[go: up one dir, main page]

RU2362945C1 - Радиационная горелка - Google Patents

Радиационная горелка Download PDF

Info

Publication number
RU2362945C1
RU2362945C1 RU2007139527/06A RU2007139527A RU2362945C1 RU 2362945 C1 RU2362945 C1 RU 2362945C1 RU 2007139527/06 A RU2007139527/06 A RU 2007139527/06A RU 2007139527 A RU2007139527 A RU 2007139527A RU 2362945 C1 RU2362945 C1 RU 2362945C1
Authority
RU
Russia
Prior art keywords
burner
elements
nozzle
heat
radiating
Prior art date
Application number
RU2007139527/06A
Other languages
English (en)
Other versions
RU2007139527A (ru
Inventor
Владимир Михайлович Шмелев (RU)
Владимир Михайлович ШМЕЛЕВ
Original Assignee
Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН (ИХФ РАН)
Владимир Михайлович ШМЕЛЕВ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН (ИХФ РАН), Владимир Михайлович ШМЕЛЕВ filed Critical Учреждение Российской академии наук Институт химической физики им. Н.Н. Семенова РАН (ИХФ РАН)
Priority to RU2007139527/06A priority Critical patent/RU2362945C1/ru
Publication of RU2007139527A publication Critical patent/RU2007139527A/ru
Application granted granted Critical
Publication of RU2362945C1 publication Critical patent/RU2362945C1/ru

Links

Landscapes

  • Gas Burners (AREA)

Abstract

Изобретение относится к теплоэнергетике, а именно к радиационным горелкам, и может применяться для бытовых и промышленных нужд в различных теплоэнергетических установках, в камерах сгорания газотурбинных установок, обогревателях, сушилках, печах. Радиационная горелка содержит корпус, инжектор в виде газового сопла со смесительной трубкой и излучающую насадку в объемной конфигурации. Насадка выполнена из элементов в виде множества цилиндров или прямоугольных призм, расположенных внутри корпуса горелки и выполненных из жаростойкого тонкостенного проницаемого материала, при этом зазор X между излучающими поверхностями элементов составляет X=H/a, где H - высота элементов;
a=2-20. Изобретение повышает эксплуатационные характеристики горелки: приводит к резкому увеличению удельной мощности горелки, позволяет сделать горелочное устройство легким и компактным и расширяет область его применения. 1 ил.

Description

Изобретение относится к теплоэнергетике, а именно к радиационным горелкам, и может применяться для бытовых и промышленных нужд в различных теплоэнергетических установках, в камерах сгорания газотурбинных установок, обогревателях, сушилках, печах.
Известна промышленная горелка (патент США №5174744, 29.12.92) с низкими выбросами CO и NOx в атмосферу, которая состоит из узла смешения топлива и окислителя, перфорированной керамической плиты (насадки), над которой происходит сжигание газа, и легкого сетчатого экрана, который, нагреваясь пламенем горелки, увеличивает температуру излучающей поверхности насадки и способствует окислению CO в CO2, уменьшая выбросы CO в атмосферу, при этом экран устанавливается над горелочной плитой на расстоянии, зависящем от длины пламени.
Недостатком такой горелки является недостаточное снижение выброса окиси углерода, слабая механическая прочность легкого сетчатого экрана и его покрытия в виде специальной керамической пены, а также существенное усложнение изготовления горелки.
Известна радиационная горелка (Авторское свид. СССР №2084762, F23D 14/12, 1994), содержащая корпус с примыкающим к нему рефлектором, инжектор в виде газового сопла и размещенной во входном участке корпуса смесительной трубки, отражатель, выполненный напротив выходного среза последней, и размещенные в выходном участке корпуса с образованием камеры горения керамическую излучающую насадку с плоской входной и излучающей поверхностями и сетку-экран.
Недостатком данной горелки является наличие крышки-экрана, который увеличивает гидравлическое сопротивление, ухудшает устойчивость горения при низких давлениях топлива и не обеспечивает снижения содержания окиси углерода в продуктах сгорания ниже 0,008%.
Известна промышленная горелка повышенной тепловой мощности с температурой излучателя 1473-1723K (А.К.Родин. Газовое лучистое отопление. Л.: Недра, 1987, с.21-23, рис.2.4) с керамической насадкой, имеющей ряд прямоугольных щелей, выполненных по типу плоского внезапного расширения.
Недостатками такой щелевой горелки являются возникновение проскока пламени при снижении удельной тепловой нагрузки из-за чрезмерной ширины каналов и возникновение в пространстве между перегородками при высокой тепловой нагрузке факельного режима горения с повышенной температурой в зоне горения, приводящей к увеличению окислов азота в продуктах сгорания. Другими недостатками являются слабая механическая прочность длинных тонких перегородок между каналами, а также (из-за их прогрева) широкая диаграмма направленности излучения.
Наиболее близким техническим решением по технической сущности и достигаемому результату является радиационная горелка, содержащая корпус, инжектор в виде газового сопла со смесительной трубкой и керамическую перфорированную излучающую насадку, в которой керамическая перфорированная излучающая насадка выполнена с возможностью исполнения дополнительно функций экрана и рефлектора, для чего она выполнена в объемной конфигурации в виде полостей с поперечным размером и глубиной не менее 10 мм, причем перфорированными являются только дно полостей или только стенки, или стенки и дно (RU 2151957, F23D 14/12, 27.06.2000).
Сгорание топливно-воздушной смеси в этой горелке происходит в приповерхностной зоне внутри полостей. Горелка обладает хорошими экологическими параметрами и повышенной удельной мощностью W1, отнесенной к единице площади выходного сечения горелки. Однако применение керамической перфорированной излучающей насадки не позволяет увеличить удельную мощность горелки свыше W1=500-1000 кВт/м2 и создать компактное и легкое горелочное устройство, так как для обеспечения стабильного горения необходимо использовать толстостенную керамическую перфорированную излучающую насадку (толщиной 12-15 мм). При этом предельная удельная поверхностная мощность горения W0, отнесенная к суммарной площади керамической излучающей насадки, ограничена величиной W0=150-180 кВт/м2.
Задачей изобретения является создание высокоэффективной радиационной горелки, обладающей повышенными энергетическими и эксплуатационными характеристиками, которая обеспечит резкое увеличение удельной мощности горелки, позволит сделать горелочное устройство легким и компактным и позволит, кроме того, расширить область его применения.
Решение поставленной задачи достигается тем, что в радиационной горелке, содержащей корпус, инжектор в виде газового сопла со смесительной трубкой и излучающую насадку в объемной конфигурации, излучающая насадка выполнена из элементов в виде множества цилиндров или прямоугольных призм, расположенных внутри корпуса горелки и выполненных из жаростойкого тонкостенного проницаемого материала, при этом зазор X между излучающими поверхностями элементов составляет X=H/a, где H - высота элементов; a=2-20.
Конструктивные особенности предлагаемой горелки обеспечивают возникновение сильной радиационной обратной связи от стенок близко расположенных цилиндров или прямоугольных призм и исключают подмешивание холодного окружающего воздуха в зону горения, вследствие чего температура поверхности излучающих элементов насадки повышается, и происходит полное завершение химических реакций, повышается устойчивость горения в широком диапазоне изменения давления топлива. Кроме того, благодаря объемной конструкции насадки из тонкостенных проницаемых элементов возрастает удельная мощность горелки с единицы выходного сечения, при этом снижаются вес и габариты горелки.
Предлагаемое техническое решение отображено на прилагаемом чертеже, на котором представлен продольный разрез горелки с объемной насадкой.
Радиационная горелка состоит из корпуса 1, инжектора в виде газового сопла 2 со смесительной трубкой 3, излучающей насадки из проницаемых элементов 4, выполненных в виде цилиндров или прямоугольных призм.
Горелка работает следующим образом. Газ, вытекая из сопла 2 в смесительную трубку 3, инжектирует необходимое количество воздуха, образуя газовоздушную смесь требуемого состава, которая, проникая через проницаемую поверхность элементов насадки, сгорает в пространстве между элементами вблизи их поверхности. Поверхность элементов насадки раскаляется до высокой температуры, являясь источником мощного инфракрасного излучения. Часть излучения запирается в пространстве между элементами, поглощается излучающими поверхностями элементов насадки и увеличивает их температуру до 1000-1200°С, что, в свою очередь, приводит к увеличению радиационного потока с поверхности. Большая глубина насадки затрудняет подмешивание холодного окружающего воздуха в зону химической реакции, а сохранение высокой температуры продуктов, но не превышающей 1200°С, обеспечивает полную завершенность химических реакций, в том числе доокисление CO в CO2, и не приводит к образованию заметного количества окислов азота.
Геометрические параметры насадки определяются следующим образом. Высота Н - не менее 10 мм - элементов насадки в виде множества близко расположенных цилиндров или прямоугольных призм, расположенных внутри корпуса горелки, сопоставима с протяженностью зоны догорания CO, что обеспечивает полную завершенность химических реакций в условиях, исключающих их «закалку» из-за устранения проникновения холодного окружающего воздуха в зону химической реакции. Диаметр или характерный поперечный размер элементов насадки d также не менее 10 мм, при этом отношение H/d>1, что обеспечивает равномерное распределение газовой смеси по поверхности элементов. Зазор X между излучающими поверхностями элементов должен составлять X=H/a, где a=2-20, что делает возможным эффективное запирание излучения в пространстве между элементами, при этом излучение поглощается излучающими поверхностями элементов насадки и увеличивает их температуру до 1000-1200°С и повышает устойчивость горения в широком диапазоне расхода топлива. Изготовление проницаемых элементов насадки из жаростойкого тонкостенного проницаемого материала, например нихромовой сетки, спрессованной тонкой жаропрочной проволоки, из металлотканого материала, из жаропрочного плетеного керамического материала позволяет обеспечить устойчивое горение при более высокой удельной мощности горения до W0=200-300 кВт/м2, при этом удельная мощность горелки, отнесенная к площади выходного сечения диаметром D, составит: W1=W0·4N·d·H/D2, где N - число элементов насадки внутри корпуса горелки. Например, для горелки с цилиндрическими элементами насадки при W0=300 кВт/м2, N=7, d=20 мм, H=50 мм, D=68 мм величина W1=1817 кВт/м2. Вес горелки заданной мощности с насадкой из жаростойкого тонкостенного проницаемого материала в 3-5 раз меньше по сравнению с аналогичной конструкцией с применением перфорированной керамики. Соответственно габариты горелочного устройства могут быть уменьшены в 1,5-2 раза.
Конструкция объемной насадки из цилиндров или прямоугольных призм, расположенных внутри корпуса горелки и выполненных из жаростойкого тонкостенного проницаемого материала, обладает дополнительным достоинством, связанным с технологичностью и простотой изготовления, позволяет решить поставленную задачу и достичь указанный технический результат.
Экспериментальные исследования показали, что даже в упрощенном конструктивном исполнении предлагаемая радиационная горелка с насадкой из 7 цилиндрических элементов, расположенных внутри корпуса горелки и выполненных из жаростойкой нихромовой сетки с поперечным размером ячейки 0,8 мм, высотой ячейки 50 мм и поперечным размером корпуса 80 мм, имеет высокие энергетические параметры. Горелка устойчиво работала в широком диапазоне расхода газа, имела высокую температуру поверхности до 1200°С в штатном режиме работы при радиационном КПД ~30% и рекордно высокую удельную энергию W1>1200-1500 кВт/м2. Увеличение количества излучающих элементов в насадке приводит к повышению эффективности эксплуатационных параметров горелки.
Таким образом, все конструктивные элементы горелки направлены на решение поставленной задачи и достижение указанного технического результата - повышение эксплуатационных характеристик горелки: резко увеличивается удельная мощность горелки, обеспечивается возможность сделать горелочное устройство легким и компактным, и расширяется область его применения.

Claims (1)

  1. Радиационная горелка, содержащая корпус, инжектор в виде газового сопла со смесительной трубкой и излучающую насадку в объемной конфигурации, отличающаяся тем, что насадка выполнена из элементов в виде множества цилиндров или прямоугольных призм, расположенных внутри корпуса горелки и выполненных из жаростойкого тонкостенного проницаемого материала, при этом зазор X между излучающими поверхностями элементов составляет X=H/a, где H - высота элементов; a=2-20.
RU2007139527/06A 2007-10-25 2007-10-25 Радиационная горелка RU2362945C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007139527/06A RU2362945C1 (ru) 2007-10-25 2007-10-25 Радиационная горелка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007139527/06A RU2362945C1 (ru) 2007-10-25 2007-10-25 Радиационная горелка

Publications (2)

Publication Number Publication Date
RU2007139527A RU2007139527A (ru) 2009-04-27
RU2362945C1 true RU2362945C1 (ru) 2009-07-27

Family

ID=41018639

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007139527/06A RU2362945C1 (ru) 2007-10-25 2007-10-25 Радиационная горелка

Country Status (1)

Country Link
RU (1) RU2362945C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU209658U1 (ru) * 2021-11-29 2022-03-17 Иван Соломонович Пятов Инфракрасная газовая горелка

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU209658U1 (ru) * 2021-11-29 2022-03-17 Иван Соломонович Пятов Инфракрасная газовая горелка

Also Published As

Publication number Publication date
RU2007139527A (ru) 2009-04-27

Similar Documents

Publication Publication Date Title
AU739400B2 (en) Low emission combustion system
US20120164590A1 (en) Radiant Burner
JP3814604B2 (ja) 多段制御を具現するガス燃焼バーナ
RU2640305C1 (ru) Радиационная газовая горелка
CN107893993A (zh) 一种自吸气多孔介质加热炉
Laphirattanakul et al. Effect of self-entrainment and porous geometry on stability of premixed LPG porous burner
US6918759B2 (en) Premixed combustion gas burner having separated fire hole units
US9562683B2 (en) Aphlogistic burner
RU2362945C1 (ru) Радиационная горелка
RU2151957C1 (ru) Радиационная горелка
CN107504487A (zh) 连续弥散式燃烧装置及形成连续弥散燃烧的方法
JP4694955B2 (ja) 2層式燃焼器
RU2753319C1 (ru) Радиационная горелка
RU2462661C1 (ru) Радиационная газовая горелка и способ проведения процесса горения в ней
RU2272219C1 (ru) Радиационная горелка
US11255538B2 (en) Radiant infrared gas burner
CN204629485U (zh) 金箍燃烧棒
RU2151956C1 (ru) Радиационная горелка
RU2084762C1 (ru) Горелка инфракрасного излучения
RU76421U1 (ru) Дутьевая излучающая газовая горелка полного предварительного смешения
KR200363754Y1 (ko) 복사열을 이용하는 가스 버너
RU2310129C1 (ru) Универсальный пористый насадок для беспламенной газовой горелки
KR100495506B1 (ko) 냉각용 수관을 갖는 예혼합 가스연소 버너
CN205191563U (zh) 金箍燃烧棒
KR100474178B1 (ko) 분리된 염공부를 갖는 예혼합 가스연소 버너

Legal Events

Date Code Title Description
PC4A Invention patent assignment

Effective date: 20100209

MM4A The patent is invalid due to non-payment of fees

Effective date: 20131026