) и E.coli (Somoza et al., Structure, 8: 123-35 (2000)).
ГДФ-кетодезоксиманнозо-эпимераза/ГДФ-кетодезоксигалактозо-редуктаза (ГДФ-L-фукозосинтаза, EC 1.1.1.271) является бифункциональным ферментом, который был идентифицирован как у эукариот, так и у прокариот. ГДФ-кетодезоксиманнозо-эпимераза/ГДФ-кетодезоксигалактозо-редуктаза человека называется белком FX (также известным как hFX или GER). Нуклеотидная последовательность, кодирующая hFX, показана в SEQ ID NO: 3. Белок hFX имеет аминокислотную последовательность, показанную в SEQ ID NO: 4.
Переносчик ГДФ-фукозы был идентифицирован в нескольких видах. Установлено, что переносчик ГДФ-фукозы человека (hGFTr) имеет отношение к врожденным нарушениям гликозилирования-II (CDG-II) (Lubke et al., Nat. Genet. 28: 73-6 (2001)). Также известное как недостаток адгезии лейкоцитов II (LAD II), нарушение, как обнаружено, происходит в результате патологического отклонения в фукозилировании лигандов селектинов (Roos and Law, Blood Cells Mol. Dis. 27: 1000-4 (2001)). Нуклеотидная последовательность, кодирующая hGFTr, показана в SEQ ID NO: 5, а аминокислотная последовательность hGFTr показана в SEQ ID NO: 6. Были идентифицированы гомологичные гены с активностью переносчика ГДФ-фукозы в других видах, таких как Drosophila melanogaster (Ishikawa et al., Proc. Natl. Acad. Sci. U.S.A. 102: 18532-7 (2005)), печени крыс (Puglielli and Hirschberg, J. Biol. Chem. 274: 35596-60 (1999)), и предполагаемый гомолог СНО (Chen et al., Glycobiology, 15: 259-69 (2005)).
Был идентифицирован ряд фукозилтрансфераз (смотри Breton et al., Glycobiol. 8: 87-94 (1997); Becker, Lowe, Glycobiol. 13: 41R-53R (2003); Ma et al., Glycobiol. 16: 158R-184R (2006)), например, α1,2-фукозилтрасфераза (ЕС 2.4.1.69, кодируемая FUT1 и FUT2), α1,3-фукозилтрасфераза (гликопротеин-3-α-L-фукозилтрасфераза, ЕС 2.4.1.214, кодируемая FUT3-FUT7 и FUT9), α1,4-фукозилтрасфераза (ЕС 2.4.1.65, кодируемая FUT3) и α1,6-фукозилтрасфераза (гликопротеин-6-α-L-фукозилтрасфераза, ЕС 2.4.1.68, кодируемая FUT8). Как правило, α1,2-фукозилтрасфераза переносит фукозу на концевой остаток галактозы в N-гликане через образование α1,2-связи. Как правило, α1,3-фукозилтрасфераза и α1,4-фукозилтрасфераза переносят фукозу на остаток GlcNAc на восстанавливающем конце N-гликана.
Как правило, α1,6-фукозилтрасферазы переносят фукозу через образование α1,6-связи на остаток GlcNAc на восстанавливающем конце N-гликанов (связанный с аспарагином GlcNAc). Как правило, для α1,6-фукозилтрасферазы требуется концевой остаток GlcNAc на восстанавливающем конце по крайней мере одной ветви триманнозного остова для того, чтобы она могла добавить фукозу к GlcNAc на восстанавливающем конце. Однако была идентифицирована α1,6-фукозилтрасфераза, для которой требуется концевой галактозидный остаток на невосстанавливающем конце для того, чтобы она могла добавить фукозу к GlcNAc на восстанавливающем конце (Wilson et al., Biochim. Biophys. Res. Comm. 72: 909-916 (1976)) и Lin et al. (Glycobiol. 4: 895-901 (1994)). Было установлено, что в клетках яичника китайского хомячка с недостатком GlcNAc-трансферазы I α1,6-фукозилтрасфераза будет фукозилировать N-гликаны Man4GlcNAc2 и Man5GlcNAc2. Аналогичным образом, α1,3-фукозилтрасфераза переносит фукозу на остаток GlcNAc на восстанавливающем конце N-гликанов, но через образование α1,3-связи, обычно со специфичностью в отношении N-гликанов с одним незамещенным невосстанавливающим концевым остатком GlcNAc. N-гликановые продукты этого фермента присутствуют в растениях, у насекомых и некоторых других беспозвоночных (например, Schistosoma, Haemonchus, Lymnaea). Однако в патенте США № 7094530 описывается 1,3-фукозилтрасфераза, выделенная из линии моноцитарных клеток ТНР-1.
1,6-Фукозилтрасфераза человека (hFUT8) была идентифицирована Yamaguchi et al. (Cytogenet. Cell. Genet. 84: 58-6 (1999)). Нуклеотидная последовательность, кодирующая FUT8 человека, показана в SEQ ID NO: 7. Аминокислотная последовательность hFUT8 показана в SEQ ID NO: 8. Были идентифицированы гомологичные гены с активностью FUT8 в других видах, такие как FUT8 крысы (rFUT8), имеющая аминокислотную последовательность, показанную в SEQ ID NO: 10, и кодируемая нуклеотидной последовательностью, показанной в SEQ ID NO: 9, FUT8 мыши (mFUT8), имеющая аминокислотную последовательность, показанную в SEQ ID NO: 12, и кодируемая нуклеотидной последовательностью, показанной в SEQ ID NO: 11, и FUT8 свиньи (pFUT8), имеющая аминокислотную последовательность, показанную в SEQ ID NO: 14, и кодируемая нуклеотидной последовательностью, показанной в SEQ ID NO: 13. FUT8 была также идентифицирована в клетках СНО (Yamane-Ohnuki et al., Biotechnol. Bioeng. 87: 614-622 (2004)), клетках COS почки обезьяны (Clarke and Watkins, Glycobiol. 9: 191-202 (1999)) и клетках цыпленка (Coullin et al., Cytogenet. Genome Res. 7: 234-238 (2002)). Клонирование и характеристика фукозилтрансфераз из C. elegans и D. melanogaster описываются Paschinger и др. (Glycobiol. 15: 463-474 (2005)). Были идентифицированы предполагаемые 1,6-фукозилтрасферазы Ciona intestinalis, Drosophila pseudoobscura, Xenopus laevis и Danio rerio (входящие номера в GenBank AJ515151, AJ830720, AJ514872 и AJ781407, соответственно).
Вышеупомянутые ферменты или активности каскада реакций фукозилирования кодируются нуклеиновыми кислотами. Нуклеиновые кислоты могут быть ДНК или РНК, но обычно нуклеиновые кислоты являются ДНК, поскольку предпочтительно, чтобы нуклеиновые кислоты, кодирующие ферменты или активности каскада реакций фукозилирования, были стабильно интегрированы в геном клеток-хозяев. Каждая из нуклеиновых кислот, кодирующих ферменты или активности каскада реакций фукозилирования, функционально связана с регуляторными последовательностями, которые делают возможной экспрессию ферментов или активностей каскада реакций фукозилирования. Такие регуляторные последовательности включают промотор и необязательно энхансер, находящийся 5' от нуклеиновой кислоты, кодирующей фермент или активность каскада реакций фукозилирования, и сайт терминации транскрипции, находящийся 3' от нуклеиновой кислоты, кодирующей фермент или активность каскада реакций фукозилирования. Нуклеиновая кислота также, как правило, дополнительно включает 5' нетранслируемый район, имеющий сайт связывания рибосом, и 3' нетранслируемый район, имеющий сайт полиаденилирования. Нуклеиновая кислота часто является компонентом вектора, такого как плазмида, который способен реплицироваться в клетках, в которых экспрессируется фермент или активность каскада реакций фукозилирования. Вектор может также содержать маркер, делающий возможным отбор клеток, трансформированных вектором. Однако некоторые типы клеток, в частности дрожжи, можно успешно трансформировать нуклеиновой кислотой, в которой отсутствуют последовательности векторов.
Как правило, клетки-хозяева, трансформированные нуклеиновыми кислотами, кодирующими один или несколько ферментов или активностей каскада реакций фукозилирования, дополнительно включают одну или несколько нуклеиновых кислот, кодирующих желаемые гликопротеины. Как и для ферментов каскада реакций фукозилирования, нуклеиновые кислоты, кодирующие гликопротеины, функционально связаны с регуляторными последовательностями, которые делают возможной экспрессию гликопротеинов. Нуклеиновые кислоты, кодирующие гликопротеины, можно амплифицировать из линий клеток, которые, как известно, экспрессируют гликопротеин, используя праймеры к консервативным районам гликопротеина (смотри, например, Marks et al., J. Mol. Biol.: 581-596 (1991)). Нуклеиновые кислоты можно также синтезировать de novo на основе последовательностей в научной литературе. Нуклеиновые кислоты можно также синтезировать путем удлинения перекрывающихся олигонуклеотидов, охватывающих желаемую последовательность (смотри, например, Caldas et al., Protein Engineering, 13: 353-360 (2000)).
Тип структуры фукозилированного N-гликана, продуцируемого клеткой-хозяином, будет зависеть от каскада реакций фукозилирования в клетке-хозяине и конкретной фукозилтрансферазы. Например, α1,2-фукозилтрансфераза, как правило, добавляет фукозу к концевой галактозе в N-гликане. Как таковой, каскад реакций, в котором используется α1,2-фукозилтрансфераза, предпочтительно было бы внедрять в клетку-хозяина, которая способна продуцировать N-гликаны, имеющие гликоформу Gal2GlcNAc2Man3GlcNAc2. Продуцируемые N-гликаны будут иметь фукозу в α1,2-связи с концевыми остатками галактоз. Как α1,3-фукозилтрансфераза, так и α1,4-фукозилтрансфераза добавляют фукозу к одному или нескольким остаткам GlcNAc на невосстанавливающем конце или вблизи него через образование α1,3- или α1,4-связи соответственно и для некоторых α1,3-фукозилтрансфраз через образование α1,3-связи с остовым GlcNAc, связанным с остатком аспарагина гликопротеина. Как таковой, каскад реакций, в котором используется α1,3/4-фукозилтрансфераза, предпочтительно было бы внедрять в клетку-хозяина, которая способна продуцировать N-гликаны, имеющие по крайней мере гликоформу GlcNAcMan5GlcNAc2. Наконец, α1,6-фукозилтрансфераза, как правило, переносит фукозу через образование α1,6-связи на остовый остаток GlcNAc, связанный с остатком аспарагина гликопротеина. Как правило, каскад реакций, в котором используется α1,6-фукозилтрансфераза, предпочтительно было бы внедрять в клетку-хозяина, которая способна продуцировать N-гликаны, имеющие по крайней мере гликоформу GlcNAcMan5GlcNAc2, Man5GlcNAc2 или Man4GlcNAc2.
Гликопротеины, которые можно продуцировать в соответствии с раскрытыми здесь способами, включают любой желаемый белок для терапевтических или диагностических целей, независимо от происхождения последовательности нуклеиновой кислоты для продуцирования гликопротеина. Например, моноклональные антитела, в которых N-гликан не является фукозилированным, обладают увеличенной активностью ADCC, однако увеличенная активность ADCC нежелательна для моноклональных антител, предназначенных для связывания лигандов для рецептора в качестве лечения нарушения, а не индицирования активности ADCC. Моноклональные антитела, продуцируемые в раскрытых здесь клетках-хозяевах, включающих каскад реакций фукозилирования, будут иметь фукозилированные N-гликаны и, как предполагается, уменьшенную активность ADCC. В качестве другого примера, агенты для иммунной адгезии (смотри, патенты США № 5428130, 5116964, 5514582 и 5455165, Capon et al. Nature 337: 525 (1989); Chamow and Ashkenazi, Trends Biotechnol. 14: 52-60 (1996); Ashkenazi and Chamow, Curr. Opin. Immunol. 9: 195-200 (1997)), которые включают экстраклеточную часть связанного с мембраной рецептора, слитую с частью Fc антитела, продуцируемую в раскрытых здесь клетках-хозяевах, включающих каскад реакций фукозилирования, будут иметь фукозилированные N-гликаны и, как предполагается, уменьшенную активность ADCC. Примеры гликопротеинов, которые можно продуцировать в соответствии со способами настоящего изобретения с наличием у них фукозилированных N-гликанов, включают, но без ограничения, эритропоэтин (ЕРО), цитокины, такие как интерферон-α, интерферон-β, интерферон-γ, интерферон-ω и гранулоцитарный CSF, факторы коагуляции, такие как фактор VIII, фактор IX и белок С человека, моноклональные антитела, α-цепь растворимого рецептора IgE, IgG, IgM, IgG, урокиназу, химазу и ингибитор трипсина, IGF-связывающий белок, фактор роста эпидермиса, фактор выброса гормона роста, слитый с аннексином V белок, ангиостатин, фактор-2 роста эндотелия сосудов, ингибиторный в отношении клеток-предшественников миелоидного ряда фактор-1, остеопротегерин, тканевой активатор плазминогена, G-CSF, GM-CSF, и TNF-рецептор.
В конкретных вариантах осуществления одна или несколько нуклеиновых кислот кодируют слитые белки, включающие каталитический домен белка каскада реакций фукозилирования, слитый с пептидом для направленной доставки, который направляет слитый белок в конкретную область внутри клетки. Как правило, пептид для направленной доставки будет направлять слитый белок в положение внутри секреторного пути. Термин «секреторный путь», таким образом, относится к органеллам и компонентам внутри клетки, в которых гликопротеины модифицируются при подготовке к секреции. Секреторный путь включает эндоплазматический ретикулум, аппарат Гольджи, транс-Гольджи-сеть и секреторные везикулы. Например, подходящие пептиды для клеточной доставки могут направлять каталитический домен в эндоплазматический ретикулум, аппарат Гольджи, транс-Голиджи-сеть или секреторные везикулы. Пептиды для направленной доставки, которые можно использовать в настоящем изобретении, включают пептиды, описанные в патенте США № 7029872. В одном варианте осуществления каталитический домен фукозилтрансферазы слит с пептидом для направленной доставки, который направляет слитый белок в аппарат Гольджи. Конкретный пептид для направленной доставки, слитый с каталитическим доменом фукозилтрансферазы, будет зависеть от клетки-хозяина, конкретной фукозилтрансферазы и продуцируемого гликопротеина. Примеры пептидов для направленной доставки, которые можно использовать для направленной доставки фукозилтрансферазы, описаны, например, в патенте США № 7029872 и опубликованных заявках на патенты США № 2004/0018590, 2004/0230042, 2005/0208617, 2004/0171826, 2006/0286637 и 2007/0037248.
Нуклеиновые кислоты, кодирующие ферменты или активности, вовлеченные в каскад реакций фукозилирования, лигируют в векторы, которые можно использовать для трансфекции клеток-хозяев. Как правило, векторы будут включать регуляторные элементы, которые выделены из того же вида клетки, что намеченная клетка-хозяин, или которые выделены из других видов, но о которых известно, что они будут функциональными при встраивании в намеченную клетку-хозяина. Как правило, эти регуляторные элементы включают 5' регуляторные последовательности, такие как промоторы, а также 3' регуляторные последовательности, такие как последовательности - терминаторы транскрипции. Векторы будут, как правило, включать по крайней мере один элемент - селектируемый маркер, который делает возможным отбор клеток-хозяев, которые были успешно трансформированы вектором. Векторы трансфецируют в намеченные клетки-хозяева и результирующие клетки скринируют на наличие селектируемого маркера, чтобы идентифицировать такие клетки-хозяева, которые были успешно трансфецированы вектором и которые будут, следовательно, нести вектор, кодирующий слитый белок.
Для экспрессии гликопротеинов предпочтительными часто являются низшие эукариоты, такие как дрожжи, поскольку их можно экономно культивировать, они дают высокие выходы белка и при соответствующей модификации способны продуцировать гликопротеины с конкретными преобладающими структурами N-гликанов. Дрожжи, в частности, характеризуются установленной генетикой, делающей возможными быстрые трансформации, методики локализации тестируемого белка и легкие методы выключения генов. Различные дрожжи, такие как K. lactis, Pichia pastoris, Pichia methanolica и Hansenula polymorpha, обычно используются для культур клеток и продукции белков, поскольку они способны расти до высоких плотностей клеток и секретировать большие количества рекомбинантного белка в промышленной масштабе. Подобным образом, нитчатые грибы, такие как Aspergillus niger, Fusarium sp., Neurospora crassa и другие, можно использовать для продукции гликопротеинов в промышленном масштабе.
Низшие эукариоты, в частности дрожжи, можно генетически модифицировать, так чтобы они экспрессировали гликопротеины, в которых характер гликозилирования является сложным или напоминает характер гликозилирования у людей или является гуманизированным. Такие генетически модифицированные низшие эукариоты можно получить устранением выбранных эндогенных ферментов гликозилирования, которые вовлечены в продукцию N-гликанов с высоким содержанием маннозы, и введением различных комбинаций экзогенных ферментов, вовлеченных в создание сложных N-гликанов. Способы создания методами генетической инженерии дрожжей, которые продуцируют сложные N-гликаны, описаны в патенте США № 7029872 и опубликованных заявках на патенты США № 2004/0018590, 2005/0170452, 2006/0286637, 2004/0230042, 2005/0208617, 2004/0171826, 2005/0208617 и 2006/0160179. Например, можно выбрать или создать клетку-хозяина, истощенную по 1,6-маннозилтрансферазным активностям, которые в противном случае могли бы добавлять остатки маннозы на N-гликан на гликопротеине. Например, в дрожжах ген ОСН1 кодирует 1,6-маннозилтрансферазную активность. Затем создают дополнительными методами клетку-хозяина, включающую один или несколько ферментов, вовлеченных в продукцию сложных N-гликанов, напоминающих N-гликаны человека.
В одном варианте осуществления клетка-хозяин, кроме того, включает каталитический домен α1,2-маннозидазы, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности α1,2-маннозидазы в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина. При прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу Man5GlcNAc2, например гликоформу Man5GlcNAc2(Fuc). В патенте США № 7029872 и опубликованных заявках на патенты США № 2004/0018590 и 2005/0170452 описываются клетки-хозяева, являющиеся низшими эукариотами, способные продуцировать гликопротеин, включающий гликоформу Man5GlcNAc2.
В дальнейшем варианте осуществления непосредственно предшествующая клетка-хозяин, кроме того, включает каталитический домен GlcNAc-трансферазы I (GnTI), слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности GlcNAc-трансферазы I в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина. При прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу GlcNAcMan5GlcNAc2, например гликоформу GlcNAcMan5GlcNAc2(Fuc). В патенте США № 7029872 и опубликованных заявках на патенты США № 2004/0018590 и 2005/0170452 описываются клетки-хозяева, являющиеся низшими эукариотами, способные продуцировать гликопротеин, включающий гликоформу GlcNAcMan5GlcNAc2. Продуцируемый в вышеуказанных клетках гликопротеин можно обработать in vitro гексаминидазой с получением рекомбинантного гликопротеина, включающего фукозилированную гликоформу Man5GlcNAc2(Fuc).
Во все еще дальнейшем варианте осуществления непосредственно предшествующая клетка-хозяин, кроме того, включает каталитический домен маннозидазы II, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности маннозидазы II в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина. При прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу GlcNAcMan3GlcNAc2, например гликоформу GlcNAcMan3GlcNAc2(Fuc). В опубликованной заявке на патент США № 2004/0230042 описываются клетки-хозяева, являющиеся низшими эукариотами, которые экспрессируют ферменты маннозидазы II и способны продуцировать гликопротеины, имеющие в преобладающей степени гликоформу GlcNAcMan3GlcNAc2. Продуцируемый в вышеуказанных клетках гликопротеин можно обработать in vitro гексаминидазой с получением рекомбинантного гликопротеина, включающего гликоформу Man3GlcNAc2(Fuc).
Во все еще дальнейшем варианте осуществления непосредственно предшествующая клетка-хозяин, кроме того, включает каталитический домен GlcNAc-трансферазы II (GnTII), слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности GlcNAc-трансферазы II в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина. При прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу GlcNAc2Man3GlcNAc2, например гликоформу GlcNAc2Man3GlcNAc2(Fuc). В патенте США № 7029872 и опубликованных заявках на патенты США № 2004/0018590 и 2005/0170452 описываются клетки-хозяева, являющиеся низшими эукариотами, способные продуцировать гликопротеин, включающий гликоформу GlcNAc2Man3GlcNAc2. Продуцируемый в вышеуказанных клетках гликопротеин можно обработать in vitro гексаминидазой с получением рекомбинантного гликопротеина, включающего гликоформу Man3GlcNAc2(Fuc).
Во все еще дальнейшем варианте осуществления непосредственно предшествующая клетка-хозяин, кроме того, включает каталитический домен галактозотрансферазы II, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности галактозотрансферазы II в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина. При прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу Gal2GlcNAc2Man3GlcNAc2, например Gal2GlcNAc2Man3GlcNAc2(Fuc). В опубликованной заявке на патент США № 2006/0040353 описываются клетки-хозяева, являющиеся низшими эукариотами, способные продуцировать гликопротеин, включающий гликоформу Gal2GlcNAc2Man3GlcNAc2. Продуцируемый в вышеуказанных клетках гликопротеин можно обработать in vitro галактозидазой с получением рекомбинантного гликопротеина, включающего фукозилированную гликоформу GlcNAc2Man3GlcNAc2(Fuc), например гликоформу GlcNAc2Man3GlcNAc2(Fuc).
Во все еще дальнейшем варианте осуществления непосредственно предшествующая клетка-хозяин, кроме того, включает каталитический домен сиалилтрансферазы, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности сиалилтрансферазы в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина. При прохождении рекомбинантного гликопротеина через эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина продуцируется рекомбинантный гликопротеин, включающий фукозилированную гликоформу NANA2Gal2GlcNAc2Man3GlcNAc2, например гликоформу NANA2Gal2GlcNAc2Man3GlcNAc2(Fuc). Для клеток-хозяев, являющихся низшими эукариотами, таких как дрожжи и нитчатые грибы, предпочтительно, чтобы клетка-хозяин, кроме того, включала средство для обеспечения ЦМФ-сиаловой кислоты для переноса на N-гликан. В опубликованной заявке на патент США № 2005/0260729 описывается способ создания методами генетической инженерии низших эукариот, имеющих каскад реакций для синтеза ЦМФ-сиаловой кислоты, а в опубликованной заявке на патент США № 2005/0286637 описывается способ создания методами генетической инженерии низших эукариот, продуцирующих сиалированные гликопротеины. Продуцируемый в вышеуказанных клетках гликопротеин можно обработать in vitro нейраминидазой с получением рекомбинантного гликопротеина, включающего фукозилированную гликоформу Gal2GlcNAc2Man3GlcNAc2, например гликоформу Gal2GlcNAc2Man3GlcNAc2(Fuc).
Любая из предшествующих клеток-хозяев может, кроме того, включать одну или несколько GlcNAc-трансфераз, выбираемых из группы, состоящей из GnTIII, GnTIV, GnTV, GnTVI и GnTIX, для продукции гликопротеинов, имеющих разветвленные и/или с множеством антенн структуры N-гликанов, таких как те, которые описаны в опубликованных заявках на патенты 2004/074458 и 2007/0037248. Различные предшествующие клетки-хозяева, кроме того, включают один или несколько переносчиков сахаров, таких как переносчики УДФ-GlcNAc (например, переносчики УДФ-GlcNAc Kluyveromyces lactis и Mus musculus), переносчики УДФ-галактозы (например, переносчик УДФ-галактозы Drosophila melanogaster), переносчик ЦМФ-сиаловой кислоты (например, переносчик сиаловой кислоты человека). Поскольку в клетках-хозяевах, являющихся низшими эукариотами, таких как дрожжи и нитчатые грибы, отсутствуют вышеуказанные переносчики, предпочтительно, чтобы были созданы методами генной инженерии клетки-хозяева, являющиеся низшими эукариотами, такие как дрожжи и нитчатые грибы, которые включают вышеуказанные переносчики.
В дальнейших вариантах осуществления вышеуказанных клеток-хозяев методами генетической инженерии создают клетки-хозяева, в которых устранены гликопротеины, имеющие устойчивые к α-маннозидазе N-гликаны, путем делеции или разрушения гена β-маннозилтрансферазы (ВМТ2) (смотри опубликованную заявку на патент США № 2006/0211085), и гликопротеины, имеющие остатки фосфоманноз, путем делеции или разрушения одного или обоих генов фосфоманнозилтрансфераз PNO1 и MNN4B (смотри, например, опубликованные заявки на патенты США № 2006/0160179 и 2004/0014170). Во все еще дальнейших вариантах осуществления вышеуказанных клеток-хозяев клетки-хозяева, кроме того, генетически модифицируют для исключения О-гликозилирования гликопротеина путем делеции или разрушения одного или нескольких генов Dol-P-белок(Ser/Thr)-маннозилтрансфераз (РМТ) (смотри патент США № 5714377).
Было установлено, что оптимизация кодонов генов или транскрипционных единиц, кодирующих конкретные полипептиды, приводит к увеличенной экспрессии кодируемых полипептидов, т.е. увеличенной трансляции мРНК, кодирующей полипептид. Следовательно, в случае раскрытых здесь клеток-хозяев увеличенная экспрессия кодируемых ферментов будет порождать больше кодируемых ферментов, что может приводить к увеличенной продукции N-гликанов, которые являются фукозилированными. В контексте оптимизации кодонов термин «экспрессия» и его варианты относятся к трансляции мРНК, кодирующей полипептид, а не к транскрипции полинуклеотида, кодирующего полипептид. Используемый здесь термин «ген» относится и к геномной ДНК или РНК, кодирующей полипептид, и к кДНК, кодирующей полипептид.
Оптимизация кодонов является способом, с помощью которого пытаются улучшить гетерологичную экспрессию гена, когда ген перемещают в чужеродную генетическую среду, которая проявляет использование состоящих из нуклеотидных звеньев кодонов, отличное от такого использования в природной генетической среде гена, или улучшить эктопическую экспрессию гена в его природной генетической среде, когда ген природно включает один или несколько состоящих из нуклеотидных звеньев кодонов, которые обычно не используются в природных относительно генетической среды генах, которые кодируют в высокой степени экспрессируемые гены. Другими словами оптимизация кодонов включает замену тех состоящих из нуклеотидных звеньев кодонов гена, которые используются с относительно низкой частотой в конкретной генетической среде или организме, состоящими из нуклеотидных звеньев кодонами, которые используются в генах, которые экспрессируются с большей частотой в генетической среде или организме. Таким образом, экспрессия (трансляция) продукта гена (полипептида) увеличивается. Допущением является то, что состоящие из нуклеотидных звеньев кодоны, которые обнаруживаются с большей частотой в высокой степени экспрессируемых генах, более эффективно транслируются, чем состоящие из нуклеотидных звеньев кодоны, которые обнаруживаются с низкой частотой.
Как правило, способы оптимизации состоящих из нуклеотидных звеньев кодонов для конкретного гена зависят от установления частоты использования в генах, являющихся в высокой степени экспрессируемыми в организме, состоящих из нуклеотидных звеньев кодонов для каждой из аминокислот и затем замены тех состоящих из нуклеотидных звеньев кодонов в представляющем интерес гене, которые используются с низкой частотой в высокой степени экспрессируемых генах, состоящими из нуклеотидных звеньев кодонами, которые, как установлено, используются в высокой степени экспрессируемых генах (смотри, например, Lathe, Synthetic Oligonucleotide Probes Deduced from Amino Acid Sequence Data: Theoretical and Practical Considerations, J. Molec. Biol.: 183: 1-12 (1985); Nakamura et al., Nuc. Acid Res. 28: 292 (2000); Fuglsang, Protein Expression & Purification 31: 247-249 (2003)). Существуют многочисленные компьютерные программы, которые будут в автоматическом режиме анализировать состоящие из нуклеотидных звеньев кодоны нуклеиновой кислоты организма, кодирующей ген, и предлагать состоящие из нуклеотидных звеньев кодоны для замены состоящих из нуклеотидных звеньев кодонов, которые встречаются с низкой частотой в организме, состоящими из нуклеотидных звеньев кодонами, которые обнаруживаются в генах, являющихся в высокой степени экспрессируемыми в организме.
Подразумевается, что следующие примеры содействуют дальнейшему пониманию настоящего изобретения.
ПРИМЕР 1
В этом примере демонстрируется конструирование штамма Pichia pastoris, способного продуцировать гликопротеины, которые включают фукозу в структуре N-гликана гликопротеина.
Для работы с рекомбинантными ДНК используют штаммы TOP10 или XL10-Gold Escherichia coli. N-гликозидазу F, ферменты для рестрикции и модификации получают от New England BioLabs (Beverly, MA) и используют согласно инструкциям производители. α1,6-Фукозидазу получают от Sigma-Aldrich (St. Louis, MO) и используют, как рекомендовано производителем. Олигонуклеотиды получают от Integrated DNA Technologies (Coralville, IA). Металлохелатирующую смолу «HisBind» получают от Novagen (Madison, WI). 96-луночные планшеты для выделения плазмидной ДНК из лизата - от Promega (Madison, WI). Связывающие белок 96-луночные планшеты - от Millipore (Bedford, MA). Соли и буферные агенты - от Sigma-Aldrich (St. Louis, MO).
Амплификация генов каскада реакций фукозилирования
На фиг. 1 продемонстрирован общий вид каскада реакций фукозилирования. Открытую рамку считывания (ORF) hGMD амплифицируют с кДНК печени человека (BD Biosciences, Palo Alto, CA) с использованием полимеразы Advantage 2, следуя процедуре, рекомендованной производителем. Вкратце, праймеры SH415 и SH413 (5'-GGCGG CCGCC ACCAT GGCAC ACGCA CCGGC ACGCT GC-3' (SEQ ID NO: 15) и 5'-TTAAT TAATC AGGCA TTGGG GTTTG TCCTC ATG-3' (SEQ ID NO: 16), соответственно) используют для амплификации продукта размером 1139 п.о. с кДНК печени человека, используя следующие условия: 97°С в течение 3 минут, 35 циклов, каждый из которых представляет 97°С в течение 30 секунд, 50°С в течение 30 секунд и 72°С в течение 2 минут, и 72°С в течение 10 минут. Впоследствии продукт клонируют в pCR2.1 (Invitrogen, Carlsbad, CA), секвенируют, а результирующей конструкции присваивают обозначение pSH985.
Используя очерченные выше условия, праймеры SH414 и SH411 (5'-GGCGG CCGCC ACCAT GGGTG AACCC CAGGG ATCCA TG-3' (SEQ ID NO: 17) и 5'-TTAAT TAATC ACTTC CGGGC CTGCT CGTAG TTG-3' (SEQ ID NO: 18), соответственно) используют для амплификации фрагмента размером 986 п.о. с кДНК почки человека (BD Biosciences, Palo Alto, CA), который соответствует ORF гена FX человека. Впоследствии этот фрагмент клонируют в pCR2.1, секвенируют и обозначают pSH988.
ORF GFTr человека амплифицируют с кДНК селезенки человека (BD Biosciences, Palo Alto, CA), используя очерченные выше условия и праймеры RCD679 и RCD680 (5'-GCGGC CGCCA CCATG AATAG GGCCC CTCTG AAGCG G-3' (SEQ ID NO: 19) и 5'-TTAAT TAATC ACACC CCCAT GGCGC TCTTC TC-3' (SEQ ID NO: 20), соответственно). Результирующий фрагмент размером 1113 п.о. клонируют в pCR2.1, секвенируют и обозначают pGLY2133.
Усеченную форму ORF FUT8 мыши, которая кодирует аминокислоты 32-575 и в которой отсутствуют нуклеотиды, кодирующие эндогенный трансмембранный домен, амплифицируют с кДНК головного мозга мыши (BD Biosciences, Palo Alto, CA), используя очерченные выше условия и праймеры SH420 и SH421 (5'-GCGGC GCGCC GATAA TGACC ACCCT GATCA CTCCA G-3' (SEQ ID NO: 21) и 5'-CCTTA ATTAA CTATT TTTCA GCTTC AGGAT ATGTG GG-3' (SEQ ID NO: 22), соответственно). Результирующий фрагмент размером 1654 п.о. клонируют в pCR2.1, секвенируют и обозначают pSH987.
Создание генов фукозилирования в кассетах для экспрессии в дрожжах
Открытые рамки считывания для GMD, FX и GFTr получают расщеплением вышеуказанных векторов ферментами рестрикции NotI и PacI с получением ДНК-фрагментов с NotI-совместимым 5'-концом и PacI-совместимым 3'-концом. Фрагмент FUT8 получают расщеплением ферментами рестрикции AscI и PacI с получением ДНК с AscI-совместимым 5'-концом и PacI-совместимым 3'-концом.
Для создания экспрессирующей GMD кассеты GMD клонируют в вектор для экспрессии в дрожжах pSH995, который содержит промотор GAPDH P. pastoris и последовательность-терминатор транскрипции CYC S. cerevisiae и предназначен для интеграции в геном Pichia 3' от ORF Trp2, используя маркер устойчивости к нур-сеотрицину. Этот вектор проиллюстрирован на фиг. 3А. Вектор pSH995 расщепляют NotI и PacI для выделения фрагмента размером 1,1 т.п.о., содержащего ORF GMD, который затем субклонируют в pSH995, предварительно расщепленный теми же ферментами. Результирующий вектор, содержащий GMD под контролем промотора GAPDH, обозначают pSH997.A.
Для создания экспрессирующей FX кассеты вектор pSH988 расщепляют NotI и PacI для выделения фрагмента размером 1 т.п.о., содержащего ORF FX, который обрабатывают Т4 ДНК-полимеразой для удаления одноцепочечных концевых избыточностей (J. Sambrook, D. W. Russell, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, ed. 3rd, 2001)). Впоследствии этот фрагмент субклонируют в вектор pGLY359 (Hamilton et al., Science 313, 1441 (2006)), предварительно расщепленный NotI и AscI и обработанный Т4 ДНК-полимеразой. Результирующий вектор pSH994 содержит кассету для экспрессии FX, состоящую из ORF FX, функционально связанной на 5'-конце с промотором PMA1 P. pastoris (PpPMA1prom), а на 3'-конце с последовательностью-терминатором транскрипции PMA P. pastoris (PpPMA1tt). Экспрессионная кассета фланкирована рестрикционными сайтами для SwaI.
Экспрессирующую GFTr кассету создают расщеплением pGLY2133 NotI и PacI для выделения фрагмента размером 1,1 т.п.о., содержащего ORF GFTr, который обрабатывают Т4 ДНК-полимеразой. Впоследствии этот фрагмент субклонируют в вектор pGLY363 (Hamilton, выше), предварительно расщепленный NotI и PacI и обработанный Т4 ДНК-полимеразой. Результирующий вектор pGLY2143 содержит кассету для экспрессии GFTr, состоящую из ORF GFTr, функционально связанной на 5'-конце с PpPMA1prom, а на 3'-конце с PpPMA1tt. Экспрессионная кассета фланкирована рестрикционными сайтами для RsrII.
Для создания каталитического домена FUT8, слитого с сигналом, определяющим местонахождение в дрожжах, первые 36 аминокислот района Mnn2 для направленной доставки в S. cerevisiae анализируют с помощью программного обеспечения GeneOptimizer и подвергают оптимизации кодонов для экспрессии в P. pastoris (GeneArt, Regensburg, Германия). Результирующую синтетическую ДНК для аминокислот 1-36 ScMnn2 создают с совместимыми с рестрикционными ферментами NotI и AscI 5'- и 3'-концами, соответственно, клонируют в «челночный» вектор с получением плазмидного вектора pSH831. Впоследствии вектор pSH987 расщепляют AscI и PacI для выделения фрагмента размером 1,6 т.п.о, кодирующего ORF каталитического домена FUT8, который затем субклонируют в рамке с ДНК, кодирующей пептид ScMnn2 для направленной доставки, в вектор pSH831, предварительно расщепленный теми же ферментами. Результирующий вектор обозначают pSH989. Для создания экспрессирующей FUT8-ScMnn2 кассеты pSH989 расщепляют NotI и PacI для высвобождения фрагмента размером 1,8 т.п.о., который субклонируют в вектор pGLY361 (Hamilton et al., Science 313, 1441 (2006)), расщепленный теми же ферментами. Результирующий вектор pSH991 содержит кассету для экспрессии слитого белка FUT8-Mnn2, состоящую из ORF слияния FUT8-Mnn2, функционально связанной на 5'-конце с промотором TEF P. pastoris (PpTEFprom), а на 3'-конце с последовательностью-терминатором транскрипции TEF P. pastoris (PpTEFtt). Экспрессионная кассета фланкирована рестрикционными сайтами для SgfI.
Получение вектора для создания фукозилирования
Вектор pSH984 расщепляют SwaI для высвобождения фрагмента размером 2,5 т.п.о., содержащего экспрессирующую FX кассету, который субклонируют в вектор pSH997 (который содержит экспрессирующую GMD кассету), расщепленный PmeI. Результирующий вектор, в котором экспрессирующие PMA-FX и GAPDH-GMD кассеты располагаются в одном и том же направлении, обозначают pSH1009. Фрагмент размером 2,7 т.п.о., содержащий экспрессирующую PMA-GFTr кассету, выделяют из pGLY2143, используя фермент рестрикции RsrlI, и субклонируют в pSH1009, расщепленный этим же ферментом. Результирующий вектор, в котором экспрессирующие PMA-GFTr и GAPDH кассеты располагаются в одном и том же направлении, обозначают pSH1019. Наконец, кассету для экспрессии TEF-FUT8 размером 1,8 т.п.о. выделяют из pSH991, используя SgfI, и субклонируют в pSH1019, расщепленный этим же ферментом. Результирующий вектор, в котором экспрессирующие TEF-FUT8 и GAPDH кассеты располагаются в одном и том же направлении, обозначают pSH1022. Этот вектор проиллюстрирован на Фиг. 2В.
Создание вектора для экспрессии ЕРО крысы
Усеченную форму гена эритропоэтина Rattus norvegicus (rEPO), кодирующую аминокислоты 27-192, амплифицируют с кДНК почки крысы (BD Biosciences, Palo Alto, CA), используя полимеразу Advantage 2, как рекомендовано производителем. Вкратце, праймеры rEPO-прямой и rEPO-обратный (5'-GGGAA TTCGC TCCCC CACGC CTCAT TTGCG AC-3' (SEQ ID NO: 23) и 5'-CCTCT AGATC ACCTG TCCCC TCTCC TGCAG GC-3' (SEQ ID NO: 24), соответственно) используют для амплификации продукта размером 516 п.о. с кДНК почки крысы, используя следующие циклические условия: 1 цикл при 94°С в течение 1 минуты; 5 циклов, каждый из которых представляет 94°С в течение 30 секунд, 72°С в течение 1 минуты; 5 циклов, каждый из которых представляет 94°С в течение 30 секунд, 70°С в течение 1 минуты; 25 циклов, каждый из которых представляет 94°С в течение 20 секунд, 68°С в течение 1 минуты. Впоследствии продукт клонируют в pCR2.1 (Invitrogen, Carlsbad, CA), секвенируют, а результирующей конструкции присваивают обозначение pSH603. Для создания вектора для экспрессии в дрожжах pSH603 расщепляют EcoRI и XbaI для высвобождения фрагмента размером 506 п.о., который субклонируют в pPICZαA (Invitrogen, Carlsbad, CA), который был предварительно расщеплен теми же ферментами. Результирующий экспрессионный вектор обозначают pSH692. rEPO в pSH692 находится под контролем метанол-индуцибельного промотора АОХ.
Создание штаммов дрожжей и продукция ЕРО крысы.
Созданную с помощью глико-инженерии линию клеток P. pastoris, YGLY1062, которая способна продуцировать рекомбинантные гликопротеины, имеющие в преобладающей степени N-гликаны Gal2GlcNAc2Man3GlcNAc2, (сходную со штаммами, описанными в опубликованной заявке на патент США № 2006/0040353, которые продуцируют гликопротеины, имеющие N-гликаны Gal2GlcNAc2Man3GlcNAc2) трансформируют вектором pSH692 с получением штамма RDP974, который продуцирует рекомбинантный ЕРО крысы (rEPO) с N-гликанами Gal2GlcNAc2Man3GlcNAc2. Штамм RDP974 схож со штаммом RDP762, описанным Hamilton и др. в Science 313, 1441-1443 (2006), который продуцирует ЕРО крысы, имеющий N-гликаны Gal2GlcNAc2Man3GlcNAc2.
Штамм RDP974 имеет делеции в генах OCH1, PNO1, MNN4B и BMT2 и включает ДНК, кодирующую полноразмерный переносчик УДФ-GlcNAc Kluyveromyces lactis, переносчик УДФ-GlcNAc M. musculus, УДФ-галактозо-4-эпимеразу S. cerevisiae и переносчик УДФ-галактозы D. melanogaster; и ДНК, кодирующую каталитический домен α1,2-маннозидазы I M. musculus, слитую с ДНК, кодирующей аминокислоты 1-36 лидерной последовательности MNN2 S. cerevisiae; ДНК, кодирующую каталитический домен β1,2-GlcNAc-трансферазы I (GnTI) H. sapiens, слитую с ДНК, кодирующей аминокислоты 1-36 лидерной последовательности MNN2 S. cerevisiae; ДНК, кодирующую каталитический домен маннозидазы II Drosophila melanogaster, слитую с ДНК, кодирующей аминокислоты 1-36 лидерной последовательности MNN2 S. cerevisiae; ДНК, кодирующую каталитический домен β1,2-GlcNAc-трансферазы II (GnTII) Rattus norvegicus, слитую с ДНК, кодирующей аминокислоты 1-97 лидерной последовательности MNN2 S. cerevisiae; и ДНК, кодирующую каталитический домен β1,4-галактозилтрансферазы (GalTI) H. sapiens, слитую с ДНК, кодирующей аминокислоты 1-58 лидерной последовательности KRE2 (MNTI) S. cerevisiae. В опубликованной заявке на патент США № 2006/0040353 описываются способы получения линий клеток Pichia pastoris, которые продуцируют галактозилированные гликопротеины в низших дрожжах (смотри также патент США № 7029872, опубликованные заявки на патенты США № 2004/0018590, 2004/0230042, 2005/0208617, 2004/0171826, 2006/0286637 и 2007/0037248 и Hamilton et al., Science 313, 1441-1443 (2006)).
Штамм RDP974 затем используют в качестве штамма-хозяина для введения ДНК для каскада реакций фукозилирования в векторе pSH1022. Вкратце, 10 мкг контрольной плазмиды pSH995 или плазмиды для каскада реакций фукозилирования pSH1022 расщепляют ферментом рестрикции SfiI для линеаризации вектора и трансформируют с помощью электропорации в штамм-хозяина RDP974. Трансформированные клетки помещают на чашки с YPD, содержащей 100 нг/мл нур-сеотрицина, и инкубируют при 26°С в течение пяти дней. Впоследствии несколько клонов отбирают и анализируют на перенос фукозы на N-гликаны rEPO. Штамм, трансформированный контрольным вектором, обозначают YSH660, в то время как штамм, трансформированный pSH1022 и демонстрирующий перенос фукозы, обозначают YSH661.
Как правило, экспрессию белков выполняют путем выращивания трансформированных штаммов при 26°С в 50 мл забуференной, комбинированной с глицерином среды (BMGY), состоящей из 1% дрожжевого экстракта, 2% пептона, 100 мМ калийфосфатного буфера, рН 6,0, 1,34% дрожжевого азотистого основания, 4×10-5% биотина и 1% глицерина, в качестве среды для роста. Индукцию экспрессии белка выполняют в 5 мл забуференной, комбинированной с метанолом среде (BMMY), состоящей из 1,5% метанола вместо глицерина в BMGY.
Рекомбинантный rEPO экспрессируют, как описано выше, и подвергают очистке на колонке с Ni-хелатным соединением, как описано Choi и др. (Proc. Natl. Acad. Sci. U.S.A. 100, 5022 (2003) и Hamilton и др. (Science 301, 1244 (2003)). Результирующий белок анализируют с помощью электрофореза в SDS-ПААГ (Laemmli, Nature 227, 680 (1970)) и окрашивают для визуализации кумасси синим. Фукозу удаляют in vitro расщеплением с помощью обработки α-1,6-фукозидазой (Sigma-Aldrich, St. Louis, MO), как рекомендовано производителем.
Для анализа гликанов гликаны высвобождают из rEPO обработкой N-гликозидазой F (Choi et al. (2003), Hamilton et al. (2003)). Высвободившиеся гликаны анализируют с помощью масс-спектрометрии MALDI/Time-of-flight (TOF) для подтверждения структуры гликанов (Choi et al. (2003)). Для определения относительного количества присутствующих фукозилированных гликанов высвободившиеся с помощью N-гликозидазы F гликаны подвергают мечению 2-аминобензидином (2-АВ) и анализируют с помощью HPLC (Choi et al. (2003)). Процент фукозилированных и нефукозилированных гликанов рассчитывают путем сравнения площади пика каждой разновидности до и после обработки фукозидазой.
Анализ N-гликанов, продуцируемых в штамме YSH661, полученном по существу, как описано выше, показал, что этот штамм продуцирует рекомбинантный rEPO, включающий N-гликаны Gal2GlcNAc2Man3GlcNAc2(Fuc). На фиг. 4А, на которой демонстрируются результаты анализа MALDI-TOF N-гликанов на rEPO, продуцируемом в штамме YSH661, демонстрируется, что этот штамм продуцировал N-гликаны, включающие N-гликаны Gal2GlcNAc2Man3GlcNAc2(Fuc) и Gal2GlcNAc2Man3GlcNAc2. N-гликаны Gal2GlcNAc2Man3GlcNAc2(Fuc) находятся внутри прямоугольника. На фиг. 4В, на которой демонстрируются результаты анализа MALDI-TOF N-гликанов на rEPO, продуцируемом в контрольном штамме YSH660 (без каскада реакций фукозилирования), демонстрируется, что этот штамм продуцировал только нефукозилированные N-гликаны, включающие только Gal2GlcNAc2Man3GlcNAc2.
ПРИМЕР 2
Штамм Pichia pastoris, способный продуцировать гликопротеины, имеющие N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2(Fuc), можно создать введением вектора pSH1022 в штамм Pichia pastoris, способный продуцировать гликопротеины, имеющие N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2. Например, вектор pSH1022, содержащий гены, кодирующие компоненты каскада реакций фукозилирования, можно трансформировать в штамм YSH597, который продуцирует ЕРО крысы, имеющий N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2, и описан в предварительной заявке на патент США № 60/801688 и Hamilton и др. в Science 313, 1441-1443 (2006). ЕРО крысы, продуцируемый в этом штамме при индукции, будет включать N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2(Fuc).
Следующим описанием обеспечивается предсказанный способ введения генов, кодирующих ферменты каскада реакций сиалирования, в штамм YSH661 примера 1.
Открытые рамки считывания для УДФ-N-ацетилглюкозамин-2-эпимеразы/N-ацетилманнозаминкиназы (GNE) Homo sapiens, N-ацетилнейраминат-9-фосфатсинтазы (SPS) H. sapiens, синтазы ЦМФ-сиаловой кислоты (CSS) H. sapiens, переносчика ЦМФ-сиаловой кислоты (CST) Mus musculus и аминокислоты 40-403 α-2,6-сиалилтрансферазы (ST) M. musculus анализируют с помощью программного обеспечения GeneOptimizer и подвергают оптимизации кодонов для экспрессии в P. pastoris (GeneArt, Regensburg, Германия). Результирующую синтетическую ДНК для GNE, SPS, CSS и CST создают с совместимыми с рестрикционными ферментами BsaI и HpaI 5'- и 3'-концами соответственно, клонируют в «челночный» вектор и обозначают pGLY368, 367, 366 и 369 соответственно. Синтетическую ДНК для ST создают с совместимыми с рестрикционными ферментами AscI и PacI 5'- и 3'-концами, соответственно, клонируют в «челночный» вектор и обозначают pSH660. Для создания экспрессирующих SPS, CSS и CST кассет векторы pGLY367, 366 и 369 расщепляют BsaI и HpaI для выделения фрагментов размерами 1,1, 1,3 и 1,0 т.п.о, которые обрабатывают Т4 ДНК-полимеразой для удаления одноцепочечных концевых избыточностей. Впоследствии эти фрагменты субклонируют в векторы pGLY359, 17 и 363, предварительно расщепленные NotI и AscI для первого из указанных векторов и NotI и PacI для двух последних из указанных векторов и обработанные Т4 ДНК-полимеразой. Результирующий вектор pSH819 содержит SPS в кассете PpPMA1prom-PpPMA1tt, фланкированной рестрикционными сайтами для PacI; pSH824 содержит CSS в кассете PpGAPDH-ScCYCtt, фланкированной рестрикционными сайтами для BglII и BamHI на 5'- и 3'-конце, соответственно; и pGLY372 содержит CST в кассете PpPMA1prom-PpPMA1tt, фланкированной рестрикционными сайтами для RsrII. Для создания каталитического домена ST, слитого с сигналом, определяющим местонахождение в дрожжах, район Mnt1 для направленной доставки в S. cerevisiae амплифицируют с геномной ДНК, используя Taq ДНК-полимеразу (Promega, Madison, WI) и праймеры ScMnt1-прямой и ScMnt1-обратный (5'-GGGCGGCCGCCACCATGGCCCTCTTTCTCAGTAAGAGACT GTTGAG-3' (SEQ ID NO: 25) и 5'-CCGGCGCGCCCGATGACTTGTTGTTCAGGGGATATAGATCCTG-3' (SEQ ID NO: 26), соответственно). Используемыми условиями являются 94°С в течение 3 минут, 1 цикл; 94°С в течение 30 секунд, 55°С в течение 20 секунд, 68°С в течение 1 минуты, 30 циклов; 68°С в течение 5 минут, 1 цикл. Результирующий фрагмент размером 174 п.о., содержащий рестрикционные сайты для NotI и AscI на 5'- и 3'-конце, соответственно, субклонируют в рамке 5' от оптимизированного в отношении использования кодонов ST, создавая вектор pSH861. Впоследствии этот вектор расщепляют NotI и PacI для выделения фрагмента размером 1,3 т.п.о., содержащего ST-слияние, обрабатывают Т4 ДНК-полимеразой и субклонируют в pGLY361, приготовленный расщеплением NotI и PacI и обработанный Т4 ДНК-полимеразой. Результирующий вектор, содержащий ST-слияние в кассете PpTEFprom-PpTEFtt, фланкированной рестрикционными сайтами для SgfI, обозначают pSH893.
Вектор для экспрессии в дрожжах pSH823, содержащий промотор GAPDH P. pastoris и терминатор транскрипции CYC S. cerevisiae, предназначен для интеграции в геном Pichia 3' от ORF Trp2. Фрагмент размером 2,6 т.п.о., кодирующий экспрессирующую PMA-CST кассету, вырезают из pGLY372, используя фермент рестрикции RsrII, и субклонируют в pSH823, расщепленный тем же ферментом. Результирующий вектор, в котором экспрессирующие PMA-CST и GAPDH кассеты располагаются в одном и том же направлении, обозначают pSH826. Впоследствии этот вектор расщепляют рестрикционными ферментами NotI и PacI и одноцепочечные концевые избыточности удаляют с использованием Т4 ДНК-полимеразы. В эту линеаризованную конструкцию субклонируют фрагмент размером 2,2 т.п.о. GNE, выделенный из pGLY368 путем расщепления BsaI и HpaI и обработанный Т4 ДНК-полимеразой для удаления одноцепочечных концевых избыточностей. Этот вектор обозначают pSH828. Впоследствии этот вектор расщепляют PacI, в который субклонируют PacI-фрагмент размером 2,7 т.п.о. pSH819, кодирующий экспрессирующую PMA-SPS кассету. Получаемый вектор, в котором экспрессирующая PMA-SPS кассета располагается в противоположном от экспрессирующей GAPDH кассеты направлении, обозначают pSH830. На этой стадии маркер URA5 замещают HIS1 путем вырезания фрагмента URA5 размером 2,4 т.п.о из pSH830, используя XhoI, и замены его фрагментом HIS1 размером 1,8 т.п.о. из pSH842, расщепленного тем же ферментом. Результирующий вектор, в котором ORF HIS1 располагается в одинаковом с экспрессирующей GAPDH-GNE кассетой направлении, обозначают pSH870. Впоследствии этот вектор расщепляют BamHI и субклонируют фрагмент размером 2,1 т.п.о. из pSH824, выделенный расщеплением BamHI и BglII, содержащий экспрессирующую GAPDH-CSS кассету. Образуемый вектор, в котором вновь введенная экспрессионная кассета располагается в противоположном от экспрессирующей GAPDH-GNE кассеты направлении, обозначают pSH872. Затем экспрессионную кассету размером 2,2 т.п.о., содержащую TEF-ST, вырезают с помощью SgfI из pSH893 и субклонируют в pSH872, расщепленный тем же ферментом. Образуемый вектор, в котором экспрессирующая TEF-ST кассета располагается в противоположном от экспрессирующей GAPDH-GNE кассеты направлении, обозначают pSH926.
Вектор pSH926 трансформируют в штамм YSH661, который затем способен продуцировать ЕРО крысы, имеющий N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2.
ПРИМЕР 3
Штамм Pichia pastoris, способный продуцировать ЕРО человека, имеющий N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2(Fuc), можно создать введением вектора pSH1022 в штамм Pichia pastoris, способный продуцировать ЕРО человека, имеющие N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2. Например, вектор pSH1022, содержащий гены, кодирующие компоненты каскада реакций фукозилирования, можно трансформировать в штамм, который способен продуцировать гликопротеины, имеющие N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2, такой как штамм YSH597, описанный Hamilton и др. в Science 313, 1441-1443 (2006), или YSH661 примера 2, включающий гены, кодирующие ферменты каскада реакций сиалирования, но с заменой ДНК, кодирующей ЕРО крысы, ДНК, кодирующей ЕРО человека. Этот штамм будет в таком случае продуцировать ЕРО человека, имеющий N-гликаны NANA2Gal2GlcNAc2Man3GlcNAc2(Fuc).
Хотя настоящее изобретение описывается здесь относительно иллюстрируемых вариантов осуществления, должно быть понятно, что настоящее изобретение не ограничивается ими. Специалисты, обладающие средним уровнем компетентности в данной области техники и обращающиеся к представленным здесь учениям, идентифицируют дополнительные модификации и варианты осуществления в пределах объема настоящего изобретения. Поэтому настоящее изобретение ограничивается только присоединенной здесь формулой изобретения.
Claims (8)
1. Рекомбинантная клетка-хозяин Pichia pastoris, включающая каскад реакций фукозилирования, где ферменты и активности, составляющие указанный каскад реакций, обеспечиваются нуклеиновыми кислотами, кодирующими ГДФ-маннозо-дегидратазу (GMD), ГДФ-кетодезоксиманнозо-эпимеразы/ГДФ-кетодезоксигалактозо-редуктазу (FX), переносчик ГДФ-фукозы (GFTr) и слитый белок, который содержит каталитический домен α1,6-фукозилтрасферазы ЕС 2.4.1.68, слитый с аминокислотами 1-36 Mnn2 S.cerevisiae.
2. Клетка-хозяин по п.1, которая дополнительно не проявляет активность α1,6-маннозилтрансферазы по отношению к N-гликану на гликопротеине и включает каталитический домен α1,2-маннозидазы, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с указанным каталитическим доменом и выбирается для направленной доставки активности α1,2-маннозидазы в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина.
3. Клетка-хозяин по п.2, дополнительно включающая каталитический домен GlcNAc-трансферазы I, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с указанным каталитическим доменом и выбирается для направленной доставки активности GlcNAc-трансферазы I в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина.
4. Клетка-хозяин по п.3, дополнительно включающая каталитический домен маннозидазы II, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с указанным каталитическим доменом и выбирается для направленной доставки активности маннозидазы II в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина.
5. Клетка-хозяин по п.4, дополнительно включающая каталитический домен GlcNAc-трансферазы II, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с каталитическим доменом и выбирается для направленной доставки активности GlcNAc-трансферазы II в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина.
6. Клетка-хозяин по п.5, дополнительно включающая каталитический домен β1,4-галактозилтрансферазы, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с указанным каталитическим доменом и выбирается для направленной доставки активности β1,4-галактозотрансферазы в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина.
7. Клетка-хозяин по п.6, дополнительно включающая каталитический домен сиалилтрансферазы, слитый с осуществляющим направленную клеточную доставку сигнальным пептидом, который обычно не связан с указанным каталитическим доменом и выбирается для направленной доставки активности сиалилтрансферазы в эндоплазматический ретикулум или аппарат Гольджи клетки-хозяина.
8. Гибридный вектор, включающий (а) регуляторные элементы ДНК, которые являются функциональными в клетке-хозяине, являющемся низшим эукариотом, функционально связанные с (b) кодирующей последовательностью ДНК, кодирующей слитый белок, включающий аминокислоты 1-36 Mnn2 S.cerevisiae, слитый с каталитическим доменом α1,6-фукозилтрасферазы ЕС 2.4.1.68,
где указанный вектор, будучи совместно трансформированным в клетку Pichia pastoris с нуклеиновыми кислотами, кодирующими ГДФ-маннозо-дегидратазу (GMD), ГДФ-кетодезоксиманнозо-эпимеразы/ГДФ-кетодезоксигалактозо-редуктазу (FX) и переносчик ГДФ-фукозы (GFTr), обеспечивает получение клетки-хозяина Pichia pastoris no n.1.
где указанный вектор, будучи совместно трансформированным в клетку Pichia pastoris с нуклеиновыми кислотами, кодирующими ГДФ-маннозо-дегидратазу (GMD), ГДФ-кетодезоксиманнозо-эпимеразы/ГДФ-кетодезоксигалактозо-редуктазу (FX) и переносчик ГДФ-фукозы (GFTr), обеспечивает получение клетки-хозяина Pichia pastoris no n.1.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90534507P | 2007-03-07 | 2007-03-07 | |
US60/905,345 | 2007-03-07 | ||
PCT/US2008/002787 WO2008112092A2 (en) | 2007-03-07 | 2008-03-03 | Production of glycoproteins with modified fucosylation |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2009136982A RU2009136982A (ru) | 2011-04-20 |
RU2479629C2 true RU2479629C2 (ru) | 2013-04-20 |
Family
ID=39639063
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009136982/10A RU2479629C2 (ru) | 2007-03-07 | 2008-03-03 | Продукция гликопротеинов с модифицированным фукозилированием |
Country Status (11)
Country | Link |
---|---|
US (1) | US20100028951A1 (ru) |
EP (1) | EP2134834B1 (ru) |
JP (1) | JP2010519930A (ru) |
KR (1) | KR20090130029A (ru) |
CN (1) | CN101679934B (ru) |
AU (1) | AU2008227024A1 (ru) |
CA (1) | CA2679732A1 (ru) |
RU (1) | RU2479629C2 (ru) |
SG (1) | SG187521A1 (ru) |
WO (1) | WO2008112092A2 (ru) |
ZA (1) | ZA200905728B (ru) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2704830C2 (ru) * | 2014-03-17 | 2019-10-31 | Уаннесс Биотек Ко. Лтд | Способы получения рекомбинантных гликопротеинов с модифицированным гликозилированием |
RU2714209C2 (ru) * | 2015-01-07 | 2020-02-13 | Сивек Фармасьютикалз Гмбх | Рекомбинантные гликопротеины с сиалированными о-гликанами и линии клеток для их продукции |
US11193156B2 (en) | 2017-03-29 | 2021-12-07 | Cevec Pharmaceutical GmbH | Recombinant glycoproteins with reduced antennary fucosylation |
US12060561B2 (en) | 2017-08-08 | 2024-08-13 | Cevec Pharmaceuticals Gmbh | Use of constitutively active variants of growth factor receptors as selection markers for the generation of stable producer cell lines |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2584599C2 (ru) | 2008-12-19 | 2016-05-20 | Дженневейн Биотехнологие Гмбх | Синтез фукозилированных соединений |
DK2808393T3 (en) | 2009-06-02 | 2018-03-12 | Regeneron Pharma | Cells insufficient for fucosylation |
KR101930961B1 (ko) | 2010-02-24 | 2018-12-19 | 머크 샤프 앤드 돔 코포레이션 | 피키아 파스토리스에서 생산된 치료 당단백질 상의 n-글리코실화 부위 점유를 증가시키는 방법 |
TW201209160A (en) * | 2010-04-27 | 2012-03-01 | Lonza Ag | Improved glycosylation of proteins in host cells |
JP2014518608A (ja) | 2011-02-25 | 2014-08-07 | メルク・シャープ・アンド・ドーム・コーポレーション | 修飾o−グリコシル化を有するタンパク質の製造のための酵母株 |
CA2829110C (en) * | 2011-03-06 | 2019-01-15 | Merck Serono S.A. | Low fucose cell lines and uses thereof |
WO2012127045A1 (en) | 2011-03-23 | 2012-09-27 | Glycode | A yeast recombinant cell capable of producing gdp-fucose |
DK2852610T3 (en) | 2012-05-23 | 2018-09-03 | Glykos Finland Oy | PRODUCTION OF FUCOSYLED GLYCOPROTEIN |
WO2016012468A1 (en) | 2014-07-21 | 2016-01-28 | Novartis Ag | Production of glycoproteins with mammalian-like n-glycans in filamentous fungi |
CA3019588A1 (en) | 2016-04-20 | 2017-10-26 | Merck Sharp & Dohme Corp. | Cmv neutralizing antigen binding proteins |
AU2019339469A1 (en) | 2018-09-13 | 2021-03-11 | Immune-Onc Therapeutics, Inc. | Novel LILRB4 antibodies and uses thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2250263C1 (ru) * | 2003-08-05 | 2005-04-20 | Федеральное государственное учреждение Всероссийский научно-исследовательский институт защиты животных (ФГУ ВНИИЗЖ) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК p30NE2, КОДИРУЮЩАЯ 181-АМИНОКИСЛОТНЫЙ N-КОНЦЕВОЙ ФРАГМЕНТ ГЛИКОПРОТЕИНА E2 ВИРУСА КЛАССИЧЕСКОЙ ЧУМЫ СВИНЕЙ И ОБЕСПЕЧИВАЮЩАЯ ЕГО ЭКСПРЕССИЮ В КЛЕТКАХ БАКТЕРИЙ E.coli |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5116964A (en) * | 1989-02-23 | 1992-05-26 | Genentech, Inc. | Hybrid immunoglobulins |
US5225538A (en) * | 1989-02-23 | 1993-07-06 | Genentech, Inc. | Lymphocyte homing receptor/immunoglobulin fusion proteins |
WO1994023021A1 (en) * | 1993-03-29 | 1994-10-13 | Kyowa Hakko Kogyo Co., Ltd. | α-1,3-FUCOSYLTRANSFERASE |
US20040191256A1 (en) * | 1997-06-24 | 2004-09-30 | Genentech, Inc. | Methods and compositions for galactosylated glycoproteins |
US20040136986A1 (en) * | 1997-10-31 | 2004-07-15 | Genentech, Inc. | Methods and compositions comprising glycoprotein glycoforms |
ES2434961T5 (es) * | 1998-04-20 | 2018-01-18 | Roche Glycart Ag | Ingeniería de glicosilación de anticuerpos para mejorar la citotoxicidad celular dependiente del anticuerpo |
US6994966B2 (en) * | 2000-02-17 | 2006-02-07 | Glycominds Ltd. | Combinatorial complex carbohydrate libraries and methods for the manufacture and uses thereof |
EP1914244B1 (en) * | 1999-04-09 | 2013-05-29 | Kyowa Hakko Kirin Co., Ltd. | Method of modulating the activity of functional immune molecules |
AU2001256762A1 (en) * | 2000-05-17 | 2001-11-26 | Mitsubishi Pharma Corporation | Process for producing protein with reduction of acidic sugar chain and glycoprotein produced thereby |
US7863020B2 (en) * | 2000-06-28 | 2011-01-04 | Glycofi, Inc. | Production of sialylated N-glycans in lower eukaryotes |
US8697394B2 (en) * | 2000-06-28 | 2014-04-15 | Glycofi, Inc. | Production of modified glycoproteins having multiple antennary structures |
US7598055B2 (en) * | 2000-06-28 | 2009-10-06 | Glycofi, Inc. | N-acetylglucosaminyltransferase III expression in lower eukaryotes |
ES2330330T3 (es) * | 2000-06-28 | 2009-12-09 | Glycofi, Inc. | Procedimiento de produccion de glucoproteinas modificadas. |
US7795002B2 (en) * | 2000-06-28 | 2010-09-14 | Glycofi, Inc. | Production of galactosylated glycoproteins in lower eukaryotes |
US7625756B2 (en) * | 2000-06-28 | 2009-12-01 | GycoFi, Inc. | Expression of class 2 mannosidase and class III mannosidase in lower eukaryotic cells |
WO2003056914A1 (en) * | 2001-12-27 | 2003-07-17 | Glycofi, Inc. | Methods to engineer mammalian-type carbohydrate structures |
US7449308B2 (en) * | 2000-06-28 | 2008-11-11 | Glycofi, Inc. | Combinatorial DNA library for producing modified N-glycans in lower eukaryotes |
US6946292B2 (en) * | 2000-10-06 | 2005-09-20 | Kyowa Hakko Kogyo Co., Ltd. | Cells producing antibody compositions with increased antibody dependent cytotoxic activity |
US20020132320A1 (en) * | 2001-01-10 | 2002-09-19 | Wang Peng George | Glycoconjugate synthesis using a pathway-engineered organism |
NZ581474A (en) * | 2001-08-03 | 2011-04-29 | Glycart Biotechnology Ag | Antibody glycosylation variants having increased antibody-dependent cellular cytotoxicity |
KR100988949B1 (ko) * | 2001-10-25 | 2010-10-20 | 제넨테크, 인크. | 당단백질 조성물 |
US20040093621A1 (en) * | 2001-12-25 | 2004-05-13 | Kyowa Hakko Kogyo Co., Ltd | Antibody composition which specifically binds to CD20 |
US20040259150A1 (en) * | 2002-04-09 | 2004-12-23 | Kyowa Hakko Kogyo Co., Ltd. | Method of enhancing of binding activity of antibody composition to Fcgamma receptor IIIa |
KR101498588B1 (ko) * | 2003-01-22 | 2015-03-05 | 로슈 글리카트 아게 | 융합 구성체와 Fc 수용체 결합 친화도 및 이펙터 기능이 증가된 항체를 생성하기 위한 이의 용도 |
US7332299B2 (en) * | 2003-02-20 | 2008-02-19 | Glycofi, Inc. | Endomannosidases in the modification of glycoproteins in eukaryotes |
WO2005055944A2 (en) * | 2003-12-05 | 2005-06-23 | Cincinnati Children's Hospital Medical Center | Oligosaccharide compositions and use thereof in the treatment of infection |
US7259007B2 (en) * | 2003-12-24 | 2007-08-21 | Glycofi, Inc. | Methods for eliminating mannosylphosphorylation of glycans in the production of glycoproteins |
JP4258662B2 (ja) * | 2004-04-23 | 2009-04-30 | 独立行政法人産業技術総合研究所 | O−フコース結合型タンパク質合成系遺伝子が導入された酵母形質転換体 |
JP4954866B2 (ja) * | 2004-04-29 | 2012-06-20 | グライコフィ, インコーポレイテッド | 糖タンパク質の作製においてアルファ−マンノシダーゼ抵抗性グリカンを減少させるか又は排除する方法 |
EP1863921B1 (en) * | 2005-03-24 | 2011-10-05 | BioGeneriX AG | Expression of soluble, active eukaryotic glycosyltransferases in prokaryotic organisms |
-
2008
- 2008-03-03 KR KR1020097020933A patent/KR20090130029A/ko not_active Ceased
- 2008-03-03 US US12/528,029 patent/US20100028951A1/en not_active Abandoned
- 2008-03-03 CN CN200880014608.2A patent/CN101679934B/zh not_active Expired - Fee Related
- 2008-03-03 JP JP2009552704A patent/JP2010519930A/ja active Pending
- 2008-03-03 SG SG2013005913A patent/SG187521A1/en unknown
- 2008-03-03 CA CA002679732A patent/CA2679732A1/en not_active Abandoned
- 2008-03-03 AU AU2008227024A patent/AU2008227024A1/en not_active Abandoned
- 2008-03-03 WO PCT/US2008/002787 patent/WO2008112092A2/en active Application Filing
- 2008-03-03 EP EP08726344.8A patent/EP2134834B1/en not_active Not-in-force
- 2008-03-03 RU RU2009136982/10A patent/RU2479629C2/ru not_active IP Right Cessation
-
2009
- 2009-08-18 ZA ZA200905728A patent/ZA200905728B/xx unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2250263C1 (ru) * | 2003-08-05 | 2005-04-20 | Федеральное государственное учреждение Всероссийский научно-исследовательский институт защиты животных (ФГУ ВНИИЗЖ) | РЕКОМБИНАНТНАЯ ПЛАЗМИДНАЯ ДНК p30NE2, КОДИРУЮЩАЯ 181-АМИНОКИСЛОТНЫЙ N-КОНЦЕВОЙ ФРАГМЕНТ ГЛИКОПРОТЕИНА E2 ВИРУСА КЛАССИЧЕСКОЙ ЧУМЫ СВИНЕЙ И ОБЕСПЕЧИВАЮЩАЯ ЕГО ЭКСПРЕССИЮ В КЛЕТКАХ БАКТЕРИЙ E.coli |
Non-Patent Citations (1)
Title |
---|
HAMILTON STEPHEN R. et al. Humanization of yeast to produce complex terminally sialylated glycoproteins. SCIENCE. 2006, v.313, n.5792, p.1441-1443. MA BING et al. Fucosylation in prokaryotes and eukaryotes. GLYCOBIOLOGY. Dec. 2006, v.16, n.12, p.158R-184R. WILDT S. et al. The humanization of N-glycosylation pathways in yeast. NATURE REVIEWS. MICROBIOLOGY. NATURE PUBLISHING GROUP. GB, v.3, n.2, 2005, p.119-128. * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2704830C2 (ru) * | 2014-03-17 | 2019-10-31 | Уаннесс Биотек Ко. Лтд | Способы получения рекомбинантных гликопротеинов с модифицированным гликозилированием |
US10745729B2 (en) | 2014-03-17 | 2020-08-18 | Oneness Biotech Co. Ltd. | Methods for producing recombinant glycoproteins with modified glycosylation |
RU2714209C2 (ru) * | 2015-01-07 | 2020-02-13 | Сивек Фармасьютикалз Гмбх | Рекомбинантные гликопротеины с сиалированными о-гликанами и линии клеток для их продукции |
US10793839B2 (en) | 2015-01-07 | 2020-10-06 | Cevec Pharmaceuticals Gmbh | O-glycan sialylated recombinant glycoproteins |
US11193156B2 (en) | 2017-03-29 | 2021-12-07 | Cevec Pharmaceutical GmbH | Recombinant glycoproteins with reduced antennary fucosylation |
US12060561B2 (en) | 2017-08-08 | 2024-08-13 | Cevec Pharmaceuticals Gmbh | Use of constitutively active variants of growth factor receptors as selection markers for the generation of stable producer cell lines |
Also Published As
Publication number | Publication date |
---|---|
ZA200905728B (en) | 2010-05-26 |
RU2009136982A (ru) | 2011-04-20 |
WO2008112092A2 (en) | 2008-09-18 |
US20100028951A1 (en) | 2010-02-04 |
SG187521A1 (en) | 2013-02-28 |
WO2008112092A3 (en) | 2008-11-06 |
CN101679934B (zh) | 2014-04-02 |
JP2010519930A (ja) | 2010-06-10 |
EP2134834A2 (en) | 2009-12-23 |
CA2679732A1 (en) | 2008-09-18 |
EP2134834B1 (en) | 2013-04-17 |
KR20090130029A (ko) | 2009-12-17 |
CN101679934A (zh) | 2010-03-24 |
AU2008227024A1 (en) | 2008-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2479629C2 (ru) | Продукция гликопротеинов с модифицированным фукозилированием | |
US20110207214A1 (en) | Novel tools for the production of glycosylated proteins in host cells | |
EP1597379B2 (en) | Endomannosidases in the modification of glycoproteins in eukaryotes | |
JP4932699B2 (ja) | 真菌および酵母におけるシチジンモノホスフェート−シアル酸合成経路を操作する方法 | |
JP5514541B2 (ja) | 下等真核生物におけるシアル酸付加n−グリカンの産生 | |
US20130040897A1 (en) | Glycosylation of proteins in host cells | |
AU2015293949B2 (en) | Production of glycoproteins with mammalian-like N-glycans in filamentous fungi | |
JP2015502144A (ja) | Alg3の発現を欠損したピキア・パストリス(Pichiapastris)株中のN−グリカン占有率を増加させ、ハイブリッドN−グリカンの産生を低減させる方法 | |
US8936918B2 (en) | Yeast strain for the production of proteins with modified O-glycosylation | |
US20140308702A1 (en) | Yeast recombinant cell capable of producing gdp-fucose | |
US9587245B2 (en) | N-glycosylation in transformed Phaeodactylum tricornutum | |
JP2014509864A (ja) | Gdp−フコースを産生可能な酵母組換え細胞 | |
EP2563902A1 (en) | Improved glycosylation of proteins in host cells | |
Mhatre et al. | Metabolic Engineering of the Secretory Processing Pathway in Eukaryotes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20140304 |