RU2372991C2 - Способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки - Google Patents
Способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки Download PDFInfo
- Publication number
- RU2372991C2 RU2372991C2 RU2006129927/04A RU2006129927A RU2372991C2 RU 2372991 C2 RU2372991 C2 RU 2372991C2 RU 2006129927/04 A RU2006129927/04 A RU 2006129927/04A RU 2006129927 A RU2006129927 A RU 2006129927A RU 2372991 C2 RU2372991 C2 RU 2372991C2
- Authority
- RU
- Russia
- Prior art keywords
- catalyst
- chelating agent
- specified
- spent
- aged
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 409
- 239000001257 hydrogen Substances 0.000 title claims abstract description 122
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 122
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 120
- 238000000034 method Methods 0.000 title claims abstract description 80
- 230000003197 catalytic effect Effects 0.000 title claims abstract description 48
- 230000000694 effects Effects 0.000 title abstract description 20
- 230000001172 regenerating effect Effects 0.000 title abstract description 5
- 238000003672 processing method Methods 0.000 title abstract description 3
- 239000002738 chelating agent Substances 0.000 claims abstract description 94
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 72
- 229910052751 metal Inorganic materials 0.000 claims abstract description 58
- 239000002184 metal Substances 0.000 claims abstract description 58
- 238000001035 drying Methods 0.000 claims abstract description 28
- 239000002904 solvent Substances 0.000 claims abstract description 28
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 25
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 24
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 20
- 239000000654 additive Substances 0.000 claims abstract description 13
- 230000000996 additive effect Effects 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 12
- KXDHJXZQYSOELW-UHFFFAOYSA-N Carbamic acid Chemical class NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000012876 carrier material Substances 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 118
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 117
- 229910052717 sulfur Inorganic materials 0.000 claims description 57
- 239000011593 sulfur Substances 0.000 claims description 57
- 230000032683 aging Effects 0.000 claims description 26
- 239000013522 chelant Substances 0.000 claims description 23
- 238000001354 calcination Methods 0.000 claims description 17
- 238000009835 boiling Methods 0.000 claims description 10
- 238000005984 hydrogenation reaction Methods 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- 230000035800 maturation Effects 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 2
- 230000008014 freezing Effects 0.000 claims description 2
- 238000007710 freezing Methods 0.000 claims description 2
- 230000002262 irrigation Effects 0.000 claims 1
- 238000003973 irrigation Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 2
- 239000005864 Sulphur Substances 0.000 abstract 1
- 239000007858 starting material Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 31
- 239000011148 porous material Substances 0.000 description 21
- 238000005987 sulfurization reaction Methods 0.000 description 21
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 13
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 13
- 150000001336 alkenes Chemical class 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 150000002739 metals Chemical class 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 239000006259 organic additive Substances 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 239000004711 α-olefin Substances 0.000 description 9
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 8
- -1 for example Chemical class 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 238000005486 sulfidation Methods 0.000 description 7
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 6
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 230000009920 chelation Effects 0.000 description 6
- 229960001484 edetic acid Drugs 0.000 description 6
- 229910052750 molybdenum Inorganic materials 0.000 description 6
- 239000011733 molybdenum Substances 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 230000008929 regeneration Effects 0.000 description 6
- 238000011069 regeneration method Methods 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 125000004433 nitrogen atom Chemical group N* 0.000 description 5
- 238000000859 sublimation Methods 0.000 description 5
- 230000008022 sublimation Effects 0.000 description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 4
- 238000011066 ex-situ storage Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- QGJOPFRUJISHPQ-UHFFFAOYSA-N Carbon disulfide Chemical compound S=C=S QGJOPFRUJISHPQ-UHFFFAOYSA-N 0.000 description 3
- QMMFVYPAHWMCMS-UHFFFAOYSA-N Dimethyl sulfide Chemical compound CSC QMMFVYPAHWMCMS-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000003209 petroleum derivative Substances 0.000 description 3
- 150000003464 sulfur compounds Chemical class 0.000 description 3
- URDCARMUOSMFFI-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(2-hydroxyethyl)amino]acetic acid Chemical compound OCCN(CC(O)=O)CCN(CC(O)=O)CC(O)=O URDCARMUOSMFFI-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- MXRIRQGCELJRSN-UHFFFAOYSA-N O.O.O.[Al] Chemical group O.O.O.[Al] MXRIRQGCELJRSN-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 125000002947 alkylene group Chemical group 0.000 description 2
- 150000001414 amino alcohols Chemical class 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- WQAQPCDUOCURKW-UHFFFAOYSA-N butanethiol Chemical compound CCCCS WQAQPCDUOCURKW-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- WQOXQRCZOLPYPM-UHFFFAOYSA-N dimethyl disulfide Chemical compound CSSC WQOXQRCZOLPYPM-UHFFFAOYSA-N 0.000 description 2
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000002898 organic sulfur compounds Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229960003330 pentetic acid Drugs 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000768 polyamine Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 1
- OFLNEVYCAMVQJS-UHFFFAOYSA-N 2-n,2-n-diethylethane-1,1,1,2-tetramine Chemical compound CCN(CC)CC(N)(N)N OFLNEVYCAMVQJS-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- 229910000873 Beta-alumina solid electrolyte Inorganic materials 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-N Methanethiol Chemical compound SC LSDPWZHWYPCBBB-UHFFFAOYSA-N 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 238000011005 laboratory method Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 description 1
- 229910052982 molybdenum disulfide Inorganic materials 0.000 description 1
- JVKAWJASTRPFQY-UHFFFAOYSA-N n-(2-aminoethyl)hydroxylamine Chemical compound NCCNO JVKAWJASTRPFQY-UHFFFAOYSA-N 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000002459 porosimetry Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/90—Regeneration or reactivation
- B01J23/94—Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/20—Sulfiding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
- B01J38/50—Liquid treating or treating in liquid phase, e.g. dissolved or suspended using organic liquids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/48—Liquid treating or treating in liquid phase, e.g. dissolved or suspended
- B01J38/64—Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts
- B01J38/66—Liquid treating or treating in liquid phase, e.g. dissolved or suspended using alkaline material; using salts using ammonia or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/32—Selective hydrogenation of the diolefin or acetylene compounds
- C10G45/34—Selective hydrogenation of the diolefin or acetylene compounds characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/44—Hydrogenation of the aromatic hydrocarbons
- C10G45/46—Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/58—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
- C10G45/60—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G47/00—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
- C10G47/02—Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G49/00—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
- C10G49/02—Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J38/00—Regeneration or reactivation of catalysts, in general
- B01J38/04—Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
- B01J38/12—Treating with free oxygen-containing gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/40—Characteristics of the process deviating from typical ways of processing
- C10G2300/44—Solvents
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/70—Catalyst aspects
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Настоящее изобретение относится к способу восстановления каталитической активности отработанного не содержащего добавку катализатора водородообработки. Описаны способы восстановления каталитической активности отработанного не содержащего добавку катализатора водородообработки (варианты), указанный способ включает: контактирование отработанного не содержащего добавку катализатора водородообработки, содержащего компонент металла и материал носителя, имеющего сниженную каталитическую активность по отношению к катализатору в его свежем состоянии перед его использованием, в результате которого он становится указанным отработанным катализатором, с раствором, где указанный раствор содержит хелатирующий агент, выбранный из группы соединений, состоящей из аминокарбоновых кислот, и растворитель, и где указанное контактирование проводится в течение периода времени, превышающего 10 ч, с обеспечением восстановленной каталитической активности, с получением в результате состарившегося катализатора, имеющего введенные в него указанный хелатирующий агент и указанный растворитель, где указанный отработанный катализатор водородообработки содержит количество указанного хелатирующего агента в интервале от 0,005 моль хелатирующего агента на моль активного металла до 1 моль хелатирующего агента на моль активного металла; выдержку указанного состарившегося катализатора в условиях, включающих температуру сушки так, чтобы удалить из указанного состарившегося катализатора часть указанного растворителя при удалении менее 50 мас.% указанного хелатирующего агента из указанного состарившегося катализатора с получением в результате высушенного состарившегося катализатора; обработку серой указанного высушенного состарившегося катализатора с получением регенерированного катализатора. Также описан катализатор, полученный описанными выше способами и способ водородообработки, содержащий контактирование углеводородного исходного сырья в условиях водородообработки с катализатором, полученным указанными выше способами. Технический результат - повышение степени восстановленной каталитической активности отработанного катализатора водородообработки. 5 н. и 14 з.п. ф-лы, 2 табл.
Description
Данная заявка заявляет преимущество предварительной заявки США № 60/537499 от 20 января 2004 г., полное описание которой поэтому приводится посредством ссылки.
Данное изобретение относится к способу восстановления каталитической активности отработанного катализатора водородообработки, к полученному восстановленному катализатору и к его использованию в водородообработке.
Предпосылки создания изобретения
Международная публикация номер WO 01/02092 (Akzo) рассматривает способ регенерирования использованного содержащего добавку катализатора при контактировании его с кислородсодержащим газом. Регенерированный катализатор восстанавливается при его контактировании с органической добавкой с последующей сушкой для удаления растворителя добавки. Публикация рассматривает, что регенерированный и восстановленный катализатор может также предварительно сульфидироваться, но в ней отсутствует какое-либо описание методики предварительного сульфидирования и в ней отсутствует описание предварительной сульфуризации с использованием элементарной серы. Публикация, кроме того, не имеет описания регенерирования катализатора с использованием механизма хелатирования, и она, в частности, не имеет описания использования хелатирующего агента в комбинации с созреванием для создания регенерированного катализатора. Заслуживает особого внимания то, что описание публикации относится только к содержащему добавку катализатору. Публикация не предусматривает никакого описания, рассматривающего прокаливание регенерированного катализатора, в который вводится органическая добавка.
Патент США № 6239054В1 рассматривает использование хелатирующего агента в способе улучшения активности отработанного катализатора при обработке отработанного катализатора хелатирующим агентом с последующей сушкой и прокаливанием. Заявленный способ требует стадии прокаливания.
Существует потребность нахождения лучших способов восстановления активности катализаторов, которые имеют потерю активности в результате их использования, в частности, когда катализатором является катализатор водородообработки с высокой активностью.
Международная публикация номер WO 96/41848 (Sumitomo) рассматривает способ, в котором использованный регенерированный катализатор водородообработки контактирует с добавкой, содержащей не менее 2 гидроксильных групп и 2-10 углеродных атомов, и сушится в таких условиях, что не менее 50% добавки остается в катализаторе. Активированный катализатор перед водородообработкой предварительно сульфидируется.
Европейская заявка на патент ЕР 1043069 (Akzo) рассматривает способ получения сульфидированного катализатора водородообработки, в котором катализатор водородообработки подвергается стадии сульфидирования, в котором катализатор водородообработки содержит носитель, содержащий не менее 50% глинозема, причем катализатор содержит, по меньшей мере, один металлический компонент гидрогенирования и органическое соединение, содержащее, по меньшей мере, один ковалентно связанный атом азота и, по меньшей мере, один карбонильный остаток, причем мольное соотношение между органическим соединением и общим содержанием металла гидрогенирования составляет, по меньшей мере, 0,01:1.
Международная публикация номер WO 95/31280 рассматривает некоторые катализаторы с высокой активностью и способы улучшения активности катализаторов путем смачивания катализатора хелатирующим агентом, старения смоченного таким образом носителя, сушки и затем прокаливания высушенного таким образом носителя.
Краткое описание изобретения
Соответственно, один способ изобретения включает контактирование отработанного катализатора, имеющего сниженную каталитическую активность относительно катализатора в его свежем состоянии перед его использованием с получением в результате отработанного катализатора, с раствором, содержащим хелатирующий агент и растворитель. Контактирование осуществляется в течение периода времени, достаточного для обеспечения восстановленной каталитической активности, с получением в результате состарившегося катализатора, имеющего введенный хелатирующий агент и растворитель. Состарившийся катализатор выдерживается в условиях, включающих температуру сушки, так, чтобы удалять из состарившегося катализатора часть растворителя без удаления из состарившегося катализатора значительной части хелатирующего агента с получением в результате высушенного состарившегося катализатора. Высушенный состарившийся катализатор затем обрабатывают серой с получением регенерированного катализатора.
Другой вариант изобретения относится к способу восстановления каталитической активности отработанного катализатора водородообработки, имеющего одну концентрацию углерода. В данном способе концентрация углерода на отработанном катализаторе водородообработки снижается с обеспечением в результате отработанного катализатора со сниженным уровнем углерода, имеющего другую концентрацию углерода, которая является меньше первой концентрации углерода. Катализатор со сниженным уровнем углерода выдерживают в растворе, содержащем хелатирующим агент и растворитель, в течение периода времени старения, достаточного для обеспечения восстановленной каталитической активности, с получением в результате состарившегося катализатора, имеющего введенный хелатирующий агент и растворитель. Состарившийся катализатор выдерживается в условиях, включающих температуру сушки, так, чтобы удалять из состарившегося катализатора часть растворителя без удаления из состарившегося катализатора значительной части хелатирующего агента с получением в результате высушенного состарившегося катализатора. Высушенный состарившийся катализатор затем обрабатывают серой с получением регенерированного катализатора.
Еще один вариант способа изобретения включает обеспечение отработанного катализатора водородообработки, который содержит углерод, из которого углерод удаляют с тем, чтобы создать катализатор со сниженным уровнем углерода. Хелатирующий агент вводят в катализатор со сниженным уровнем углерода при выдержке катализатора со сниженным уровнем углерода в растворе, содержащем хелатирующий агент и растворитель. Полученный катализатор со сниженным уровнем углерода с введенным хелатирующим агентом созревает в течение периода времени старения, достаточного для обеспечения восстановленной каталитической активности, с получением в результате состарившегося катализатора. Состарившийся катализатор сушат при температуре сушки так, чтобы удалить из состарившегося катализатора часть растворителя без удаления из состарившегося катализатора значительной части хелатирующего агента с получением в результате высушенного состарившегося катализатора. Высушенный состарившийся катализатор затем обрабатывают серой с получением регенерированного катализатора.
В соответствии с другим вариантом изобретения предусматривается каталитическая композиция, содержащая отработанный катализатор, имеющий введенный в него раствор, где раствор содержит хелатирующий агент и растворитель, и где полученный отработанный катализатор, имеющий введенный в него раствор, состаривается в течение периода времени старения и затем сушится с удалением части растворителя, содержащегося в нем, без удаления из него значительной части хелатирующего агента с последующей его обработкой серой с получением в результате катализатора.
Регенерированный катализатор и такие катализаторы, полученные вышеуказанными способами обработки, могут использоваться в способе водородообработки, содержащем контактирование катализатора с углеводородным исходным сырьем в условиях водородообработки.
Другие объекты и преимущества данного изобретения станут очевидными из последующего подробного описания и прилагаемой формулы изобретения.
Подробное описание изобретения
Настоящее изобретение относится к способу восстановления каталитической активности катализатора, предпочтительно катализатора водородообработки, который стал отработанным в результате его использования. Кроме того, настоящее изобретение относится к катализатору водородообработки и другим каталитическим композициям, имеющим восстановленную каталитическую активность и полученным обработкой отработанного катализатора водородообработки с использованием способов изобретения, описанных здесь. Кроме того, настоящее изобретение относится к способу водородообработки, который использует регенерированные катализаторы водородообработки изобретения.
Катализатором водородообработки изобретения может быть любой подходящий катализатор гидрогенирования, включая традиционные катализаторы водородообработки, которые содержат компонент металла на материале носителя. Компонент металла может включать компонент металла группы VIB, или компонент металла группы VIII, или оба компонента металла. Предпочтительно катализатор водородообработки содержит как компонент металла группы VIB, так и компонент металла группы VIII. Катализатор водородообработки может также включать промотор, такой как фосфорный компонент.
Компонентом металла группы VIII каталитической композиции водородообработки являются такие соединения металла группы VIII или металла, которые в сочетании с другими компонентами каталитической композиции подходяще обеспечивают катализатор водородообработки. Металл группы VIII может быть выбран из группы, состоящей из никеля, кобальта, палладия и платины. Предпочтительно металл группы VIII представляет собой либо никель, либо кобальт.
Компонент металла группы VIII, содержащийся в каталитической композиции водородообработки, может быть в элементарной форме либо в форме соединения металла, такого как, например, оксиды, сульфиды и т.п. Количество металла группы VIII каталитической композиции водородообработки может находиться в интервале от примерно 0,1 до примерно 6 мас.% элементарного металла по отношению к общей массе каталитической композиции водородообработки. Предпочтительно концентрация металла группы VIII в каталитической композиции водородообработки находится в интервале от 0,3 мас.% до 5 мас.%, наиболее предпочтительно, концентрация находится в интервале от 0,5 мас.% до 4 мас.%.
Компонентом металла группы VIВ каталитической композиции водородообработки являются такие соединения металла или металл группы VIВ, которые в сочетании с другими компонентами каталитической композиции водородообработки подходяще обеспечивают катализатор водородообработки. Металл группы VIВ может быть выбран из группы, состоящей из хрома, молибдена и вольфрама. Предпочтительным металлом группы VIВ является либо молибден, либо хром, и, наиболее предпочтительно, им является молибден.
Компонент металла группы VIВ, содержащийся в каталитической композиции водородообработки, может быть в элементарной форме либо в форме соединения металла, такого как, например, оксиды, сульфиды и т.п. Количество металла группы VIВ каталитической композиции водородообработки может находиться в интервале от примерно 5 до примерно 25 мас.% элементарного металла по отношению к общей массе каталитической композиции водородообработки. Предпочтительно, концентрация металла группы VIВ в каталитической композиции водородообработки находится в интервале от 6 мас.% до 22 мас.%, и, наиболее предпочтительно, концентрация находится в интервале от 7 мас.% до 20 мас.%.
Материалом носителя катализатора водородообработки может быть любой материал, который подходяще обеспечивает носитель для компонентов металла гидрогенирования катализатора водородообработки, включая пористые тугоплавкие оксиды. Примеры возможных подходящих пористых тугоплавких оксидов включают оксид кремния, оксид магния, оксид кремния-оксид титана, оксид циркония, оксид кремния-оксид циркония, оксид титана, оксид титана-оксид алюминия, оксид циркония-оксид алюминия, оксид кремния-оксид титана, оксид алюминия, оксид кремния-оксид алюминия и алюмосиликат. Оксид алюминия может быть в различных формах, таких как альфа-глинозем, бета-глинозем, гамма-глинозем, дельта-глинозем, эта-глинозем, тета-глинозем, бемит или их смеси. Предпочтительным пористым тугоплавким оксидом является аморфный глинозем. Среди доступных аморфных глиноземов наиболее предпочтительным является гамма-глинозем.
Пористый тугоплавкий оксид обычно имеет средний диаметр пор в интервале от примерно 50 Е до примерно 200 Е, предпочтительно, от 70 Е до 175 Е, и, наиболее предпочтительно, от 80 Е до 150 Е. Общий объем пор пористого тугоплавкого оксида, как измерено стандартными методами ртутной порометрии, находится в интервале от примерно 0,2 см3/г до примерно 2 см3/г. Предпочтительно общий объем пор находится в интервале от 0,3 см3/г до 1,5 см3/г и, наиболее предпочтительно, от 0,4 см3/г до 1 см3/г. Площадь поверхности пористого тугоплавкого оксида, как измерено методом БЭТ, обычно превышает примерно 100 м2 /г, и она обычно находится в интервале от примерно 100 до примерно 400 м2/г.
Новый способ восстановления каталитической активности отработанного катализатора, в частности, применим для обработки не содержащих добавку катализаторов водородообработки, которые стали отработанными в результате использования. Не содержащим добавку катализатором водородообработки является катализатор водородообработки, который не имеет введенной в него органической добавки перед его использованием в водородообработке углеводородного исходного сырья или перед обработкой предварительной сульфуризацией, осуществляемой перед использованием катализатора водородообработки. Таким образом, не содержащим добавку катализатором является катализатор водородообработки, как описано выше, но который не имеет введенной в него органической добавки перед использованием катализатора водородообработки или перед его предварительной сульфуризацией.
Когда указано, что катализатор водородообработки не имеет введенной в него органической добавки, это означает, что при изготовлении (или получении) катализатора водородообработки органическая добавка, как определено ниже, не вводится в катализатор водородообработки ни до, ни после, ни одновременно с введением компонента или компонентов металлов гидрогенирования в другие компоненты катализатора водородообработки, такие как, например, материал носителя. Таким образом, не содержащий добавку катализатор водородообработки в свежем состоянии перед использованием или предварительной сульфуризацией не имеет, предпочтительно, значительного количества органической добавки, и он иначе является катализатором водородообработки, как описано подробно выше, который содержит компонент металла на материале носителя. Такой не содержащий добавку катализатор водородообработки, кроме того, может состоять по существу из компонента металла и материала носителя, и он может необязательно включать компонент промотора. Типы, свойства и количества компонентов металлов, материала носителя и компонентов промотора не содержащего добавку катализатора являются такими, как описано выше.
Понятно, что, как использовано в данном описании, термин «катализатор водородообработки» включает как содержащие добавку катализаторы, так и не содержащие добавку катализаторы. Примеры содержащих добавку катализаторов описаны подробно в патенте США № 6635596В1. Термин «органическая добавка», как использовано в данном описании, может иметь такое же значение, какое термин имеет в ссылочном патенте США № 6635596В1. Кроме того, органическая добавка, указанная здесь, определяется, как включающая, например, органические соединения, содержащие не менее 2 атомов кислорода и 2-10 углеродных атомов, и соединения, состоящие из указанных соединений, и органические соединения, содержащие, по меньшей мере, один ковалентно связанный атом азота и, по меньшей мере, один карбонильный остаток. Таким образом, при получении не содержащего добавку катализатора ни органические соединения, содержащие не менее 2 атомов кислорода и 2-10 углеродных атомов, и соединения, состоящие из указанных соединений, ни органические соединения, содержащие, по меньшей мере, один ковалентно связанный атом азота и, по меньшей мере, один карбонильный остаток, не используются.
Катализатор водородообработки может использоваться в водородообработке углеводородного исходного сырья в подходящих условиях способа водородообработки. Типичное углеводородное исходное сырье может включать нефтепродукты, например атмосферные дистилляты, вакуумные дистилляты, крекированные дистилляты, очищенные нефтепродукты, водородообработанную нефть, деасфальтированные масла и другие углеводороды, которые могут быть подвергнуты водородообработке. Более типично, углеводородным исходным сырьем, которое обрабатывается катализатором водородообработки, является нефтяной дистиллят, такой как дистиллят прямой перегонки или крекированный дистиллят, с водородообработкой с удалением серы из серасодержащих соединений или азота из азотсодержащих соединений, или того и другого из углеводородного исходного сырья.
В частности, углеводородное исходное сырье может включать такие потоки, как нафта, которая обычно содержит углеводороды, кипящие в интервале от 100°С (212˚F) до 160°С (320˚F), керосин, который обычно содержит углеводороды, кипящие в интервале от 150°С (302˚F) до 230°С (446˚F), легкий газойль, который обычно содержит углеводороды, кипящие в интервале от 230°С (446˚F) до 350°С (662˚F), и даже тяжелые газойли, содержащие углеводороды, кипящие в интервале от 350°С (662˚F) до 430°С (805˚F).
Условия водородообработки, воздействию которых подвергается катализатор водородообработки, не являются критическими и выбираются, как требуется, принимая во внимание такие факторы, как тип углеводородного исходного сырья, которое обрабатывается, и количества серных и азотных загрязнений, содержащихся в углеводородном исходном сырье. Обычно углеводородное исходное сырье контактирует с катализатором водородообработки в присутствии водорода в условиях водородообработки, таких как температура контактирования водородообработки обычно в интервале от примерно 150°С (302˚F) до примерно 538°С (1000˚F), предпочтительно от 200°С (392˚F) до 450°С (842˚F), и, наиболее предпочтительно, от 250°С (482˚F) до 425°С (797˚F).
Общее давление контактирования водородообработки находится обычно в интервале от примерно 3447 кПа (500 фунт/кв.дюйм) до примерно 41369 кПа (6000 фунт/кв.дюйм), что включает парциальное давление водорода в интервале от примерно 3447 кПа (500 фунт/кв.дюйм) до примерно 20684 кПа (3000 фунт/кв.дюйм), скорость добавления водорода на объем углеводородного исходного сырья в интервале от примерно 89 л/л (500 ст.куб.фут/баррель) до примерно 1781 л/л (10000 ст.куб.фут/ баррель) и часовую объемную скорость жидкости ((LHSV)(ЧОСЖ)) водородообработки в интервале от примерно 0,2 ч-1 до 5 ч-1. Предпочтительное общее давление контактирования водородообработки находится в интервале от 3447 кПа (500 фунт/кв.дюйм) до 17237 кПа (2500 фунт/кв.дюйм), наиболее предпочтительно, от 3447 кПа (500 фунт/кв.дюйм) до 13790 кПа (2000 фунт/кв.дюйм), с предпочтительным парциальным давлением водорода от 5516 кПа (800 фунт/кв.дюйм) до 13790 кПа (2000 фунт/кв.дюйм), и, наиболее предпочтительно, от 6895 кПа (1000 фунт/кв.дюйм) до 12411 кПа (1800 фунт/кв.дюйм). ЧОСЖ находится, предпочтительно, в интервале от примерно 0,2 ч-1 до 4 ч-1, и, наиболее предпочтительно, от примерно 0,2 ч-1 до 3 ч-1. Скорость добавления водорода находится в интервале от 107 л/л (600 ст.куб.фут/баррель) до примерно 1425 л/л (8000 ст.куб.фут/баррель) и, более предпочтительно, от 125 л/л (700 ст.куб.фут/баррель) до 1069 л/л (6000 ст.куб.фут/баррель).
Один путь, по которому катализатор водородообработки может стать отработанным, представляет собой его использование в условиях водородообработки, как описано выше. Обычно считается, что одной причиной потери каталитической активности является осаждение углеродистого материала в пористой структуре катализатора водородообработки в результате его использования и что отработанный катализатор водородообработки может иметь содержание углерода обычно выше 3 мас.% по отношению к общей массе отработанного катализатора водородообработки, включая углерод и другие компоненты, осажденные на катализаторе водородообработки. Обычно содержание углерода в отработанном катализаторе водородообработки находится в интервале от 5 мас.% до 25 мас.%, и более обычно содержание углерода находится в интервале от 6 мас.% до 20 мас.%.
Помимо высокой концентрации углерода отработанный катализатор водородообработки может иметь относительную объемную активность ((RVA)(ООА)), которая снижается ниже ООА катализатора водородообработки в свежем состоянии до его использования, что в результате обеспечивает отработанный катализатор водородообработки. Катализатор водородообработки может считаться отработанным, когда ООА составляет менее 0,65. Но экономические и технологические соображения обычно определяют момент, в который катализатор водородообработки является отработанным. Катализатор водородообработки, таким образом, может быть отработанным, когда ООА составляет менее 0,5 и даже менее 0,4.
Как использовано в данном описании, термин "относительная объемная активность" ((RVA)(ООА)) относится к каталитической активности по отношению либо к гидродесульфуризации ((HDS) (ГДС)), либо к гидроденитрогенированию ((HDN)(ГДН)) отдельного катализатора, который был использован, относительно каталитической активности того же отдельного катализатора в его свежем неиспользованном состоянии. Таким образом, ООА свежего неиспользованного сравнительного катализатора является определением 1. ООА оцениваемого катализатора может быть представлена следующей формулой:
ООА=(константа скорости для оцениваемого катализатора)
/(константа скорости для свежего сравнительного катализатора),
где для случая гидродесульфуризации (ГДС) ООА, константы скорости рассчитываются, принимая порядок реакции ГДС 1,3, а для случая гидроденитрогенирования (ГДН) ООА константы скорости рассчитываются, принимая порядок реакции ГДН 1,0.
Один признак изобретения способа восстановления каталитической активности отработанного катализатора водородообработки может включать стадию снижения уровня углерода, которая обеспечивает сниженную концентрацию углерода на отработанном катализаторе водородообработки. Любой подходящий способ, известный в технике, может использоваться для снижения концентрации углерода на отработанном катализаторе водородообработки с получением в результате катализатора со сниженным уровнем углерода. Предпочтительный способ включает термообработку отработанного катализатора водородообработки при контактировании его с кислородсодержащим газом, содержащим кислород, в подходящих условиях выжигания углерода с тем, чтобы выжечь, или сжечь, или окислить углерод, который находится на отработанном катализаторе водородообработки, с получением в результате катализатора со сниженным уровнем углерода. Катализатор со сниженным уровнем углерода имеет сниженную концентрацию углерода, которая является меньше концентрации углерода на отработанном катализаторе водородообработки.
Требуемые условия выжигания углерода могут зависеть от количества углерода на отработанном катализаторе водородообработки, и обычно отработанный катализатор водородообработки контактирует с кислородсодержащим газом в таких условиях, что температура отработанного катализатора водородообработки не превышает 500°С с подходящей термообработкой или температура выжигания углерода находится в интервале от примерно 300°С до примерно 500°С. Предпочтительная температура выжигания углерода находится в интервале от 320 до 475°С и, наиболее предпочтительно, от 350 до 425°С.
Концентрация кислорода кислородсодержащего газа может регулироваться таким образом, чтобы обеспечить желаемые температурные условия выжигания углерода. Кислородсодержащим газом является, предпочтительно, воздух, который может быть разбавлен другими газами, например инертными газами, такими как азот, с регулированием концентрации кислорода в кислородсодержащем газе. Выжигание углерода может быть проведено в зоне выжигания, в которую помещают отработанный катализатор водородообработки и в которую вводят кислородсодержащий газ. Период времени для проведения выжигания углерода не является критическим и является таким, чтобы обеспечить катализатор со сниженным уровнем углерода, имеющий сниженную концентрацию углерода, и он обычно находится в интервале от примерно 0,1 ч до 48 ч или более.
Концентрация углерода катализатора со сниженным уровнем углерода, как уже отмечено, является меньше концентрации углерода отработанного катализатора водородообработки. Обычно концентрация углерода катализатора со сниженным уровнем углерода составляет менее 3 мас.% от общей массы катализатора со сниженным уровнем углерода, и, предпочтительно, концентрация углерода составляет менее 2,5 мас.%. Наиболее предпочтительно, концентрация углерода катализатора со сниженным уровнем углерода составляет менее 2 мас.%.
Способ изобретения дополнительно включает стадию обработки хелатирующим агентом отработанного катализатора водородообработки и, предпочтительно, отработанного катализатора водородообработки, которым является катализатор со сниженным уровнем углерода. Хелатирующий агент или хелант, подходящий для использования на стадии хелатирующей обработки способа изобретения, включает такие соединения, которые способны образовывать комплексы с компонентами металлов, такими как любой из металлов группы VIII и группы VIB, содержащимися в катализаторе со сниженным уровнем углерода. Особенно важно для способа изобретения, что хелант имеет свойства, которые обеспечивают восстановление каталитической активности катализатора со сниженным уровнем углерода.
Без желания быть связанным с какой-либо конкретной теорией, тем не менее считается, что хелатирующий агент обеспечивает восстановление каталитической активности при повторном диспергировании активных металлов, содержащихся в катализаторе со сниженным уровнем углерода, которые становятся агломерированными в результате предварительного использования и выдержки при высоких температурах, включая выдержку в условиях выжигания углерода катализатора водородообработки и его производных, в результате чего получается катализатор со сниженным уровнем углерода. Степень повторного диспергирования может быть показана и наблюдаться с помощью электронного микроскопа.
Хелатирующий агент вводится в катализатор со сниженным уровнем углерода в жидкой форме, предпочтительно при использовании раствора, содержащего хелатирующий агент, который образует комплексы с агломерированным металлом катализатора со сниженным уровнем углерода. Комплексы находятся, таким образом, в жидкой фазе, что обеспечивает мобильность комплексов и способствует переносу металла через катализатор со сниженным уровнем углерода с обеспечением в результате повторного диспергирования металлов.
Любое хелатирующее соединение, которое подходяще обеспечивает пользу восстановленной каталитической активности, как требуется способом изобретения, описанным здесь, может использоваться в хелатирующей обработке катализатора со сниженным уровнем углерода. Среди указанных хелатирующих соединений находятся такие хелатирующие агенты, которые имеют, по меньшей мере, один атом азота, который может служить в качестве электронодонорного атома для образования комплексов с металлами катализатора со сниженным уровнем углерода.
Примеры возможных хелатирующих агентов, содержащих атом азота, включают такие соединения, которые могут быть классифицированы как аминокарбоновые кислоты, полиамины, аминоспирты, оксимы и полиэтиленимины.
Примеры аминокарбоновых кислот включают этилендиаминтетрауксусную кислоту ((EDTA)(ЭДТК)), гидроксиэтилендиаминтриуксусную кислоту ((HEDTA)(ГЭДТК)), диэтилентриаминпентауксусную кислоту ((DTPA)(ДТПК)) и нитрилотриуксусную кислоту ((NTA) (НТК)).
Примеры полиаминов включают этилендиамин, диэтилентриамин, триэтилентетрамин и триаминотриэтиламин.
Примеры аминоспиртов включают триэтаноламин ((ТЕА)(ТЭА)) и N-гидроксиэтилэтилендиамин.
Предпочтительным хелатирующим агентом для использования в способе изобретения является аминокарбоновая кислота, которая может быть представлена следующей формулой:
в которой R1 , R2 ,R3 ,R4 и R5 независимо выбраны каждый из алкила, алкенила и аллила, имеющих до 10 углеродных атомов, и которые могут быть замещены одной или более групп, выбранных из карбонильной, карбоксильной, сложноэфирной, простой эфирной, амино- или амидо- групп; в которой R6 и R7 независимо выбраны каждый из алкилен-группы, имеющей до 10 углеродных атомов; где n равно 0 или 1; и где один или более из R1 , R2 , R3, R4 и R5 имеют формулу:
в которой R8 представляет собой алкилен, имеющий от 1 до 4 углеродных атомов, и в которой Х представляет собой либо водород, либо другой катион.
Предпочтительные хелатирующие агенты включают этилендиаминтетрауксусную кислоту ((EDTA)(ЭДТК)), гидроксиэтилендиаминтриуксусную кислоту ((HEDTA)(ГЭДТК)) и диэтилентриаминпентауксусную кислоту ((DTPA)(ДТПК)). Наиболее предпочтительным хелатирующим агентом является ДТПК.
Любые подходящие средство или способ могут быть использованы для контактирования катализатора со сниженным уровнем углерода с хелатирующим агентом или раствором, имеющим концентрацию хелатирующего агента, при условии, что такие средство или способ обеспечивают подходящее введение (или пропитку) хелатирующего агента в поры катализатора со сниженным уровнем углерода. Примеры подходящих способов применения хелатирующего агента или хелатирующего раствора в катализаторе со сниженным уровнем углерода могут включать окунание или напыление.
Предпочтительным способом контактирования катализатора со сниженным уровнем углерода с хелатирующим агентом или хелатирующим раствором является любой подходящий способ пропитки, известный специалистам в данной области техники, например пропитка начальной влажностью, поэтому количество или объем хелатирущего раствора, введенного в катализатор со сниженным уровнем углерода, является таким, что общий объем введенного хелатирующего раствора является таким, что он находится в интервале до примерно общего объема пор катализатора со сниженным уровнем углерода, пропитываемого хелатирующим раствором.
Хелатирующим раствором может быть раствор, содержащий хелатирующий агент и растворитель, который подходяще обеспечивает растворение хелатирующего агента. Возможные растворители включают воду и спирты, такие как метанол и этанол, причем вода является предпочтительным растворителем для хелатирующего агента. Количество хелатирующего агента, которое применяется в катализаторе со сниженным уровнем углерода, должно быть таким, чтобы обеспечить желаемую восстановленную каталитическую активность, как описано здесь, и обычно количество является таким, чтобы ввести в катализатор со сниженным уровнем углерода хелатирующий агент в интервале от примерно 0,005 моль хеланта до примерно 1 моль хеланта на моль активного металла, т.е. металлов группы VIII и группы VIB, описанных выше, который находится в катализаторе со сниженным уровнем углерода. Более предпочтительно вводить в катализатор со сниженным уровнем углерода количество хелатирующего агента, которое находится в интервале от 0,01 до 0,5 моль введенного хелатирующего агента на моль металла гидрогенирования в катализаторе со сниженным уровнем углерода. Наиболее предпочтительно, количество хелатирующего агента, введенного в катализатор со сниженным уровнем углерода, находится интервале от 0,05 до 0,1 моль введенного хелатирующего агента на моль металла гидрогенирования.
Было установлено, что для того, чтобы реализовать пользу от объединенных стадий снижения концентрации углерода отработанного катализатора с последующей обработкой хелатирующим агентом полученного катализатора со сниженным уровнем углерода вместе с другими стадиями и характеристиками способа изобретения, существенно, чтобы стадия обработки хелатирующим агентом включала созревание, или пропитывание, катализатора со сниженным уровнем углерода в течение достаточно длительного периода времени. Если указанный период времени не является достаточно длительным, существенный выигрыш в улучшенной каталитической активности не виден.
Катализатор со сниженным уровнем углерода, имеющий введенный в него хелатирующий агент, таким образом, созревает в течение периода времени старения, необходимого для обеспечения улучшения восстановленной каталитической активности. Предполагается, что достаточно длительный период старения требуется для того, чтобы позволить хеланту взаимодействовать с металлами катализатора со сниженным уровнем углерода с образованием в результате хелатов и позволить повторное диспергирование металлов. В любом случае имеется минимальное время, требуемое для периода старения, прежде чем виден дополнительный выигрыш в восстановленной каталитической активности катализатора со сниженным уровнем углерода, который затем обрабатывается хелантом и сульфуризуется. Указанное минимальное время старения может зависеть от температуры, при которой проводится созревание, и типа и количества используемого хеланта относительно катализатора со сниженным уровнем углерода.
Обычно для предпочтительных аминокислотных хелатирующих агентов для получения любого значительного выигрыша от старения важно, чтобы период времени старения превышал примерно 19 ч, но, предпочтительно, период времени старения должен превышать 20 ч и, наиболее предпочтительно, 40 ч. Имеется также максимальное количество времени старения, при котором не достигается значительное дополнительное увеличение восстановленной каталитической активности. Максимальное время старения составляет менее 600 ч, и, более предпочтительно, максимальное время старения составляет менее 400 ч. Таким образом, период времени старения для контактирования катализатора со сниженным уровнем углерода или для позволения хелатирующему агенту, который вводится в поры катализатора со сниженным уровнем углерода, оставаться на нем или пропитывать, находится в интервале от примерно 10 ч до примерно 900 ч, предпочтительно от 20 ч до 600 ч, и, наиболее предпочтительно, от 40 ч до 400 ч.
Температурой старения, при которой проводится созревание, может быть любая температура, которая обеспечивает состарившийся катализатор, по меньшей мере, частичным повторным диспергированием металлов катализатора со сниженным уровнем углерода и которая может быть обычно в интервале от примерно температуры замерзания рассматриваемого хелатирующего агента или раствора хелатирующего агента, используемого на стадии хелатирующей обработки, до примерно его температуры кипения. Обычно катализатор со сниженным уровнем углерода помещают в контейнер, который определяет локализованную зону, в которой имеет место созревание катализатора со сниженным уровнем углерода. Понятно, что катализатор со сниженным уровнем углерода может быть смешан с хелантом или хелатирующим раствором перед тем как полученная смесь помещается в контейнер или они могут быть смешаны в контейнере. Хотя контейнер может подвергаться температурному регулированию, более типично, он выдерживается только при температуре окружающей среды или в атмосферных температурных условиях. Таким образом, температура, при которой имеет место стадия старения, может быть в интервале от примерно 0 до примерно 100°С и, более типично, от 5 до 90°С. Предпочтительно температура старения находится в интервале от 10 до 60°С.
Состарившийся катализатор затем подвергают стадии сушки. Сушка состарившегося катализатора предназначена для удаления, по меньшей мере, части растворителя хелатирующего раствора из состарившегося катализатора при оставлении, по меньшей мере, части, предпочтительно главной части хелатирующего агента на состарившемся катализаторе. В предпочтительном варианте изобретения важно для высушенного состарившегося катализатора включать в себя количество или концентрацию хеланта, когда он подвергается обработке серой, как описано ниже.
При сушке состарившегося катализатора желательно удалять так мало хеланта из состарившегося катализатора, как это можно практически, и, таким образом, более примерно 50 мас.% хеланта, который первоначально вводится в катализатор со сниженным уровнем углерода, по отношению к общей массе хеланта, первоначально введенного в катализатор со сниженным уровнем углерода, остается в получаемом высушенном состарившемся катализаторе. Предпочтительно, количество хеланта, остающегося на высушенном состарившемся катализаторе, превышает 75 мас.%, и, наиболее предпочтительно, более 90 мас.%, хеланта, первоначально введенного в катализатор со сниженным уровнем углерода, остается в катализаторе со сниженным уровнем углерода, когда он подвергается обработке серой. Таким образом, высушенный состарившийся катализатор имеет концентрацию хеланта, и менее 50 мас.%, предпочтительно менее 25 мас.%, и, наиболее предпочтительно, менее 10 мас.% хеланта, первоначально введенного в катализатор со сниженным уровнем углерода, удаляется из него, когда состарившийся катализатор сушится. Понятно, что, когда ссылка здесь делается на хелант или хелатирующий агент, который удаляется из состарившегося катализатора, это означает, что ссылка делается на хелант или хелатирующий агент, либо в форме комплекса, либо в его первоначальной форме, либо в виде комбинации обеих форм.
Сушка может быть проведена любым подходящим способом, известным специалистам в данной области техники. Обычно для сушки состарившегося катализатора через него пропускают горячий воздух или любой другой подходящий газ, такой как азот и углекислый газ. Температура сушки не должна превышать 250°С и обычно может быть в интервале от 90 до 200°С. Предпочтительно, температура сушки является ниже 175°С и может варьироваться от 100 до 175°С. Стадия сушки тщательно контролируется для того, чтобы избежать либо выпаривания, либо превращения значительной части хеланта или хелатов, содержащихся в состарившемся катализаторе.
Существенной характеристикой способа изобретения является то, что состарившийся катализатор либо в его сухом состоянии, либо в ином и перед обработкой серой не должен подвергаться воздействию высокотемпературных условий, таких как температурные условия прокаливания. Поэтому максимальная температура выдержки, при которой состарившийся катализатор или высушенный состарившийся катализатор должен выдерживаться перед обработкой серой, является ниже температуры прокаливания 400°С, и, предпочтительно, максимальная температура выдержки является ниже 300°С. В более предпочтительном варианте состарившийся катализатор выдерживается только в условиях сушки перед обработкой серой, и, таким образом, максимальной температурой выдержки является температура сушки, которая является ниже 250°С, и, наиболее предпочтительно, максимальная температура выдержки является ниже 200°С.
Высушенный состарившийся катализатор, имеющий оставшиеся в нем, как рассмотрено выше, хелант или хелат, подвергается обработке серой для того, чтобы ресульфидировать компоненты металлов гидрогенирования, которые находятся в оксидной форме. Высушенный состарившийся катализатор, имеющий концентрацию хелатирующего соединения в интервале, как описано выше, подвергается стадии обработки серой, в процессе которой сера или соединение серы, или комбинация того и другого вводится в высушенный состарившийся катализатор, с получением в результате регенерированного катализатора. Любой подходящий способ, известный специалистам в данной области техники, может использоваться для обработки серой высушенного состарившегося катализатора с получением катализатора водородообработки с высокой активностью, включая, например, известные in-situ и ex-situ способы сульфуризации и сульфидирования.
В типичном in-situ способе сульфидирования высушенный состарившийся катализатор помещают в реакционный сосуд, который определяет реакционную зону. Поток жидкости, содержащий соединение серы, пропускается через высушенный состарившийся катализатор и взаимодействует с ним в таких подходящих температурных условиях, чтобы получить сульфидированный катализатор и, таким образом, регенерированный катализатор. Соединение серы может включать любые известные и подходящие сульфидирующие агенты, такие как сульфид водорода, органические соединения серы, которые обычно находятся в нефтяном углеводородном питании, и другие органические соединения серы, такие как диметилсульфид, диметилдисульфид, диметилсульфоксид, диметилмеркаптан, бутилмеркаптан и дисульфид углерода. Типичные температуры, при которых поток сульфидирующей жидкости взаимодействует с высушенным состарившимся катализатором, могут быть в интервале от 150 до 400°C, и, более типично, от 200 до 350°C.
В ex-situ способе сульфидирования высушенный состарившийся катализатор сульфидируется до его загрузки в реакционный сосуд или предварительно сульфидируется. Еx-situ сульфидирование может включать любое число подходящих способов сульфидирования, включая, например, взаимодействие высушенного состарившегося катализатора с сульфидирующим агентом, как указано выше, или с жидкостью, содержащей сульфид водорода, в условиях повышенной температуры с последующей необязательной стадией пассивации.
Предпочтительная стадия сульфуризации предусматривает введение серы в высушенный состарившийся катализатор при контактировании высушенного состарившегося катализатора с элементарной серой в условиях, которые обуславливают введение серы в поры высушенного состарившегося катализатора либо при сублимации, либо при плавлении, либо при комбинации того и другого. Подходящие способы сульфуризации для указанного введения серы описываются подробно в патенте США № 5468372.
Имеются два основных способа осуществления сульфуризации высушенного состарившегося катализатора элементарной серой. Первый и предпочтительный способ содержит контактирование высушенного состарившегося катализатора с элементарной серой при температуре, так что элементарная сера по существу вводится в поры высушенного состарившегося катализатора при сублимации и/или плавлении, и последующее нагревание высушенного состарившегося катализатора с введенной таким образом серой в присутствии жидкого олефинового углеводорода при температуре выше примерно 150°C.
Второй способ содержит контактирование высушенного состарившегося катализатора со смесью порошкообразной элементарной серы и жидкого олефинового углеводорода и нагревание полученной смеси олефина, серы и высушенного состарившегося катализатора при температуре выше примерно 150°C. В данной операции скорость нагревания является достаточно низкой, так что сера вводится в поры высушенного состарившегося катализатора при сублимации и/или плавлении до достижения температуры, при которой олефин взаимодействует с получением серы, более стойкой к удалению отпариванием.
В предпочтительном способе сульфуризации высушенный состарившийся катализатор сначала контактирует с элементарной серой при температуре, так что сера вводится на него при сублимации и/или плавлении. Хотя высушенный состарившийся катализатор может контактировать с серой в расплавленном состоянии, предпочтительно, сначала смешивать высушенный состарившийся катализатор с порошкообразной элементарной серой и затем нагревать полученную смесь серы и высушенного состарившегося катализатора до температуры выше температуры, при которой имеет место сублимация серы.
Обычно высушенный состарившийся катализатор нагревают в присутствии порошкообразной элементарной серы при температуре выше примерно 80°C. Предпочтительно, указанную стадию пропитки серой осуществляют при температуре в интервале от примерно 90°C до примерно 130°C или выше, например, до точки кипения серы примерно 445°C. Предпочтительно нагревать высушенный состарившийся катализатор и серу вместе при температуре в интервале от примерно 105°C до примерно 125°C. Обычно высушенный состарившийся катализатор и порошкообразную серу помещают в вибрационный или роторный смеситель и нагревают при желаемой температуре в течение достаточного времени, чтобы обеспечить введение серы в поры высушенного состарившегося катализатора. Период времени нагревания обычно находится в интервале от примерно 0,1 ч до примерно 10 ч или более.
Используемое количество серы зависит от количества каталитического металла, присутствующего в высушенном состарившемся катализаторе, который должен быть превращен в сульфид. Обычно используемое количество серы определяется на основе стехиометрического количества серы, необходимого для превращения всего металла в высушенном состарившемся катализаторе в форму сульфида.
Например, высушенный состарившийся катализатор, содержащий молибден, потребует два моля серы для превращения каждого моля молибдена в дисульфид молибдена, причем подобные определения сделаны для других металлов.
Высушенный состарившийся катализатор с введенной серой затем контактирует с жидким олефином при такой повышенной температуре и в течение периода времени, что олефин взаимодействует и обеспечивает регенерированный катализатор. Обычно температура контактирования составляет выше примерно 150°C, и более типично она находится в интервале от примерно 150°C до примерно 350°C, предпочтительно, от примерно 200°C до примерно 325°C. Время контактирования зависит от температуры и давления пара олефина, причем более высокие температуры и более высокие давления пара требуют более короткого времени. Вообще, время контактирования находится в интервале от примерно 0,1 ч до примерно 10 ч.
Важно, чтобы олефин был жидкостью при повышенной температуре контактирования. Предпочтительно, чтобы олефином был высший олефин, т.е. олефин, имеющий число углеродов более шести, предпочтительно более восьми.
В одном варианте предпочтительного способа сульфуризации высушенный состарившийся катализатор контактирует одновременно как с элементарной серой, предпочтительно в порошкообразной форме, так и с олефиновым углеводородом. Согласно данному способу сначала получают смесь порошкообразной элементарной серы и олефинового углеводородного растворителя. Массовое соотношение нефть:сера в интервале от примерно 1:1 до примерно 4:1 является подходящим, причем соотношение примерно 2:1 является предпочтительным соотношением. Смесь может нагреваться для облегчения гомогенного смешения компонентов, особенно если олефиновый углеводород не является жидкостью в окружающих условиях. Для снижения вязкости смеси могут вводиться толуол или другие легкие углеводородные растворители. Также повышенное нагревание дает такой же эффект. Смесь олефина и серы затем добавляют к предварительно взвешенному высушенному состарившемуся катализатору и смешивают их. Смесь высушенного состарившегося катализатора, олефина и серы затем нагревают до температуры взаимодействия олефина выше примерно 150°C. Предпочтительно температура находится в интервале от примерно 150°C до примерно 350°C, и, более предпочтительно, от примерно 200°C до примерно 325°C. Время нагревания находится в интервале от примерно 0,1 до примерно 10 ч.
Сульфуризованный высушенный состарившийся катализатор может быть также дополнительно обработан серой при сульфидировании либо in-situ, либо ex-situ, либо их комбинации.
Отработанные катализаторы, обработанные в соответствии со способами изобретения, описанными здесь, имеют восстановленную каталитическую активность. В частности, обработанные отработанные катализаторы имеют более высокую каталитическая активность, чем каталитическая активность отработанного катализатора до его обработки. Каталитическая активность регенерированного катализатора может быть такой, что его ООА является больше 0,8, но, более предпочтительно, ООА регенерированного катализатора может быть больше 0,85. Предпочтительно максимизировать степень восстановленной каталитической активности отработанного катализатора водородообработки способом изобретения, и, таким образом, предпочтительно, ООА регенерированного катализатора превышает 0,9 и, наиболее предпочтительно, ООА превышает 0,95.
Катализаторы водородообработки, обработанные в соответствии со способами, описанными здесь, и регенерированные катализаторы изобретения могут подходяще использоваться для водородообработки углеводородного исходного сырья в условиях водородообработки, как подробно описано здесь выше.
Последующие примеры представлены для иллюстрации изобретения, но они не должны истолковываться как ограничивающие объем изобретения.
Пример 1
Данный пример 1 описывает три лабораторных способа, использованных для обновления и восстановления каталитической активности коммерчески доступного катализатора водородообработки, который стал отработанным в результате его использования в водородообработке дистиллятного сырья.
Образец А получают выжиганием углерода из отработанного катализатора водородообработки (выжигание углерода может также называться регенерированием) с последующей сульфуризацией. Отсутствует промежуточная хелатирующая обработка или прокаливание перед сульфуризацией регенерированного отработанного катализатора водородообработки. Образец В получают выжиганием углерода из отработанного катализатора водородообработки с последующей хелатирующей обработкой, сушкой и прокаливанием перед сульфуризационной обработкой. Образец С получают выжиганием углерода из отработанного катализатора водородообработки с последующей хелатирующей обработкой и сушкой перед сульфуризационной обработкой. Отсутствует промежуточное прокаливание катализатора, обработаного хелантом, перед сульфуризацией.
Образец отработанного катализатора водородообработки получают от промышленного потребителя катализатора. Катализатор водородообработки содержит компоненты металлов водородообработки никеля (приблизительно 2,6 мас.%) и молибдена (приблизительно 14,5 мас.%) и фосфорсодержащий промотор (приблизительно 3 мас.%), которые нанесены на глиноземный носитель. Свежий катализатор водородообработки поставляется фирмой Criterion Catalysts & Technologies of Houston, Texas.
Отработанный катализатор водородообработки, описанный выше, подвергают выжиганию углерода пропусканием воздуха через образец отработанного катализатора водородообработки при максимальной температуре 450°С. Концентрация углерода отработанного катализатора перед выжиганием углерода превышает 10 мас.% от общей массы отработанного катализатора и после выжигания углерода концентрация углерода составляет примерно 0,13 мас.%. Указанный регенерированный катализатор затем используют для получения образцов А, В и С, как описано ниже.
Образец А
Аликвоту регенерированного катализатора, описанного выше, подвергают сульфуризационной обработке без промежуточной хелатирующей обработки или прокаливания.
Для сульфуризации регенерированного катализатора вводят 13,5 мас.ч. элементарной серы и смешивают со 100 мас.ч. регенерированного катализатора. Смесь затем доводят до температуры примерно 120°С и выдерживают в течение периода времени, достаточного для введения серы в поры высушенного катализатора.
После введения серы альфа-олефиновую смесь, содержащую альфа-олефины, имеющие от 14 до 30 углеродных атомов, вводят в поры регенерированного катализатора с введенной серой начальной влажностью. Количество альфа-олефина, введенного в регенерированный катализатор с введенной серой, является достаточным для заполнения приблизительно 90 об.% доступного объема пор. Полученный таким образом катализатор затем подвергают термообработке нагреванием образцов в токе воздуха при температуре примерно 260°С в течение периода времени, достаточного для получения образца А, используемого в испытании на активность примера 2.
Образец В
Для получения образца В аликвоту регенерированного катализатора, описанного выше, подвергают хелатирующей обработке. Хелатирующий раствор, используемый для обработки образца регенерированного катализатора, состоит из одной (1) мас.ч. ДТПК, 0,11 мас.ч. гидроксида аммония и 10 мас.ч. воды. Регенерированный образец пропитывают хелатирующим раствором стандартной технологией начальной влажности, по которой приблизительно 98 об.% доступного объема пор регенерированного катализатора заполняется хелатирующим раствором. Затем пропитанному регенерированному катализатору позволяют созревать в течение периода времени старения две недели при комнатной температуре в герметичном контейнере с получением состарившегося катализатора.
Образец состарившегося катализатора затем сушат при температуре примерно 150°С в течение периода времени примерно 2 ч. После стадии сушки высушенный состарившийся катализатор затем подвергают прокаливанию, при котором воздух при температуре примерно 425°С пропускают через высушенный состарившийся катализатор в течение периода времени примерно 2 ч.
Полученный высушенный и прокаленный состарившийся катализатор затем подвергают сульфуризационной обработке, по которой 13,5 мас.ч. элементарной серы вводят и смешивают со 100 мас.ч. высушенного и прокаленного состарившегося катализатора. Смесь затем доводят до температуры примерно 120°С и выдерживают в течение периода времени, достаточного для введения серы в поры высушенного и прокаленного состарившегося катализатора.
После введения серы альфа-олефиновую смесь, содержащую альфа-олефины, имеющие от 14 до 30 углеродных атомов, вводят в поры высушенного и прокаленного состарившегося катализатора с введенной серой начальной влажностью. Количество альфа-олефина, введенного в высушенный состарившийся и прокаленный катализатор с введенной серой, является достаточным для заполнения приблизительно 90 об.% доступного объема пор. Полученный таким образом катализатор затем подвергают термообработке нагреванием образцов в токе воздуха при температуре примерно 260°С в течение периода времени, достаточного для получения образца В, используемого в испытании на активность примера 2.
Образец С
Для получения образца С аликвоту регенерированного катализатора, описанного выше, подвергают хелатирующей обработке. Хелатирующий раствор, используемый для обработки образца регенерированного катализатора, состоит из одной (1) мас.ч. ДТПК, 0,11 мас.ч. гидроксида аммония и 10 мас.ч. воды. Регенерированный образец пропитывают хелатирующим раствором стандартной технологией начальной влажности, по которой приблизительно 98 об.% доступного объема пор регенерированного катализатора заполняется хелатирующим раствором. Затем пропитанному регенерированному катализатору позволяют созревать в течение периода времени старения две недели при комнатной температуре в герметичном контейнере с получением состарившегося катализатора.
Образец состарившегося катализатора затем сушат в воздушной атмосфере при температуре примерно 150°С в течение периода времени примерно 2 ч. Указанную сушку проводят таким образом, что главная часть хелатирующего агента ДТПК остается на полученном высушенном катализаторе, и главная часть воды удаляется из состарившегося катализатора.
Указанный высушенный состарившийся катализатор затем подвергают сульфуризационной обработке без предварительной обработки прокаливанием, по которой 13,5 мас.ч. элементарной серы вводят и смешивают со 100 мас.ч. высушенного состарившегося катализатора. Смесь затем доводят до температуры примерно 120°С и выдерживают в течение периода времени, достаточного для введения серы в поры высушенного состарившегося катализатора.
После введения серы альфа-олефиновую смесь, содержащую альфа-олефины, имеющие от 14 до 30 углеродных атомов, вводят в поры высушенного состарившегося катализатора с введенной серой начальной влажностью. Количество альфа-олефина, введенного в высушенный состарившийся катализатор с введенной серой, является достаточным для заполнения приблизительно 90 об.% доступного объема пор. Полученный таким образом катализатор затем подвергают термообработке нагреванием образцов в токе воздуха при температуре примерно 260°С в течение периода времени, достаточного для получения образца С, используемого в испытании на активность примера 2.
Пример 2
Данный пример 2 описывает методику лабораторных испытаний и исходное сырье, используемое для испытания каталитической активности образцов катализаторов, описанных в примере 1, по сравнению с каталитической активностью свежего катализатора водородообработки.
Свойства исходного сырья, используемого в определении характеристик в испытаниях на активность, представлены в таблице 1. Для проведения испытаний активности 50 см3 образца рассматриваемого катализатора помещают в реактор для испытаний в условиях реакции водородообработки. Условия реакции включают температуру реакции примерно 360°С, общее давление примерно 11376 кПа (1650 фунт/кв.дюйм), скорость питания такую, что часовая объемная скорость жидкости составляет примерно 1,5 ч-1, соотношение водород:нефть примерно 659 л/л (3700 станд.куб. фут/баррель) и время работы примерно 400 ч.
Таблица 1 | |
Свойства сырья, используемого в испытаниях активности | |
СВОЙСТВА СЫРЬЯ | ПОКАЗАТЕЛИ |
Сера, мас.% | 0,491 |
Азот, ч./млн | 1800 |
Ароматические вещества, мас.% | 31,2 |
Плотность при 15,6°С, г/см3 | 0,946 |
Истинная точка кипения (по ГХ) | |
Температура начала кипения (˚F) | 317 |
10% | 471 |
50% | 587 |
90% | 691 |
Конечная точка кипения | 790 |
Результаты испытаний на активность, описанных в данном примере 2, представлены в таблице 2.
Таблица 2 | ||
Относительная объемная активность образцов отработанных катализаторов, полученных различными способами | ||
ООА (ГДН) | ||
Свежий катализатор | 1,00 | |
Образец А | только регенерирование | 0,82 |
Образец В | регенерирование/хелатирование/прокаливание | 1,00 |
Образец С | регенерирование/хелатирование/без прокаливания | 1,09 |
Результаты, представленные в таблице 2, показывают, что в способе восстановления каталитической активности отработанного катализатора водородообработки, дополнительные улучшения восстановленной каталитической активности могут быть достигнуты при использовании хелатирующей обработки отработанного катализатора водородообработки, который регенерируется при удалении из него углерода выжиганием, т.е. регенерированием. Кроме того, данные показывают, что отработанный катализатор водородообработки, который был регенерирован и обработан хелатирующим агентом, но не подвергался прокаливанию перед его сульфуризацией, имеет более высокую восстановленную каталитическую активность, чем такой регенерированный и хелатированный катализатор, который в другом случае был прокален перед сульфуризацией. Действительно данные показывают, что регенерированный катализатор водородообработки, полученный регенерированием отработанного катализатора водородообработки, который обрабатывается хелатирующим агентом с последующей сульфуризацией без промежуточного прокаливания, имеет ООА, превышающую ООА свежего катализатора.
Claims (19)
1. Способ восстановления каталитической активности отработанного не содержащего добавку катализатора водообработки, указанный способ включает:
контактирование отработанного не содержащего добавку катализатора водородообработки, содержащего компонент металла и материал носителя, имеющего сниженную каталитическую активность по отношению к катализатору в его свежем состоянии перед его использованием, в результате которого он становится указанным отработанным катализатором, с раствором, где указанный раствор содержит хелатирующий агент, выбранный из группы соединений, состоящей из аминокарбоновых кислот, и растворитель, и где указанное контактирование проводится в течение периода времени, превышающего 10 ч, с обеспечением восстановленной каталитической активности, с получением в результате состарившегося катализатора, имеющего введенные в него указанный хелатирующий агент и указанный растворитель, где указанный отработанный катализатор водородообработки содержит количество указанного хелатирующего агента в интервале от 0,005 моль хелатирующего агента на моль активного металла до 1 моль хелатирующего агента на моль активного металла;
выдержку указанного состарившегося катализатора в условиях, включающих температуру сушки так, чтобы удалить из указанного состарившегося катализатора часть указанного растворителя при удалении менее 50 мас.% указанного хелатирующего агента из указанного состарившегося катализатора с получением в результате высушенного состарившегося катализатора; и
обработку серой указанного высушенного состарившегося катализатора с получением регенерированного катализатора.
контактирование отработанного не содержащего добавку катализатора водородообработки, содержащего компонент металла и материал носителя, имеющего сниженную каталитическую активность по отношению к катализатору в его свежем состоянии перед его использованием, в результате которого он становится указанным отработанным катализатором, с раствором, где указанный раствор содержит хелатирующий агент, выбранный из группы соединений, состоящей из аминокарбоновых кислот, и растворитель, и где указанное контактирование проводится в течение периода времени, превышающего 10 ч, с обеспечением восстановленной каталитической активности, с получением в результате состарившегося катализатора, имеющего введенные в него указанный хелатирующий агент и указанный растворитель, где указанный отработанный катализатор водородообработки содержит количество указанного хелатирующего агента в интервале от 0,005 моль хелатирующего агента на моль активного металла до 1 моль хелатирующего агента на моль активного металла;
выдержку указанного состарившегося катализатора в условиях, включающих температуру сушки так, чтобы удалить из указанного состарившегося катализатора часть указанного растворителя при удалении менее 50 мас.% указанного хелатирующего агента из указанного состарившегося катализатора с получением в результате высушенного состарившегося катализатора; и
обработку серой указанного высушенного состарившегося катализатора с получением регенерированного катализатора.
2. Способ по п.1, в котором контактирование указанного отработанного катализатора с указанным раствором проводится при температуре старения в интервале от примерно температуры замерзания указанного раствора до примерно температуры кипения указанного раствора.
3. Способ по п.2, в котором условия, в которых указанный состарившийся катализатор выдерживается перед обработкой серой указанного высушенного состарившегося катализатора, включают максимальную температуру выдержки, которая является ниже температуры прокаливания 400°С.
4. Способ по п.3, в котором указанной максимальной температурой выдержки является указанная температура сушки, которая является ниже 250°С.
5. Способ по п.4, в котором указанный высушенный состарившийся катализатор имеет концентрацию указанного хелатирующего агента, и указанная значительная часть указанного хелатирующего агента, удаленного из указанного состарившегося катализатора, составляет менее 25 мас.% хелатирующего агента, введенного в указанный отработанный катализатор.
6. Способ по п.5, в котором указанная значительная часть указанного хелатирующего агента, удаленного из указанного состарившегося катализатора, составляет менее 25 мас.% хелатирующего агента, введенного в указанный отработанный катализатор.
7. Способ восстановления каталитической активности не содержащего добавку отработанного катализатора водородообработки, который (способ) содержит:
обеспечение указанного отработанного катализатора водородообработки, имеющего первую концентрацию углерода, превышающую 3 мас.% по отношению к общей массе указанного отработанного катализатора водородообработки;
снижение концентрации углерода на указанном отработанном катализаторе водородообработки с получением катализатора со сниженным уровнем углерода, имеющего вторую концентрацию углерода, которая является меньше указанной первой концентрации углерода 3 мас.% по отношению к общей массе указанного катализатора со сниженным уровнем углерода;
выдержку указанного катализатора со сниженным уровнем углерода в растворе, содержащем хелатирующий агент, который выбран из группы соединений, состоящей из аминокарбоновых кислот, и растворитель, в течение периода времени старения, превышающего 10 ч, с обеспечением восстановленной каталитической активности с получением в результате состарившегося катализатора, имеющего введенные в него указанный хелатирующий агент и указанный растворитель, так что указанный катализатор со сниженным уровнем углерода имеет количество указанного хелатирующего агента в интервале от 0,005 моль хелатирующего агента на моль активного металла до 1 моль хелатирующего агента на моль активного металла;
выдержку указанного состарившегося катализатора в условиях, включающих температуру сушки так, чтобы удалить из указанного состарившегося катализатора часть указанного растворителя при удалении менее 50 мас.% указанного хелатирующего агента из указанного состарившегося катализатора с получением в результате высушенного состарившегося катализатора; и
обработку серой указанного высушенного состарившегося катализатора с получением регенерированного катализатора.
обеспечение указанного отработанного катализатора водородообработки, имеющего первую концентрацию углерода, превышающую 3 мас.% по отношению к общей массе указанного отработанного катализатора водородообработки;
снижение концентрации углерода на указанном отработанном катализаторе водородообработки с получением катализатора со сниженным уровнем углерода, имеющего вторую концентрацию углерода, которая является меньше указанной первой концентрации углерода 3 мас.% по отношению к общей массе указанного катализатора со сниженным уровнем углерода;
выдержку указанного катализатора со сниженным уровнем углерода в растворе, содержащем хелатирующий агент, который выбран из группы соединений, состоящей из аминокарбоновых кислот, и растворитель, в течение периода времени старения, превышающего 10 ч, с обеспечением восстановленной каталитической активности с получением в результате состарившегося катализатора, имеющего введенные в него указанный хелатирующий агент и указанный растворитель, так что указанный катализатор со сниженным уровнем углерода имеет количество указанного хелатирующего агента в интервале от 0,005 моль хелатирующего агента на моль активного металла до 1 моль хелатирующего агента на моль активного металла;
выдержку указанного состарившегося катализатора в условиях, включающих температуру сушки так, чтобы удалить из указанного состарившегося катализатора часть указанного растворителя при удалении менее 50 мас.% указанного хелатирующего агента из указанного состарившегося катализатора с получением в результате высушенного состарившегося катализатора; и
обработку серой указанного высушенного состарившегося катализатора с получением регенерированного катализатора.
8. Способ по п.7, в котором выдержка указанного катализатора со сниженным уровнем углерода с указанным раствором проводится при температуре старения в интервале от температуры окружающей среды до 60°С.
9. Способ по п.8, в котором условия, в которых указанный состарившийся катализатор выдерживается перед обработкой серой указанного высушенного состарившегося катализатора, включают максимальную температуру выдержки, которая является ниже температуры прокаливания.
10. Способ по п.9, в котором указанной максимальной температурой выдержки является указанная температура сушки, которая является ниже 250°С.
11. Способ по п.10, в котором указанный высушенный состарившийся катализатор имеет концентрацию указанного хелатирующего агента, и указанная значительная часть указанного хелатирующего агента, удаленного из указанного состарившегося катализатора, составляет менее 50 мас.% хелатирующего агента, введенного в указанный катализатор со сниженным уровнем углерода.
12. Способ по п.11, в котором указанная значительная часть указанного хелатирующего агента, удаленного из указанного состарившегося катализатора, составляет менее 25 мас.% хелатирующего агента, введенного в указанный катализатор со сниженным уровнем углерода.
13. Способ восстановления каталитической активности отработанного не содержащего добавку катализатора водообработки, указанный способ включает:
обеспечение не содержащего добавку отработанного катализатора водородообработки, дополнительно содержащего углерод;
удаление части указанного углерода из указанного отработанного не содержащего добавку катализатора водородообработки с получением в результате катализатора со сниженным уровнем углерода;
введение хелатирующего агента, выбранного из группы соединений, состоящей из аминокарбоновых кислот, в указанный катализатор со сниженным уровнем углерода при выдержке указанного катализатора со сниженным уровнем углерода в растворе, содержащем указанный хелатирующий агент и растворитель, где количество указанного хелатирующего агента, введенного в указанный катализатор со сниженным уровнем углерода, находится в интервале от 0,005 моль хелатирующего агента на моль активного металла до 1 моль хелатирующего агента на моль активного металла;
созревание полученного катализатора со сниженным уровнем углерода с введенным хелатирующим агентом в течение периода времени старения, превышающего 10 ч, и при температуре старения в интервале от температуры окружающей среды до температуры 60°С с тем, чтобы обеспечить восстановленную каталитическую активность указанного катализатора со сниженным уровнем углерода с получением в результате состарившегося катализатора;
сушку указанного состарившегося катализатора при температуре сушки так, чтобы удалить из указанного состарившегося катализатора часть указанного растворителя без удаления значительной части указанного хелатирующего агента из указанного состарившегося катализатора с получением в результате высушенного состарившегося катализатора; и
обработку серой указанного высушенного состарившегося катализатора с получением регенерированного катализатора.
обеспечение не содержащего добавку отработанного катализатора водородообработки, дополнительно содержащего углерод;
удаление части указанного углерода из указанного отработанного не содержащего добавку катализатора водородообработки с получением в результате катализатора со сниженным уровнем углерода;
введение хелатирующего агента, выбранного из группы соединений, состоящей из аминокарбоновых кислот, в указанный катализатор со сниженным уровнем углерода при выдержке указанного катализатора со сниженным уровнем углерода в растворе, содержащем указанный хелатирующий агент и растворитель, где количество указанного хелатирующего агента, введенного в указанный катализатор со сниженным уровнем углерода, находится в интервале от 0,005 моль хелатирующего агента на моль активного металла до 1 моль хелатирующего агента на моль активного металла;
созревание полученного катализатора со сниженным уровнем углерода с введенным хелатирующим агентом в течение периода времени старения, превышающего 10 ч, и при температуре старения в интервале от температуры окружающей среды до температуры 60°С с тем, чтобы обеспечить восстановленную каталитическую активность указанного катализатора со сниженным уровнем углерода с получением в результате состарившегося катализатора;
сушку указанного состарившегося катализатора при температуре сушки так, чтобы удалить из указанного состарившегося катализатора часть указанного растворителя без удаления значительной части указанного хелатирующего агента из указанного состарившегося катализатора с получением в результате высушенного состарившегося катализатора; и
обработку серой указанного высушенного состарившегося катализатора с получением регенерированного катализатора.
14. Способ по п.13, в котором указанные температуры сушки, при которых указанный состарившийся катализатор выдерживается перед обработкой серой указанного высушенного состарившегося катализатора, включают максимальную температуру выдержки, которая является ниже температуры прокаливания.
15. Способ по п.14, в котором указанной максимальной температурой выдержки является указанная температура сушки, которая является ниже 250°С.
16. Способ по п.15, в котором указанный высушенный состарившийся катализатор имеет концентрацию указанного хелатирующего агента, и указанная значительная часть указанного хелатирующего агента, удаленного из указанного состарившегося катализатора, составляет менее 50 мас.% хелатирующего агента, введенного в указанный катализатор со сниженным уровнем углерода.
17. Способ по п.16, в котором указанная значительная часть указанного хелатирующего агента, удаленного из указанного состарившегося катализатора, составляет менее 25 мас.% хелатирующего агента, введенного в указанный катализатор со сниженным уровнем углерода.
18. Катализатор, полученный способом по любому из пп.1-17.
19. Способ водородообработки, содержащий:
контактирование углеводородного исходного сырья в условиях водородообработки с катализатором, полученным способом по любому из пп.1-17.
контактирование углеводородного исходного сырья в условиях водородообработки с катализатором, полученным способом по любому из пп.1-17.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US53749904P | 2004-01-20 | 2004-01-20 | |
US60/537,499 | 2004-01-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2006129927A RU2006129927A (ru) | 2008-02-27 |
RU2372991C2 true RU2372991C2 (ru) | 2009-11-20 |
Family
ID=34807103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2006129927/04A RU2372991C2 (ru) | 2004-01-20 | 2005-01-19 | Способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки |
Country Status (12)
Country | Link |
---|---|
US (2) | US7820579B2 (ru) |
EP (1) | EP1737571B1 (ru) |
JP (1) | JP5057785B2 (ru) |
KR (1) | KR20060129390A (ru) |
CN (1) | CN1921943A (ru) |
BR (1) | BRPI0506968A (ru) |
CA (1) | CA2553855C (ru) |
DK (1) | DK1737571T3 (ru) |
ES (1) | ES2591240T3 (ru) |
RU (1) | RU2372991C2 (ru) |
WO (1) | WO2005070542A1 (ru) |
ZA (1) | ZA200605572B (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2827728C2 (ru) * | 2018-12-18 | 2024-10-01 | Ифп Энержи Нувелль | Способ гидрообессеривания олефиновой бензиновой фракции, содержащей серу, в котором используется регенерированный катализатор |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8927448B2 (en) | 2009-07-21 | 2015-01-06 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US8759242B2 (en) | 2009-07-21 | 2014-06-24 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
US9068132B2 (en) | 2009-07-21 | 2015-06-30 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
CN102310006A (zh) * | 2010-07-07 | 2012-01-11 | 中国石油化工股份有限公司 | 一种加氢催化剂再生及预硫化方法 |
CN103492076B (zh) | 2010-08-13 | 2016-05-11 | 国际壳牌研究有限公司 | 恢复废加氢催化剂的活性的方法、具有恢复的催化活性的废加氢催化剂和加氢处理方法 |
WO2012035004A2 (en) * | 2010-09-17 | 2012-03-22 | Shell Internationale Research Maatschappij B.V. | Hydrocracking catalyst composition |
EP2658647B1 (en) | 2010-12-30 | 2024-04-10 | Chevron U.S.A. Inc. | Hydroprocessing catalysts and methods for making thereof |
CN102151588B (zh) * | 2011-01-25 | 2012-08-08 | 江苏科创石化有限公司 | 一种加氢催化剂的再生方法 |
JP5825572B2 (ja) * | 2011-07-29 | 2015-12-02 | 日揮触媒化成株式会社 | 水素化処理触媒の再生方法 |
US9321037B2 (en) | 2012-12-14 | 2016-04-26 | Chevron U.S.A., Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US9687823B2 (en) | 2012-12-14 | 2017-06-27 | Chevron U.S.A. Inc. | Hydroprocessing co-catalyst compositions and methods of introduction thereof into hydroprocessing units |
US9028674B2 (en) | 2013-01-17 | 2015-05-12 | Lummus Technology Inc. | Conversion of asphaltenic pitch within an ebullated bed residuum hydrocracking process |
JP5892989B2 (ja) * | 2013-10-07 | 2016-03-23 | 日揮触媒化成株式会社 | 水素化脱硫触媒の再生方法 |
CN107552070B (zh) * | 2016-06-30 | 2021-01-01 | 中国石油天然气股份有限公司 | 提高Mo-Ni柴油馏分待生加氢精制催化剂原位活性恢复的方法 |
RU2640655C1 (ru) * | 2016-12-19 | 2018-01-11 | Общество с ограниченной ответственностью "Ишимбайский специализированный химический завод катализаторов" | Способ восстановления активности катализатора гидроочистки углеводородного сырья |
RU2674156C1 (ru) * | 2018-08-07 | 2018-12-05 | Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") | Регенерированный катализатор гидроочистки |
RU2673480C1 (ru) * | 2018-08-07 | 2018-11-27 | Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") | Способ получения гидроочищенного дизельного топлива |
RU2674157C1 (ru) * | 2018-08-07 | 2018-12-05 | Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") | Способ регенерации дезактивированного катализатора гидроочистки |
FR3090005B1 (fr) | 2018-12-18 | 2021-07-30 | Ifp Energies Now | Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur régénéré. |
FR3090006B1 (fr) * | 2018-12-18 | 2021-07-30 | Ifp Energies Now | Procédé d’hydrodésulfuration de coupes essence oléfinique contenant du soufre mettant en œuvre un catalyseur réjuvéné à un composé organique. |
FR3089824B1 (fr) | 2018-12-18 | 2021-05-07 | Ifp Energies Now | Procédé de réjuvénation d’un catalyseur usé et régénéré d’un procédé d'hydrodésulfuration d'essences. |
FR3089825B1 (fr) | 2018-12-18 | 2021-05-07 | Ifp Energies Now | Procédé de réjuvénation d’un catalyseur usé non régénéré d’un procédé d'hydrodésulfuration d'essences. |
FR3089826B1 (fr) | 2018-12-18 | 2021-05-07 | Ifp Energies Now | Procédé de réjuvénation d’un catalyseur d’un procédé d'hydrotraitement et/ou d’hydrocraquage. |
CA3138356A1 (en) * | 2019-05-23 | 2020-11-26 | Terence Mchugh | Reactivated hydroprocessing catalysts for use in sulfur abatement |
RU2731459C1 (ru) * | 2020-01-17 | 2020-09-03 | Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") | Реактивированный катализатор гидроочистки |
RU2724613C1 (ru) * | 2020-01-17 | 2020-06-25 | Акционерное общество "Газпромнефть - Омский НПЗ" (АО "Газпромнефть - ОНПЗ") | Способ гидроочистки дизельного топлива |
FR3117380B1 (fr) | 2020-12-15 | 2023-03-03 | Ifp Energies Now | Procédé de réjuvénation d’un catalyseur d’un procédé d'hydrotraitement et/ou d’hydrocraquage |
FR3138051A1 (fr) | 2022-07-22 | 2024-01-26 | IFP Energies Nouvelles | Procédé de régénération d’un catalyseur d’hydrocraquage à base de zéolithe et son utilisation dans un procédé d’hydrocraquage. |
FR3138052A1 (fr) | 2022-07-22 | 2024-01-26 | IFP Energies Nouvelles | Procédé de régénération comprenant au moins deux étapes d’un catalyseur d’hydrocraquage à base de zéolithe et son utilisation dans un procédé d’hydrocraquage. |
FR3138055A1 (fr) | 2022-07-22 | 2024-01-26 | IFP Energies Nouvelles | Procédé de réjuvénation d’un catalyseur d’un procédé d'hydrotraitement et/ou d’hydrocraquage. |
FR3138053A1 (fr) | 2022-07-22 | 2024-01-26 | IFP Energies Nouvelles | Procédé de régénération comprenant une étape de régénération, une étape de réjuvénation et une étape de calcination d’un catalyseur d’hydrocraquage à base de zéolithe et son utilisation dans un procédé d’hydrocraquage. |
FR3138054A1 (fr) | 2022-07-22 | 2024-01-26 | IFP Energies Nouvelles | Procédé de réjuvénation d’un catalyseur d’un procédé d'hydrotraitement et/ou d’hydrocraquage |
Family Cites Families (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5244755B2 (ru) * | 1974-04-30 | 1977-11-10 | ||
JPS533983A (en) * | 1976-07-01 | 1978-01-14 | Nissan Motor Co Ltd | Production of exhaust gas treatment catalyst |
US4460704A (en) * | 1980-06-15 | 1984-07-17 | Imperial Chemical Industries Plc | Catalyst for the production of hydrogen |
US4677085A (en) * | 1985-09-30 | 1987-06-30 | Amoco Corporation | Process for removing metals from spent catalyst |
US4678764A (en) * | 1985-11-21 | 1987-07-07 | Mobil Oil Corporation | Reactivation of noble metal-zeolite catalysts |
US4826792A (en) * | 1985-11-21 | 1989-05-02 | Mobil Oil Corporation | Method of noble metal-zeolite catalyst activation with Bronsted acid compound |
NL8600959A (nl) * | 1986-04-16 | 1987-11-16 | Veg Gasinstituut Nv | Katalysator voor de selectieve oxydatie van zwavelhoudende verbindingen, in het bizonder zwavelwaterstof tot elementaire zwavel; werkwijze voor de bereiding van de katalysator alsmede werkwijze voor de selectieve oxydatie van zwavelhoudende verbindingen, in het bizonder zwavelwaterstof tot elementaire zwavel. |
JPH0325797A (ja) | 1989-06-22 | 1991-02-04 | Hisao Funahara | 記憶マトリックス。 |
NL8901893A (nl) * | 1989-07-21 | 1991-02-18 | Veg Gasinstituut Nv | Katalysator voor de selectieve oxidatie van zwavelverbindingen tot elementaire zwavel, werkwijze voor de bereiding van een dergelijke katalysator en werkwijze voor de selectieve oxidatie van zwavelverbindingen tot elementaire zwavel. |
EP0480538B1 (en) * | 1990-10-12 | 1998-09-02 | UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY CORPORATION, Three Cristina Centre | Alkylene oxide catalysts having enhanced activity and/or stability |
JP3244692B2 (ja) * | 1990-10-17 | 2002-01-07 | 住友金属鉱山株式会社 | 炭化水素油の水素化処理用触媒の製造方法 |
JP3244693B2 (ja) * | 1990-10-17 | 2002-01-07 | 住友金属鉱山株式会社 | 炭化水素油の水素化処理用触媒の製造方法 |
US5250105A (en) * | 1991-02-08 | 1993-10-05 | Eid-Empresa De Investigacao E Desenvolvimento De Electronica S.A. | Selective process for printing circuit board manufacturing |
JPH053194A (ja) | 1991-06-26 | 1993-01-08 | Hitachi Ltd | パターンの作製方法 |
US5476828A (en) * | 1991-07-29 | 1995-12-19 | British Technology Group Limited | Catalyst and catalytic reduction |
US5215954A (en) | 1991-07-30 | 1993-06-01 | Cri International, Inc. | Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst |
JP3110525B2 (ja) | 1991-11-05 | 2000-11-20 | 出光興産株式会社 | 炭化水素油水素化処理触媒の再生方法 |
FR2688149B1 (fr) * | 1992-03-06 | 1994-04-29 | Total Raffinage Distribution | Nouvelle solution aqueuse pour l'impregnation de supports de catalyseur, catalyseurs prepares a partir de cette solution et applications de ces catalyseurs. |
US5250483A (en) * | 1992-05-22 | 1993-10-05 | Geo-Microbial Technologies, Inc. | Method for treatment of catalysts using denitrifying bacteria |
US5565091A (en) * | 1993-02-15 | 1996-10-15 | Idemitsu Kosan Co., Ltd. | Catalyst composition manufacturing method and sulfur-containing hydrocarbon hydrodesulfurization method using the same catalyst composition |
US5360778A (en) * | 1993-05-11 | 1994-11-01 | Exxon Research And Engineering Company | High surface purity heat transfer solids for high temperature fluidized bed reactions |
NL9301615A (nl) * | 1993-09-17 | 1995-04-18 | Gastec Nv | Katalysator voor de selectieve oxidatie van zwavelverbindingen tot elementaire zwavel, werkwijze voor de bereiding van een dergelijke katalysator en werkwijze voor de selectieve oxidatie van zwavelverbindingen tot elementaire zwavel. |
US6015485A (en) * | 1994-05-13 | 2000-01-18 | Cytec Technology Corporation | High activity catalysts having a bimodal mesopore structure |
DE69534311T2 (de) * | 1994-05-13 | 2006-04-20 | Shell Oil Co., Houston | Verfahren zur Verbesserung der Aktivität von Katalysatoren |
US5883039A (en) * | 1994-07-05 | 1999-03-16 | Uop Llc | Alkylation catalyst with non-uniform metal dispersion |
US5482910A (en) * | 1994-07-05 | 1996-01-09 | Uop | Process for preparing a hydrocarbon conversion catalyst |
US5744682A (en) * | 1994-07-05 | 1998-04-28 | Uop | Alkylation process using a catalyst with non-uniform metal dispersion |
JP3802106B2 (ja) * | 1995-06-08 | 2006-07-26 | 日本ケッチェン株式会社 | 炭化水素油の水素化処理触媒とその製造方法およびその活性化方法 |
US6051518A (en) * | 1996-09-27 | 2000-04-18 | Gas Research Institute | Microbial process and composition for the regeneration of catalysts |
US6015768A (en) * | 1998-04-22 | 2000-01-18 | Ray; Sabyasachi Sinha | Process for preparation of a heterogeneous catalyst useful for preparation of super high molecular weight polymers of alpha-olefin |
US6315890B1 (en) * | 1998-05-05 | 2001-11-13 | Exxonmobil Chemical Patents Inc. | Naphtha cracking and hydroprocessing process for low emissions, high octane fuels |
AU5140099A (en) * | 1998-08-26 | 2000-03-21 | Integral Umwelt- Und Anlagentechnik Gesellschaft Mbh | Method for regenerating used denox or dedioxin catalytic converters |
DE19915681A1 (de) * | 1999-04-07 | 2000-10-12 | Basf Ag | Verfahren zur Herstellung von Platinmetall-Katalysatoren |
ATE296163T1 (de) * | 1999-04-08 | 2005-06-15 | Albemarle Netherlands Bv | Verfahren zur sulfidierung eines organischen stickstoff und carbonyl enthaltenden hydrobehandlungskatalysators |
DE60020850T2 (de) | 1999-07-05 | 2006-05-04 | Albemarle Netherlands B.V. | Verfahren zur regenerierung von additiven enthaltenden katalysatoren |
JP4748497B2 (ja) * | 1999-07-05 | 2011-08-17 | アルベマーレ ネザーランズ ビー.ブイ. | 添加剤含有触媒を再生する方法 |
US6306795B1 (en) * | 1999-09-07 | 2001-10-23 | Cytec Technology Corp. | Stable highly active supported copper based catalysts |
US6291394B1 (en) | 1999-11-04 | 2001-09-18 | Shell Oil Company | Process for improving catalysts |
US6376708B1 (en) * | 2000-04-11 | 2002-04-23 | Monsanto Technology Llc | Process and catalyst for dehydrogenating primary alcohols to make carboxylic acid salts |
DE60134140D1 (de) * | 2000-07-12 | 2008-07-03 | Albemarle Netherlands Bv | Verfahren zur herstellung eines ein additiv enthaltenden mischmetallkatalysators |
US6448199B1 (en) * | 2000-09-05 | 2002-09-10 | Council Of Scientific & Industrial Research | Hydrophobic composite Pd-membrane catalyst useful for non-hazardous direct oxidation of hydrogen by oxygen to hydrogen peroxide and method of its preparation |
US6508999B1 (en) * | 2000-11-21 | 2003-01-21 | Shell Oil Company | Aluminum trihydroxide phase |
US6908873B2 (en) * | 2000-12-22 | 2005-06-21 | Headwaters Nanokinetix, Inc. | Regeneration of spent supported metal catalysts |
WO2002078842A1 (en) * | 2001-03-30 | 2002-10-10 | Council Of Scientific And Industrial Research | A novel catalytic formulation and its preparation |
HUE059665T2 (hu) * | 2003-10-03 | 2022-12-28 | Albemarle Netherlands Bv | Eljárás hidrogénezõ katalizátor aktiválására |
-
2005
- 2005-01-19 ES ES05711715.2T patent/ES2591240T3/es not_active Expired - Lifetime
- 2005-01-19 JP JP2006551268A patent/JP5057785B2/ja not_active Expired - Lifetime
- 2005-01-19 CA CA2553855A patent/CA2553855C/en not_active Expired - Lifetime
- 2005-01-19 US US11/038,291 patent/US7820579B2/en active Active
- 2005-01-19 KR KR1020067016660A patent/KR20060129390A/ko not_active Withdrawn
- 2005-01-19 RU RU2006129927/04A patent/RU2372991C2/ru active
- 2005-01-19 CN CNA2005800028595A patent/CN1921943A/zh active Pending
- 2005-01-19 BR BRPI0506968-8A patent/BRPI0506968A/pt not_active IP Right Cessation
- 2005-01-19 DK DK05711715.2T patent/DK1737571T3/en active
- 2005-01-19 EP EP05711715.2A patent/EP1737571B1/en not_active Expired - Lifetime
- 2005-01-19 WO PCT/US2005/001825 patent/WO2005070542A1/en active Application Filing
-
2006
- 2006-07-06 ZA ZA200605572A patent/ZA200605572B/en unknown
-
2010
- 2010-09-09 US US12/878,825 patent/US8168557B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2827728C2 (ru) * | 2018-12-18 | 2024-10-01 | Ифп Энержи Нувелль | Способ гидрообессеривания олефиновой бензиновой фракции, содержащей серу, в котором используется регенерированный катализатор |
Also Published As
Publication number | Publication date |
---|---|
DK1737571T3 (en) | 2016-10-03 |
CA2553855A1 (en) | 2005-08-04 |
EP1737571B1 (en) | 2016-06-22 |
CA2553855C (en) | 2012-11-20 |
KR20060129390A (ko) | 2006-12-15 |
US20100326889A1 (en) | 2010-12-30 |
RU2006129927A (ru) | 2008-02-27 |
EP1737571A1 (en) | 2007-01-03 |
JP5057785B2 (ja) | 2012-10-24 |
JP2007518560A (ja) | 2007-07-12 |
ES2591240T3 (es) | 2016-11-25 |
WO2005070542A1 (en) | 2005-08-04 |
ZA200605572B (en) | 2007-11-28 |
BRPI0506968A (pt) | 2007-07-03 |
CN1921943A (zh) | 2007-02-28 |
US20050159295A1 (en) | 2005-07-21 |
US7820579B2 (en) | 2010-10-26 |
US8168557B2 (en) | 2012-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2372991C2 (ru) | Способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки | |
RU2372143C2 (ru) | Способ восстановления каталитической активности отработанного катализатора водородообработки, отработанный катализатор водородообработки, имеющий восстановленную каталитическую активность, и способ водородообработки | |
US8318628B2 (en) | Hydrotreatment catalyst, method for production and use thereof | |
JP5264029B2 (ja) | 水素化処理触媒の製造 | |
JP5184096B2 (ja) | 水素化処理触媒、その製造方法、およびその使用 | |
JP4187383B2 (ja) | N及びカルボニルを含む有機化合物を含むところの水素化処理触媒を硫化する方法 | |
AU2009234361B2 (en) | Regeneration and rejuvenation of supported hydroprocessing catalysts | |
US2880171A (en) | Hydrodesulfurization of hydrocarbons with catalyst composed of molybdenum and two members of the iron group metals | |
JP5474490B2 (ja) | 炭化水素を処理するための触媒を再生する方法 | |
JP5860879B2 (ja) | 使用済み水素化処理触媒の活性を回復させる方法、回復した触媒活性を有する使用済み水素化処理触媒、および水素化処理方法 | |
JP5053100B2 (ja) | 水素化処理触媒、その製造方法、およびその使用 | |
JP4046357B2 (ja) | 炭化水素転換触媒の前硫化工程 | |
JPS60209256A (ja) | 炭化水素の処理触媒の予備硫化方法 | |
JP5611750B2 (ja) | 炭化水素処理用触媒の硫化方法 |