RU2295448C2 - Пленочный материал на полиэтилентерефталатной основе - Google Patents
Пленочный материал на полиэтилентерефталатной основе Download PDFInfo
- Publication number
- RU2295448C2 RU2295448C2 RU2005116487A RU2005116487A RU2295448C2 RU 2295448 C2 RU2295448 C2 RU 2295448C2 RU 2005116487 A RU2005116487 A RU 2005116487A RU 2005116487 A RU2005116487 A RU 2005116487A RU 2295448 C2 RU2295448 C2 RU 2295448C2
- Authority
- RU
- Russia
- Prior art keywords
- coating
- film
- aluminum
- polyethylene terephthalate
- diamond
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 23
- -1 Polyethylene terephthalate Polymers 0.000 title claims description 18
- 229920000139 polyethylene terephthalate Polymers 0.000 title claims description 18
- 239000005020 polyethylene terephthalate Substances 0.000 title claims description 18
- 238000000576 coating method Methods 0.000 claims abstract description 42
- 239000011248 coating agent Substances 0.000 claims abstract description 39
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 27
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 27
- 238000011161 development Methods 0.000 claims abstract description 11
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 7
- 239000002052 molecular layer Substances 0.000 claims abstract description 7
- 238000009396 hybridization Methods 0.000 claims abstract description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 3
- 239000002105 nanoparticle Substances 0.000 claims abstract description 3
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- 239000011148 porous material Substances 0.000 claims description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 14
- 229910052802 copper Inorganic materials 0.000 claims description 14
- 239000010949 copper Substances 0.000 claims description 14
- 239000002131 composite material Substances 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 229920000728 polyester Polymers 0.000 abstract description 3
- 239000000126 substance Substances 0.000 abstract description 2
- 150000001875 compounds Chemical class 0.000 abstract 1
- 239000007888 film coating Substances 0.000 abstract 1
- 238000009501 film coating Methods 0.000 abstract 1
- 239000002861 polymer material Substances 0.000 abstract 1
- 239000010408 film Substances 0.000 description 38
- 239000010410 layer Substances 0.000 description 22
- 239000003990 capacitor Substances 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229910003460 diamond Inorganic materials 0.000 description 3
- 239000010432 diamond Substances 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 229920006267 polyester film Polymers 0.000 description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002103 nanocoating Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011104 metalized film Substances 0.000 description 1
- 239000005300 metallic glass Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/028—Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/20—Metallic material, boron or silicon on organic substrates
- C23C14/205—Metallic material, boron or silicon on organic substrates by cathodic sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/323—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one amorphous metallic material layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/343—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one DLC or an amorphous carbon based layer, the layer being doped or not
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0032—Processes of manufacture formation of the dielectric layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/07—Dielectric layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/08—Housing; Encapsulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12479—Porous [e.g., foamed, spongy, cracked, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/30—Self-sustaining carbon mass or layer with impregnant or other layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31678—Of metal
- Y10T428/31681—Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Laminated Bodies (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Изобретение относится к композитным материалам на основе высокомолекулярных соединений с использованием углерода и может быть использовано для анодов электролитических конденсаторов, выполненных на основе эластичной пленки диэлектрика с токоведущим покрытием. Пленочный материал на полиэфирной основе имеет наноразмерное металлическое покрытие. Между модифицированной поверхностью полиэфирной основы и металлическим покрытием помещен алмазоподобный слой толщиной 5-50 нм, а на поверхности металлического покрытия выполнен губчатый слой алюминия толщиной 0,5-20 мкм, имеющий фактор развития поверхности в диапазоне 80-400, при этом алмазоподобный нанослой представляет собой sp3-гибридизацию атомов аморфного углерода, осажденного в вакууме из газовой фазы посредством ионно-плазменного источника. Изобретение обеспечивает повышение удельной электрической емкости конденсатора за счет увеличения рабочих напряжений и адгезии между высокоразвитыми поверхностями функциональных нанослоев покрытия пленки.
Description
Изобретение относится к композиционным материалам на основе высокомолекулярных соединений с использованием углерода и может быть использовано для анодов электролитических конденсаторов, выполненных на основе эластичной пленки диэлектрика с токоведущим покрытием.
Уровень данной области техники характеризуют пленочные электроды на полимерной основе с двухсторонним электрическим слоем покрытия, в которых при приложении внешнего напряжения ниже потенциала разложения электролита (жидкого или твердого) энергия запасается в тонком, молекулярных размеров слое объемного заряда на границе электрод/электролит (см., например, Шурыгина В. Суперконденсаторы, журнал «Электроника: Наука, Технология, Бизнес. 2003, № 3, с.20).
Наиболее близким по числу совпадающих признаков аналогом предложенному является композитный материал толщиной 11-14 мкм на основе полиэтилентерефталатной пленки с двухсторонним металлическим покрытием наноразмерных слоев из алюминия и меди, описанный в патенте RU 2210389, A 61 L 15/00, 2002 г.
Известный пленочный металлизированный материал изготавливают по рулонной технологии в процессе протягивания полиэфирной пленки через вакуумную камеру с осаждением на каждую ее сторону из паровой фазы с помощью магнетрона соответственно алюминия и меди.
Недостатком этого материала является низкая адгезия полиэтилентерефталата к металлам, поэтому осажденный слой аморфного металла уплотняют дополнительным отжигом, получая нужную зернистость при высокой степени гомогенности, что трудоемко и технологически не обеспечивает стабильности показателей назначения на всем протяжении металлизированной пленки.
Не представляется возможным практическое использование этого материала в качестве анода электролитического конденсатора из-за неудовлетворительных его электрофизических характеристик.
Задачей, на решение которой направлено настоящее изобретение, является усовершенствование композитного пленочного материала на полиэфирной основе с токоведущим металлическим покрытием для повышения электрофизических характеристик, адаптированных к условиям промышленного использования в электролитических конденсаторах в качестве анодов.
Требуемый технический результат достигается тем, что в известном пленочном материале на полиэтилентерефталатной основе с наноразмерным токоведущим металлическим покрытием, согласно изобретению между поверхностью основы и токоведущим металлическим покрытием из алюминия или меди помещен алмазоподобный нанослой толщиной 5-50 нм, представляющий собой sp3-гибридизацию атомов аморфного углерода, осажденного в вакууме из газовой фазы посредством ионно-плазменного источника, а на поверхности токоведущего металлического покрытия из алюминия или меди выполнен губчатый слой алюминия толщиной 0,5-20 мкм, имеющий фактор развития поверхности в диапазоне 80-400, причем полиэтилентерефталатная основа предварительно модифицирована рифлением поверхности и сквозными порами размером 0,2-6 мкм.
Отличительные признаки обеспечили при использовании новой многослойной пленочной структуры в качестве анода электролитического конденсатора улучшение основных показателей назначения: повышение удельной электрической емкости и механических свойств за счет пористости губчатого металла на поверхности в сочетании с высокой адгезией между функциональными слоями покрытия на модифицированной высокоразвитой поверхности основы.
Выбор в качестве основы материала полиэтилентерефталатной пленки определен ее служебными характеристиками (высокими физико-механическими и изоляционными свойствами, термостойкостью, устойчивостью химической, к истиранию, сминанию, воздействию света и микроорганизмов), которые в совокупности с производительной рулонной технологией изготовления металлопленочных анодов определяют относительно низкую потребительскую стоимость электролитических конденсаторов максимально широкого диапазона мощности.
Размещение между рифленой полиэтилетерефталатной основой и наноразмерным токоведущим металлическим покрытием из алюминия или меди алмазоподобного нанослоя обеспечивает: во-первых, барьер для активных составляющих полимера основы, предотвращающий их диффузию в покрытие, чем стабилизируются электрофизические характеристики пленки; во-вторых, повышение адгезии слоев в этой композитной структуре до значений более 1,5 Н/мм, а также увеличение критического значения величины электрического пробоя (напряженности поля) в 1,5-1,7 раза, что позволяет значительно увеличить номинальные параметры и срок службы металлопленочных конденсаторов.
Алмазоподобное наноразмерное покрытие обладает полупроводниковыми свойствами, увеличивает диэлектрическую проницаемость материала.
Специфика атома углерода состоит в его способности образовывать прочные межатомные связи, характеризующиеся различным типом гибридизированных электронных орбиталей. Связи в решетке алмаза характеризуются sp3-гибридизированным состоянием аморфного углерода, тогда как графиту соответствует sp2-гибридизация, а карбину - sp-гибридизация.
Sp3-гибридизация осаждаемых атомов углерода образует нанослой с кристаллической решеткой алмаза, обеспечивая присущие ему свойства и качества.
Алмазоподобный слой при толщине менее 5 нм не оказывает заметного влияния на улучшение электрофизических свойств пленочного материала, а при толщине этого слоя более 50 нм снижается эластичность пленки, и не наблюдается повышения ее прочности.
Осаждение аморфного углерода в вакууме из газовой фазы циклогексана посредством ионно-плазменного источника обеспечивает единство технологического процесса изготовления многослойной металлопленочной структуры, в общей поточной линии при сквозной подаче основы из рулона вдоль обрабатывающего оборудования.
Выполнение токоведущего металлического покрытия из алюминия или меди обусловлено их пригодностью для изготовления электродов электролитических конденсаторов, промышленным применением для этих целей по технико-экономическим показателям из числа вентильных металлов.
Использование алюминия предпочтительно, потому что он имеет собственный оксид, непосредственно на который наносится слой губчатого алюминия. Покрытие из меди характеризуется минимальным электрическим сопротивлением и может применяться в случаях, когда необходимо обеспечить изделию более высокие теплопроводность и/или электрическую проводимость. Покрытия из этих вентильных металлов обеспечивают минимальный тангенс диэлектрических потерь в конденсаторной структуре, что улучшает показатели назначения изделия в целом.
Адгезия двухстороннего токоведущего металлического покрытия в основном обеспечивается силами Ван-дер-Ваальса и за счет формирования покрытия на границе раздела высокоразвитого рельефа.
Выполнение на металлическом покрытии из алюминия или меди губчатого (пористого) слоя алюминия толщиной 0,5-20 мкм увеличивает емкость пленочного электрода. Поперечно ориентированная структура губчатого слоя алюминия улучшает сорбционные свойства при взаимодействии с жидким электролитом и позволяет многократно увеличить контактную поверхность металлопленочного анода электролитического конденсатора, заметно сокращая его габариты.
Губчатый слой алюминия представляет собой высокопористый материал, содержащий поры диаметром от десятков нанометров до микрометра в зависимости от назначения изделия.
Губчатый слой алюминия на поверхности многослойной пленки обеспечивает стабильные во времени характеристики электрического потенциала после формовки электрода.
Губчатый слой толщиной менее 0,5 мкм создает развитие поверхности материала, которое не представляет технической целесообразности, так как удельная пористость не обеспечивает практической применимости по назначению.
При толщине губчатого слоя более 20 мкм осаждаемый алюминий образует своды в ранее сформированных порах, которые вырождаются, чем кратно снижается фактор развития поверхности (отношение фактической площади поверхности к ее геометрической площади).
При факторе развития поверхности губчатого алюминиевого покрытия менее 80 электрическая емкость пленочного анода недостаточна для промышленного использования.
При факторе развития этой функциональной поверхности более 400 формируется слишком малый размер пор, который не заполняется электролитом, следовательно, емкость анода не увеличивается.
Предварительная модификация поверхности полиэтилентерефталатной пленки посредством ионной обработки в среде смеси азота и кислорода (воздуха), разрушающей карбонильные группы, изменяет ее рельеф и увеличивает шероховатость, что улучшает сцепление с наносимыми покрытиями.
Модификация поверхности основы создает «информационную матрицу», то есть высокоразвитый профиль поверхности пленочной основы, который определяет геометрию и форму взаимосвязи структуры осаждаемого многослойного покрытия, следовательно, электрофизические свойства материала в целом.
Модификация поверхности полиэтилетерефталатной основы геометрическим рельефом повышает прочность сцепления с функциональным покрытием, а сквозные поры обеспечивают геометрическое замыкание двухстороннего металического покрытия кольцом.
Обработка поверхности полиэтилентерефталатной пленки ионами создает высокоразвитый геометрический рельеф, насыщая его избыточной энергией, что обеспечивает многократный рост адгезии к функциональному покрытию из аморфного углерода.
Поры в полиэтилентерефталатной основе материала размером менее 0,2 мкм не оказывают существенного влияния на адгезию с функциональным наноразмерным покрытием. При ионно-плазменном осаждении металла покрытия поры запыляются и практически вырождаются, что отрицательно сказывается на сорбционных свойствах материала и снижает электрическую емкость изготовленного из него анода.
Размер пор более 6 мкм экономически неэффективен из-за потери несущей прочности основы в рулонной технологии формирования покрытия.
Следовательно, каждый существенный признак необходим, а их совокупность является достаточной для достижения новизны качества, не присущего признакам в разобщенности, то есть при решении поставленной в изобретении технической задачи получен эффект суммы признаков, а не сумма их эффектов.
Сущность изобретения поясняется маршрутной технологией изготовления предложенного материала.
В изобретении впервые разработана физическая модель формирования высокоадгезионного слоя металла к поверхности полимера и экспериментально реализована предложенная структура металлопленочного анода для электролитического конденсатора.
Поверхность полиэтилентерефталатной пленки последовательно обрабатывают в вакуумных камерах, снабженных устройствами шлюзования, в динамике перемотки со скоростью, достаточной для практической реализации в производстве.
Предварительно поверхность пленочной основы композитного материала обрабатывают в среде смеси азота и кислорода ионным излучателем при ускоряющем напряжении на аноде 2 кВ, токе разряда 2 А, токе соленоида 200 мА, в результате чего обеспечивается развитие рельефа поверхности полиэфирной пленки, ее модификация.
Получаемый рельеф поверхности оценивали с помощью сканирующего зондового микроскопа «ФемтоСкан» в атомно-силовом режиме и другими известными методами, определяя шероховатость, площадь реальной и геометрической поверхностей, соотношение которых определяет фактор развития.
В пленочной основе газоразрядной плазмой и ионным пучком формируют рифли глубиной 0,2-3 мкм и поры величиной 0,2-6 мкм суммарным объемом 10-60%, причем 1/3-1/5 часть пор выполняют сквозными, достигая фактора развития поверхности основы в диапазоне 80-400.
Затем в среде паров циклогексана с помощью ионно-плазменного источника ИИ-4-0,15 (при рабочем давлении 10-3 мм рт.ст., напряжении разряда 3 кВ и токе в диапазоне 200-500 мА) проводят ионно-стимулированное осаждение наноразмерного (10-50 нм) покрытия из аморфного углерода sp3-гибридизированного состояния, в результате чего модифицированный пленочный материал приобретает свойства электрета.
После нанесения на поверхность пленки основы наноразмерного алмазоподобного покрытия происходит увеличение диэлектрической проницаемости, образуется потенциальный барьер перехода металл-диэлектрик. Рост диэлектрической проницаемости связан с ростом объемной электропроводности пленки.
Многократное развитие поверхности взаимодействия пленочной основы с этим технологическим нанослоем заметно увеличило адгезию, обеспечив их прочное сцепление в единую структуру, на которую далее наносится токоведущий слой металла, алюминия или меди.
Наноразмерный алмазоподобный слой, осажденный на модифицированную поверхность полиэтилентерефталатной пленки, оказывает значительное влияние на процесс пробоя, приводя к росту критического значения электрического поля (напряженность поля, в котором наблюдается пробой) в 1,5-1,7 раза, с увеличением толщины покрытия от 5 до 50 нм соответственно. Это, в свою очередь, позволяет значительно увеличить номинальные параметры и срок службы металлопленочных конденсаторов.
Перемещение пленки из рулона происходит с регулируемой скоростью, которая определяет толщину алмазоподобного покрытия (в частности 0,3 м/мин).
Далее на сформированный алмазоподобный нанослой наносят посредством магнетрона токоведущее металлическое покрытие из алюминия или меди толщиной 25-250 нм.
Изоляция технологических вакуумных объемов осуществляется с помощью специального щелевого затвора, который обеспечивает подачу пленочной основы без изменения состава паровой или газовой фазы в них.
Нанесение покрытия из алюминия или меди толщиной 5-50 нм производят в атмосфере аргона при давлении 8×10-4-2×10-3 мм рт.ст.с помощью магнетронного устройства, обеспечив рабочий режим: ток 15-20 А, напряжение 500-600 В).
В результате магнетронного осаждения алюминия или меди достигается адгезия металла покрытия к полимеру в 14-20 раз выше, чем у известных в технике аналогов.
При этом слой металла герметично запечатывает с двух сторон поры основы, где сохраняется разрежение, которое в эксплуатации анодов выполняет функции заклепок в материале, дополнительно механически прижимая металлическое покрытие к полимерной пленочной основе.
В случае, когда пленочная полиэтилентерефталатная основа остается проницаемой, то есть крупные сквозные поры изнутри покрыты слоем напыленного металла и по торцам открыты, в основе образуются замкнутые кольцевые слои металла покрытия, сцепленного с основой, что обеспечивает геометрическое замыкание токоведущего покрытия, физически примыкающего к модифицированной пленке, практически не подверженного деформациям в эксплуатации.
Затем на это несущее металлическое покрытие дополнительно напыляют функциональный слой губчатого алюминия толщиной 0,5-20 мкм, который под влиянием «информационной матрицы» модифицированной основы формируется в виде пирамидальной структуры, имеющей фактор развития поверхности 80-400.
Для этого в вакуумном технологическом объеме устанавливают давление до 6×10-3 мм рт.ст., изменяя состав газовой смеси добавкой кислорода до 40 об.%. Режим работы магнетронного источника: рабочее напряжение 400-600 В, ток разряда 25-40 А. При этом температура полиэтилентерефталатной основы, размещенной на принудительно охлаждаемом транспортном барабане, достигает минус 30°С.
Визуально губчатый слой алюминия от серебристого цвета монолитного алюминиевого покрытия отличается абсолютно черным цветом, что служит идентификационным признаком контроля процесса порообразования в формируемом слое губчатого алюминия.
Технологические режимы изготовления предложенного композитного многослойного материала в различных сочетаниях структурных слоев с разными геометрическими параметрами отработаны на экспериментальной установке и оптимизированы в соответствии с данными исследований электрофизических свойств анодов согласно условиям эксплуатации.
Предложенный пленочный материал с широким диапазоном электрофизических свойств предназначен для использования в микроэлектронике и радиотехнике в качестве универсального конструкционного материала.
Высокие значения электрического заряда, стабильного при температурах до 200°C, позволяют использовать модифицированную полиэфирную пленку в качестве более дешевого чувствительного элемента электромеханических и электроакустических преобразователей. Чувствительность такого преобразователя идентична чувствительности прибора с сегнетоэлектриком из поливинилденфторида, а стоимость его значительно ниже.
Модифицированная поверхность полиэтилентерефталатной пленки с алмазоподобным покрытием является бактерицидной, что способствует уменьшению скорости протекания процессов биокоррозии при эксплуатации радиоэлектронной аппаратуры в экстремальных условиях.
Материал по изобретению может быть использован, в частности, в качестве фильтра тонкой очистки различных текучих материалов, жидкостей, аэрозолей и газов.
Проведенный сопоставительный анализ предложенного технического решения с выявленными аналогами уровня техники, из которого изобретение явным образом не следует для технолога производства полупроводников, показал, что оно не известно, а с учетом возможности промышленного серийного изготовления металлопленочных анодов для электролитических конденсаторов можно сделать вывод о соответствии критериям патентоспособности.
Claims (1)
- Пленочный материал на полиэтилентерефталатной основе с наноразмерным токоведущим металлическим покрытием, отличающийся тем, что между поверхностью основы и токоведущим металлическим покрытием из алюминия или меди помещен алмазоподобный нанослой толщиной 5-50 нм, представляющий собой sp3-гибридизацию атомов аморфного углерода, осажденного в вакууме из газовой фазы посредством ионно-плазменного источника, а на поверхности токоведущего металлического покрытия из алюминия или меди, толщина которого 25-250 нм, выполнен губчатый слой алюминия толщиной 0,5-20 мкм, имеющий фактор развития поверхности в диапазоне 80-400, причем полиэтилентерефталатная основа предварительно модифицирована рифлением поверхности и сквозными порами размером 0,2-6 мкм.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2005116487A RU2295448C2 (ru) | 2005-05-31 | 2005-05-31 | Пленочный материал на полиэтилентерефталатной основе |
US11/920,300 US7943237B2 (en) | 2005-05-31 | 2006-04-12 | Polyether-based film material |
PCT/RU2006/000183 WO2006130042A1 (fr) | 2005-05-31 | 2006-04-12 | Matiere pelliculaire a base de polyether |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2005116487A RU2295448C2 (ru) | 2005-05-31 | 2005-05-31 | Пленочный материал на полиэтилентерефталатной основе |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2005116487A RU2005116487A (ru) | 2006-11-20 |
RU2295448C2 true RU2295448C2 (ru) | 2007-03-20 |
Family
ID=37481888
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2005116487A RU2295448C2 (ru) | 2005-05-31 | 2005-05-31 | Пленочный материал на полиэтилентерефталатной основе |
Country Status (3)
Country | Link |
---|---|
US (1) | US7943237B2 (ru) |
RU (1) | RU2295448C2 (ru) |
WO (1) | WO2006130042A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2592797C2 (ru) * | 2014-11-21 | 2016-07-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследователский университет)" (МАИ) | Способ получения антимикробных нанокомпозитных полимерных материалов |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2339110C1 (ru) * | 2007-11-12 | 2008-11-20 | Ооо "Восток" | Многослойный анод |
CN115000416A (zh) * | 2022-06-24 | 2022-09-02 | 扬州纳力新材料科技有限公司 | 复合集流体及其制备方法与应用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2688092B1 (fr) * | 1992-02-14 | 1994-04-15 | Traitement Metaux Alliages Sa | Feuille pour electrode de condensateur electrolytique et procede de fabrication. |
RU2123738C1 (ru) * | 1997-03-21 | 1998-12-20 | Воронежский государственный технический университет | Пористое покрытие для модификации поверхности фольги электролитического конденсатора |
JPH1187182A (ja) * | 1997-09-11 | 1999-03-30 | Tdk Corp | 有機固体電解コンデンサおよびその製造方法 |
CN1675058B (zh) * | 2002-08-07 | 2010-12-29 | 株式会社丰田中央研究所 | 包括粘合层的层压产品和包括保护膜的层压产品 |
RU2210389C1 (ru) * | 2002-09-10 | 2003-08-20 | Общество с ограниченной ответственностью "Мединтер Плюс" | Спасательное покрывало |
JP4248289B2 (ja) * | 2003-03-31 | 2009-04-02 | 三洋電機株式会社 | 固体電解コンデンサおよびその製造方法 |
-
2005
- 2005-05-31 RU RU2005116487A patent/RU2295448C2/ru not_active IP Right Cessation
-
2006
- 2006-04-12 US US11/920,300 patent/US7943237B2/en not_active Expired - Fee Related
- 2006-04-12 WO PCT/RU2006/000183 patent/WO2006130042A1/ru active Application Filing
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2592797C2 (ru) * | 2014-11-21 | 2016-07-27 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследователский университет)" (МАИ) | Способ получения антимикробных нанокомпозитных полимерных материалов |
Also Published As
Publication number | Publication date |
---|---|
US7943237B2 (en) | 2011-05-17 |
RU2005116487A (ru) | 2006-11-20 |
US20090061250A1 (en) | 2009-03-05 |
WO2006130042A1 (fr) | 2006-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | In situ grown MWCNTs/MXenes nanocomposites on carbon cloth for high‐performance flexible supercapacitors | |
Ye et al. | Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro‐supercapacitors with ultrahigh power output | |
Heon et al. | Continuous carbide-derived carbon films with high volumetric capacitance | |
Lee et al. | High-energy, flexible micro-supercapacitors by one-step laser fabrication of a self-generated nanoporous metal/oxide electrode | |
CN109075297B (zh) | 微孔膜或基底、电池隔板、电池及相关方法 | |
KR970004301B1 (ko) | 전해 컨덴서의 전극용 플레이트 및 그 제조방법 | |
WO2006130046A2 (fr) | Revetement nanostructure d'une base porteuse | |
Ouyang et al. | Green synthesis of vertical graphene nanosheets and their application in high-performance supercapacitors | |
JP5818384B2 (ja) | 電解コンデンサとその製造方法 | |
Yang et al. | Field emission from zinc oxide nanoneedles on plastic substrates | |
KR101479830B1 (ko) | 슈퍼커패시터용 그래핀/전도성 고분자 필름 및 이의 제조방법 | |
CN111841578A (zh) | 一种过渡金属硫化物核壳纳米球析氢催化剂及其制备方法 | |
RU2295448C2 (ru) | Пленочный материал на полиэтилентерефталатной основе | |
Byun et al. | Direct formation of a current collector layer on a partially reduced graphite oxide film using sputter-assisted metal deposition to fabricate high-power micro-supercapacitor electrodes | |
RU2402830C1 (ru) | Пленочный конденсатор | |
EP1382048A4 (en) | ELECTROLYTIC CAPACITORS AND METHOD FOR THE PRODUCTION THEREOF | |
US20130016451A1 (en) | Double-layer capacitor | |
Palsaniya et al. | Graphene Supercapacitor Electrode of Liquid Hydrocarbons using CVD Process | |
RU2339110C1 (ru) | Многослойный анод | |
Kim et al. | Large-area thin-film capacitors deposited onto graphene bottom electrodes via facing-target sputtering that is free of plasma damage | |
RU2528010C2 (ru) | Твердотельный суперконденсатор на основе многокомпонентных оксидов | |
RU2123738C1 (ru) | Пористое покрытие для модификации поверхности фольги электролитического конденсатора | |
RU56709U1 (ru) | Многослойный анод | |
Coman et al. | Hybrid nanostructures based on vertically graphenes decorated with tungsten oxide nanoparticles for enhanced capacitive performance | |
JP7461091B1 (ja) | 電極材料、電解コンデンサ用陰極箔、及び電解コンデンサ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
QB4A | Licence on use of patent |
Free format text: LICENCE Effective date: 20111003 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20130601 |