RU2271263C2 - Способ получения порошковых металлических изделий с уплотненной поверхностью - Google Patents
Способ получения порошковых металлических изделий с уплотненной поверхностью Download PDFInfo
- Publication number
- RU2271263C2 RU2271263C2 RU2003102383/02A RU2003102383A RU2271263C2 RU 2271263 C2 RU2271263 C2 RU 2271263C2 RU 2003102383/02 A RU2003102383/02 A RU 2003102383/02A RU 2003102383 A RU2003102383 A RU 2003102383A RU 2271263 C2 RU2271263 C2 RU 2271263C2
- Authority
- RU
- Russia
- Prior art keywords
- surface layer
- carbon
- product
- carried out
- core
- Prior art date
Links
- 239000000843 powder Substances 0.000 title claims abstract description 24
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 8
- 239000002184 metal Substances 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 51
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000002344 surface layer Substances 0.000 claims abstract description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- 239000010410 layer Substances 0.000 claims abstract description 8
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 4
- 239000000956 alloy Substances 0.000 claims abstract description 4
- 238000005245 sintering Methods 0.000 claims description 24
- 238000005261 decarburization Methods 0.000 claims description 19
- 238000005056 compaction Methods 0.000 claims description 9
- 238000000465 moulding Methods 0.000 claims description 6
- 238000005275 alloying Methods 0.000 claims description 4
- 238000000280 densification Methods 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000012255 powdered metal Substances 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 238000004320 controlled atmosphere Methods 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims 1
- 239000011651 chromium Substances 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims 1
- 239000011733 molybdenum Substances 0.000 claims 1
- 239000011574 phosphorus Substances 0.000 claims 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims 1
- 238000004663 powder metallurgy Methods 0.000 abstract description 17
- 230000000694 effects Effects 0.000 abstract description 9
- 230000000712 assembly Effects 0.000 abstract 1
- 238000000429 assembly Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 239000011162 core material Substances 0.000 description 12
- 238000005096 rolling process Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000001816 cooling Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 238000005496 tempering Methods 0.000 description 2
- 229910001021 Ferroalloy Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005480 shot peening Methods 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
Изобретение относится к порошковой металлургии, в частности к получению порошковых металлических изделий, имеющих высокую прочность сердцевины и твердую уплотненную поверхность. Может использоваться в машиностроении для изготовления шестерен, подшипников и т.д. Способ уплотнения поверхностного слоя углеродсодержащего изделия, полученного из порошка на основе железа, включает обезуглероживание поверхностного слоя изделия для его размягчения. Полученный мягкий поверхностный слой уплотняют путем механического формования. Спеченное порошковое металлическое изделие, полученное из сплава на основе железа указанным способом, содержит 0,3-1,0 мас.% углерода в сердцевине и 0,3-1,5 мас.%, предпочтительно - 0,5-0,9 мас.% углерода в поверхностно упрочненном слое. Техническим результатом является получение изделия с сердцевиной, имеющей высокие прочность на разрыв и предел текучести, и поверхностью, имеющей высокие твердость и усталостные свойства. 3 н. и 8 з.п. ф-лы, 4 табл.
Description
Область техники
Настоящее изобретение относится к способу получения порошковых металлических изделий. Конкретнее, изобретение относится к способу получения порошковых металлических изделий, имеющих высокую прочность сердцевины и твердую уплотненную поверхность.
Уровень техники
Традиционные способы получения металлических деталей включают в себя, например, механическую обработку кованой заготовки, прутка или трубки. Однако эти традиционные способы производства отличаются плохой степенью использования материала и относительно высокой стоимостью в сравнении с процессами порошковой металлургии (ПМ). Другими преимуществами ПМ-процессов являются возможность создавать сложные формы за одну операцию формования, минимальная отделочная механическая обработка, высокая объемная производительность и высокая энергетическая эффективность (коэффициент полезного действия).
Несмотря на названные выше преимущества, использование в автомобилях спеченных ПМ-деталей все еще является относительно умеренным по сравнению с использованием деталей из низколегированной ковкой стали. Одной из сфер дальнейшего роста использования ПМ-деталей в автомобильной промышленности состоит в успешном внедрении ПМ-деталей в предъявляющие более высокие требования варианты применения, такие как применения для передачи энергии, например, в коробках передач. Одна из проблем, связанных с зубчатыми колесами, получаемыми ранее с помощью ПМ-процесса, состоит в том, что по сравнению с шестернями, изготовленными из прутка или кованой заготовки, порошковые металлические шестерни имеют пониженную усталостную прочность на изгиб в зубце и корневой области шестерни и низкое сопротивление износу боковых сторон зубцов вследствие остаточной пористости в микроструктуре. Один из способов успешного получения ПМ-шестерен для коробок передач состоит в прокатке профиля шестерни для повышения плотности поверхности, как показано в GB 2250227 В. Однако этот процесс приводит к плотности сердцевины, которая ниже плотности уплотненных участков и которая обычно составляет приблизительно 90% от полной теоретической плотности ковкой стали. Это приводит к получению зубцов со сравнительно более низкой усталостной стойкостью при изгибе, чем в случае такой же детали из ковкой стали, обработанной механическим путем.
Хотя температура спекания может оказывать значительное влияние на динамические свойства спеченных ПМ-деталей при данной плотности, максимальные уровни динамических свойств, достигаемые в случае любого режима спекания, также регулируются сочетанием используемой системы легирования и достигаемой плотности после спекания. Хотя с помощью обычных ПМ-процессов (с тепловой обработкой и без нее) возможно получение высокого предела прочности на разрыв при уровнях плотности после однократного сжатия до 7,2 г/см3, динамические свойства, такие как сопротивление развитию трещин и усталостная стойкость при циклической нагрузке, будут неизменно ниже, чем такие же свойства стали со сравнимым пределом прочности. Таким образом, способы получения шестерен коробок передач с помощью ПМ-процессов не получили широкой поддержки. Это в первую очередь вызвано отрицательным действием остаточной пористости. Следовательно, способы улучшения свойств ПМ-деталей, подвергающихся высокой нагрузке, должны учитывать уплотнение и микроструктуру высоконагружаемых участков для достижения хорошей циклической усталостной прочности на изгиб и усталостной стойкости поверхности, соответственно.
Способы улучшения свойств ПМ-деталей известны из патентов США №№5729822, 5540883 и 5997805, а также SU 822994.
В патенте США №5729822 раскрыт способ производства ПМ-изделий, которые могут быть использованы в шестернях, включающий в себя стадии: а) спекания порошковой металлической заготовки с получением плотности сердцевины между 7,4 и 7,6 г/см3; b) прокатки поверхности заготовки шестерни для уплотнения этой поверхности; с) нагревания прокатанной спеченной шестерни и науглероживания в вакуумной печи.
В патенте США №5540883 раскрыт способ производства ПМ-изделий, которые могут быть использованы в подшипниках, включающий в себя стадии: а) смешения углерода, порошка ферросплава и смазывающего вещества со сжимаемым железным порошком с образованием перемешанной смеси; b) прессования перемешанной смеси с формированием изделия; с) спекания изделия; d) накаливание по меньшей мере части поверхности изделия с помощью роликов; и е) термической обработки этого слоя.
В патенте США №5997805 раскрыт способ получения высокоплотных, высокоуглеродистых спеченных ПМ-сталей. Способ включает в себя: смешение порошков требуемого состава; прессование (компактирование) и спекание порошка; охлаждение спеченного изделия путем изотермического выдерживания или медленного охлаждения; последующее формование изделия до плотности от 7,4 до 7,7 г/см3. Путем охлаждения спеченного изделия, после которого следует изотермическое выдерживание, получают более низкую твердость высокоуглеродистого материала для последующей операции формования.
Настоящее изобретение предлагает новый способ получения ПМ-изделий с сердцевиной, характеризующейся плотностью от средней до высокой, высоким пределом текучести и поверхностью с высокой твердостью и высокой плотностью.
Сущность изобретения
Говоря кратко, в настоящем изобретении предлагается способ уплотнения поверхностного слоя углеродсодержащего изделия (необязательно - спеченного), полученного из порошка на основе железа, включающий уплотнение поверхностного слоя путем механического формования, отличающийся тем, что перед уплотнением проводят обезуглероживание поверхностного слоя изделия для размягчения этого поверхностного слоя, а затем мягкий поверхностный слой подвергают уплотнению.
В случае изделия, подвергнутого спеканию, обезуглероживание может быть осуществлено либо как часть стадии спекания, либо в виде отдельного процесса, следующего за спеканием.
Таким образом, в настоящем изобретении также предложен способ получения порошковых металлических изделий с высокой плотностью и уплотненной поверхностью, включающий спекание прессованного изделия и уплотнение поверхностного слоя, отличающийся тем, что во время части операции спекания проводят обезуглероживание поверхностного слоя изделия для размягчения этого поверхностного слоя, а затем мягкий поверхностный слой подвергают уплотнению.
В настоящем изобретении также предложено спеченное порошковое металлическое изделие, полученное из сплава на основе железа и подвергнутое поверхностному упрочнению, отличающееся тем, что оно получено с использованием любого из вышеупомянутых способов согласно настоящему изобретению и содержит 0,3-1,0 мас.% углерода в сердцевине и 0,3-1,5 мас.%, предпочтительно -0,5-0,9 мас.% углерода в поверхностно упрочненном слое.
Подробное описание изобретения
Конкретной целью обезуглероживания является размягчение поверхности изделия для того, чтобы можно было осуществить эффективное уплотнение поверхности изделия. Обезуглероженный поверхностный слой имеет более низкий предел текучести по сравнению с сердцевиной. При этом поверхностный слой будет уплотняться, тогда как напряжения в сердцевине будут низкими. В соответствии со способом согласно настоящему изобретению, уплотнение может быть осуществлено на материале с сердцевиной с высоким пределом текучести и мягким поверхностным слоем при использовании обычных давлений и материалов инструмента. Полученное изделие будет иметь высокую точность размеров и высокий предел прочности сердцевины. После поверхностного уплотнения поверхность необязательно подвергают поверхностному упрочнению или подвергают другим сравнимым методам повышения твердости поверхности с целью повышения поверхностной твердости и износостойкости. Поверхность будет достигать твердости, превосходящей твердость материала сердцевины, благодаря ее более высокой плотности и поверхностно упрочненному слою, а усталостная прочность на изгиб и усталостные свойства при катящемся контакте значительно повышаются. В течение всего процесса сердцевина изделия сохраняет оптимальное содержание углерода для обеспечения высокого предела прочности на разрыв и высокого предела текучести.
Предпочтительные порошки, которые могут быть использованы в соответствии с настоящим изобретением, представляют собой железные порошки или порошки на основе железа, необязательно содержащие один или более легирующих элементов. Такой порошок может содержать, например, вплоть до 10 мас.% одного или более легирующих элементов, выбранных из группы, состоящей из Cu, Cr, Мо, Ni, Mn, P, V и С. Порошки могут находиться в виде порошкообразных смесей, предварительно легированных порошков и диффузионно-связанных легированных порошков, или их комбинаций.
Прессование проводят при давлении 400-1000 МПа, предпочтительно - 600-800 МПа.
Спекание проводят при 1100-1350°С, т.е. обычных температурах для предварительно легированного или частично предварительно легированного железа.
Обезуглероживание проводят при температуре 750-1200°С, предпочтительно - 850-1000°С, в контролируемой атмосфере. Атмосфера предпочтительно состоит из водорода или смеси азота и водорода с необязательным добавлением H2O, причем особенно хорошие результаты были получены со смесью азот/водород, в которой 50-100% водорода насыщено H2O.
Толщина обезуглероженного слоя составляет 0,1-1,5 мм, предпочтительно - 0,8-1,2 мм, а содержание углерода в нем составляет 0-0,5 мас.%, предпочтительно - 0,03-0,3 мас.%.
Вследствие низкого содержания углерода на поверхности изделия материал уже является мягким, когда его подвергают механической обработке. Благодаря этой механической обработке поверхностный слой достигает полной плотности, и это означает, что может быть использован весь потенциал материала. Толщина слоя должна быть достаточной для того, чтобы соответствовать напряжениям, возникающим в условиях эксплуатации изделия.
Уплотнение поверхности может быть осуществлено путем механического формования, такого как поверхностное прессование, поверхностная прокатка, дробеструйное упрочнение, калибровка, или любыми другими способами, которые способны локально повышать плотность изделия. Однако существуют значительные различия между калибровкой и прокаткой. Основной целью операции калибровки является улучшение совпадения по форме (допуска на размер), тогда как повышение локальной плотности является только вторичной целью.
Операция прокатки является ключевым фактором для достижения свойств, сравнимых со свойствами кованой и поверхностно упрочненной стали. Однако вторичная функция операции прокатки заключается в улучшенном совпадении по форме. Точная последовательность прокатки и другие относящиеся к прокатке параметры должны быть адаптированы к конкретному изделию.
Поверхностное упрочнение, следующее за таким уплотнением поверхности, будет давать очень плотную и твердую поверхность.
Поверхностное упрочнение проводят при температуре 850-1000°С, предпочтительно - 900-950°С, в атмосфере, обогащенной 0,3-1,5% углерода, предпочтительно - 0,5-0,9% углерода. Термин «поверхностное упрочнение» означает любой тип повышения прочности (твердости) поверхности, который включает в себя добавление упрочняющего агента, т.е. углерода или азота. Типичными методами упрочнения являются традиционное поверхностное упрочнение, нитроцементация, азотонауглероживание, плазменное азотирование, ионное азотирование и т.д.
Содержание углерода в поверхностном слое после поверхностного упрочнения составляет 0,3-1,5 мас.%, предпочтительно - 0,5-0,9 мас.%. Содержание углерода в сердцевине сохраняется на уровне 0,3-1,0 мас.%.
За поверхностным упрочнением предпочтительно следует отпуск при низкой температуре на воздухе.
Изобретение будет дополнительно описано ниже с помощью следующих примеров.
Краткое описание чертежей
Фиг.1 представляет собой график, иллюстрирующий микротвердость после различных поверхностных обработок.
Фиг.2 представляет собой изображение, иллюстрирующее результаты поверхностного прессования, проведенного на обезуглероженной поверхности.
Фиг.3 представляет собой изображение, иллюстрирующее результаты поверхностного прессования, проведенного на спеченном образце.
ПРИМЕР
Готовили сплавы на основе железа с составами, представленными в таблице 1. Порошковые смеси прессовали в опытные изделия с использованием давления прессования приблизительно 600 МПа для получения «сырой» плотности (т.е. плотности в неспеченном состоянии) приблизительно 7,0 г/см3. Прессованные изделия затем обрабатывали с помощью пяти различных процессов обезуглероживания, представленных ниже:
А. Спекание при 1120°С/30 мин в смеси 30% N2/70% H2, после чего следует охлаждение со скоростью 0,5-2,0°С/сек.
В. (Единый процесс) Спекание при 1120°С/25 мин в смеси 90% N2/10% Н2, после чего следует спекание (обезуглероживание) при 1120°С/5 мин в 33% влажной и 67% сухой смеси 90% N2/10% H2 и охлаждение со скоростью 0,5-2,0°С/сек в 33% влажной и 67% сухой смеси 90% N2/10% H2.
С. (Единый процесс) Спекание при 1120°С/25 мин в смеси 90% N2/10% H2, после чего следует спекание (обезуглероживание) при 1120°С/5 мин в 20% влажной и 80% сухой смеси 90% N2/10% H2 и охлаждение со скоростью 0,5-2,0°С/сек в 20% влажной и 80% сухой смеси 90% N2/10% H2.
D. Спекание при 1120°С/30 мин в эндогазе с 0,65% CO2 с последующим охлаждением со скоростью 0,5-2,0°С/сек.
Е. (Двойной процесс) Спекание при 1120°С/30 мин в смеси 30% N2/70% H2, после чего следует обезуглероживание при 950°С/20 мин в 50% влажного и 50% сухого H2 и охлаждение со скоростью 0,5-2,0°С/сек.
Таблица 1 | ||||
№ | Материал* | Начальный % углерода** | Легирующие элементы | Тип порошка |
1 | Distaloy AE | 0,6 | 0,5% Mo, 1,5% Cu, 4% Ni | Диффузионно-связанный |
2 | Distaloy AE | 0,5 | ||
3 | Distaloy AE | 0,4 | ||
4 | Astaloy Mo | 0,6 | 1,5% Mo | Предварительно легированный |
5 | Astaloy Mo | 0,5 | ||
6 | Astaloy Mo | 0,4 | ||
* + 0,6% Kenolube ** добавлен в виде графита |
Уплотнение поверхности проводили на таких изделиях путем поверхностной прокатки при прокатывающем усилии 15-35 кН и частоте вращения валков 5-40 об.
Поверхностное упрочнение проводили на уплотненных частях путем воздействия на эти части температуры 950°С/60 мин в атмосфере 0,5% углеродного потенциала с последующим отпуском при 185°С/60 мин на воздухе.
Для того чтобы охарактеризовать эффект обезуглероживания и его влияние на уплотнение поверхности, были проведены измерения твердости поверхности (твердость по Виккерсу, HV10) и оценки микроструктуры (LOM) поперечных сечений обезуглероженных изделий. Проведенные анализы дают информацию как о твердости поверхности, так и о толщине мягкого обезуглероженного слоя.
Результаты измерений твердости поверхности представлены в таблице 2 и на Фиг.1. Очевидно, что твердость поверхности падает после обезуглероживания и повышается после уплотнения поверхности и поверхностного упрочнения.
На Фиг.2 и 3 представлено влияние поверхностного прессования (усилие прессования 60 кН) соответственно на обезуглероженную и только что спеченную поверхность (материал: Distaloy АЕ + 0,6% С).
Таблица 2 | ||||
№ | Твердость поверхности (HV10) | |||
После спекания | Обезуглерожена с помощью процесса В (33% вг*) | Обезуглерожена с помощью процесса С (22% вг*) | Науглерожена до 0,5% углерода | |
1 | 274 | 138 | 148 | 466 |
3 | 221 | 122 | 154 | 456 |
4 | 210 | 118 | 152 | 435 |
6 | 173 | 81 | 87 | 594 |
* вг = влажный газ |
Содержания углерода после различных процессов обезуглероживания представлены в таблице 3. Из данной таблицы можно увидеть, что отдельный процесс обезуглероживания (процесс Е, двойной процесс) дает более высокий эффект обезуглероживания поверхности, чем единые процессы (процессы В и С), хотя последний проявляет некоторый эффект обезуглероживания. По сравнению с едиными и двойным процессами, спекание оказывает очень ограниченное влияние на обезуглероживание поверхности. Это определяется главным образом кинетическим влиянием во время реакции.
Таблица 3 | |||||
№ | Содержание углерода (%) | ||||
Начальное содержание углерода | После спекания | Обезуглерожена с помощью процесса В (20% вг*) | Обезуглерожена с помощью процесса С (33% вг*) | Обезуглерожена с помощью процесса Е(ДП**) (50% вг) | |
1 | 0,6 | 0,52 | 0,48 | 0,43 | 0,28 |
3 | 0,4 | 0,37 | 0,31 | 0,28 | 0,17 |
4 | 0,6 | 0,58 | 0,49 | 0,44 | 0,26 |
6 | 0,4 | 0,39 | 0,32 | 0,28 | 0,17 |
* вг = влажный газ ** ДП = двойной процесс |
Измерение содержания углерода проводили по всему объему, а не на поверхности образца. Содержание углерода на поверхности образца должно быть намного ниже, чем измеряемое сейчас значение.
Прочностные испытания проводили на образцах, спеченных при 1120°С в течение 30 мин в атмосфере 90% N2/10% H2. Полученные результаты представлены в таблице 4.
Таблица 4 | ||
№ | Содержание углерода | Предел прочности на разрыв/ предел текучести (спекание при 1120°С/30 мин)* |
l | 0,6 | 732/400 |
2 | 0,5 | 734/398 |
3 | 0,4 | 686/376 |
4 | 0,6 | 550/425 |
5 | 0,5 | 537/421 |
6 | 0,4 | 518/407 |
* Атмосфера: 90% N2/10% H2 |
Claims (11)
1. Способ уплотнения поверхностного слоя углеродсодержащего изделия, полученного из порошка на основе железа, включающий уплотнение поверхностного слоя путем механического формования, отличающийся тем, что перед уплотнением проводят обезуглероживание поверхностного слоя изделия для размягчения этого поверхностного слоя, а затем мягкий поверхностный слой подвергают уплотнению.
2. Способ по п.1, отличающийся тем, что обезуглероживание проводят при условиях, обеспечивающих получение мягкого поверхностного слоя толщиной 0,1-1,5 мм, предпочтительно 0,8-1,2 мм.
3. Способ по п.1 или 2, отличающийся тем, что обезуглероживание проводят при условиях, обеспечивающих получение мягкого поверхностного слоя, содержащего 0-0,5 мас.% углерода, предпочтительно 0,03-0,3 мас.% углерода.
4. Способ по п.1, отличающийся тем, что после уплотнения поверхностного слоя изделия проводят поверхностное упрочнение.
5. Способ по п.4, отличающийся тем, что поверхностное упрочнение проводят путем науглероживания.
6. Способ по п.5, отличающийся тем, что поверхностное упрочнение проводят при условиях, обеспечивающих получение поверхностного слоя, содержащего 0,3-1,5 мас.% углерода, предпочтительно 0,5-0,9 мас.% углерода.
7. Способ по п.4, отличающийся тем, что получают поверхностно упроченное изделие, содержащее 0,3-1,0 мас.% углерода в сердцевине.
8. Способ по п.1, отличающийся тем, что обезуглероживание проводят путем нагрева изделия при 750-1200°С, предпочтительно при 850-1000°С, в контролируемой атмосфере.
9. Способ по п.1, отличающийся тем, что проводят уплотнение изделия, полученного из порошка на основе железа, содержащего по меньшей мере один легирующий элемент, выбранный из группы, включающей медь, хром, молибден, никель, марганец, фосфор и ванадий.
10. Способ получения порошковых металлических изделий с высокой плотностью и уплотненной поверхностью, включающий спекание прессованного изделия и уплотнение поверхностного слоя, отличающийся тем, что во время части операции спекания проводят обезуглероживание поверхностного слоя изделия для размягчения этого поверхностного слоя, а затем мягкий поверхностный слой подвергают уплотнению.
11. Спеченное порошковое металлическое изделие, полученное из сплава на основе железа и подвергнутое поверхностному упрочнению, отличающееся тем, что оно получено с использованием способа по п.1 или 10 и содержит 0,3-1,0 мас.% углерода в сердцевине и 0,3-1,5 мас.%, предпочтительно 0,5-0,9 мас.%, углерода в поверхностно упрочненном слое.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE0002448A SE0002448D0 (sv) | 2000-06-28 | 2000-06-28 | method of producig powder metal components |
SE0002448-9 | 2000-06-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2003102383A RU2003102383A (ru) | 2004-07-20 |
RU2271263C2 true RU2271263C2 (ru) | 2006-03-10 |
Family
ID=20280299
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2003102383/02A RU2271263C2 (ru) | 2000-06-28 | 2001-06-25 | Способ получения порошковых металлических изделий с уплотненной поверхностью |
Country Status (13)
Country | Link |
---|---|
US (1) | US7169351B2 (ru) |
EP (1) | EP1294511A1 (ru) |
JP (1) | JP2004502028A (ru) |
KR (1) | KR100520701B1 (ru) |
CN (1) | CN100391659C (ru) |
AU (1) | AU2001266498A1 (ru) |
BR (1) | BR0111949A (ru) |
CA (1) | CA2412520C (ru) |
MX (1) | MXPA03000079A (ru) |
RU (1) | RU2271263C2 (ru) |
SE (1) | SE0002448D0 (ru) |
TW (1) | TW461841B (ru) |
WO (1) | WO2002000378A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2465981C2 (ru) * | 2007-07-18 | 2012-11-10 | АйЭйчАй КОРПОРЕЙШН | Способ изготовления электрода для искровой модификации поверхности и электрод для искровой модификации поверхности |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005344126A (ja) * | 2002-10-04 | 2005-12-15 | Hitachi Powdered Metals Co Ltd | 焼結歯車 |
BRPI0411913B1 (pt) * | 2003-06-27 | 2013-09-03 | liga sinterizada na base de ferro com superfÍcie altamente densificada e endurecida, e mÉtodo de produÇço da mesma | |
US7416696B2 (en) * | 2003-10-03 | 2008-08-26 | Keystone Investment Corporation | Powder metal materials and parts and methods of making the same |
US20050129562A1 (en) * | 2003-10-17 | 2005-06-16 | Hoganas Ab | Method for the manufacturing of sintered metal parts |
SE0302763D0 (sv) * | 2003-10-17 | 2003-10-17 | Hoeganaes Ab | Method for the manufactring of sintered metal parts |
US7393498B2 (en) * | 2004-04-21 | 2008-07-01 | Hoganas Ab | Sintered metal parts and method for the manufacturing thereof |
SE0401041D0 (sv) * | 2004-04-21 | 2004-04-21 | Hoeganaes Ab | Sintered metal parts and method for the manufacturing thereof |
DE102005027137A1 (de) * | 2005-06-10 | 2006-12-14 | Gkn Sinter Metals Gmbh | Verzahnung aus Sintermaterial |
US20070048169A1 (en) * | 2005-08-25 | 2007-03-01 | Borgwarner Inc. | Method of making powder metal parts by surface densification |
US8517884B2 (en) | 2006-03-24 | 2013-08-27 | Gkn Sinter Metals, Llc | Powder forged differential gear |
US7827692B2 (en) | 2006-03-24 | 2010-11-09 | Gkn Sinter Metals, Inc. | Variable case depth powder metal gear and method thereof |
DE112007003622B4 (de) * | 2007-08-17 | 2020-08-06 | Gkn Sinter Metals, Llc. | Verfahren zum Erhalten eines Zahnrads mit variierender Einsatzhärtetiefe |
CN101809289B (zh) * | 2007-09-07 | 2015-05-06 | Gkn烧结金属有限公司 | 精密粉末金属部件、组件和方法 |
WO2009088771A2 (en) * | 2008-01-04 | 2009-07-16 | Gkn Sinter Metals, Llc | Prealloyed copper powder forged connecting rod |
KR20120017258A (ko) | 2010-08-18 | 2012-02-28 | 삼성모바일디스플레이주식회사 | 박막 대전 센서 |
AT509456B1 (de) * | 2010-08-31 | 2011-09-15 | Miba Sinter Austria Gmbh | Gesintertes zahnrad |
JP6087042B2 (ja) | 2010-09-30 | 2017-03-01 | 日立化成株式会社 | 焼結部材の製造方法 |
US20150033894A1 (en) * | 2012-03-12 | 2015-02-05 | Ntn Corporation | Mechanical structure component, sintered gear, and methods of manufacturing mechanical structure component and sintered gear |
JP5969273B2 (ja) * | 2012-06-12 | 2016-08-17 | Ntn株式会社 | 焼結歯車の製造方法 |
JP2013189658A (ja) * | 2012-03-12 | 2013-09-26 | Ntn Corp | 機械構造部品およびその製造方法 |
JP6010015B2 (ja) | 2012-12-28 | 2016-10-19 | 株式会社神戸製鋼所 | 浸炭焼入れ材の製造方法 |
CN107530778B (zh) | 2015-04-23 | 2021-06-15 | 铁姆肯公司 | 形成轴承部件的方法 |
US20160354839A1 (en) * | 2015-06-07 | 2016-12-08 | General Electric Company | Hybrid additive manufacturing methods and articles using green state additive structures |
US20170266726A1 (en) * | 2016-03-17 | 2017-09-21 | GM Global Technology Operations LLC | Method and system for surface densification |
KR101877715B1 (ko) * | 2017-01-19 | 2018-07-13 | 한밭대학교 산학협력단 | 밸브 플레이트용 금속소재의 제조 방법 |
AT520315B1 (de) * | 2018-01-24 | 2019-03-15 | Miba Sinter Austria Gmbh | Verfahren zur Herstellung eines Sinterbauteils |
CN108374079B (zh) * | 2018-03-05 | 2019-11-05 | 东莞理工学院 | 一种高比重合金产品的脱碳处理方法 |
CN108500277A (zh) * | 2018-03-28 | 2018-09-07 | 上海汽车粉末冶金有限公司 | 一种粉末冶金表面致密化零件的制备方法 |
CN115805312A (zh) * | 2022-09-20 | 2023-03-17 | 上海大学 | 一种高强度铁基粉末冶金齿轮的制备方法 |
Family Cites Families (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006016A (en) * | 1975-07-23 | 1977-02-01 | Borg-Warner Corporation | Production of high density powdered metal parts |
US4059879A (en) | 1975-11-17 | 1977-11-29 | Textron Inc. | Method for the controlled mechanical working of sintered porous powder metal shapes to effect surface and subsurface densification |
US4145798A (en) * | 1977-10-21 | 1979-03-27 | Federal-Mogul Corporation | Forging recessed configurations on a body member |
US4165243A (en) * | 1978-05-31 | 1979-08-21 | Federal-Mogul Corporation | Method of making selectively carburized forged powder metal parts |
JPS5810962B2 (ja) * | 1978-10-30 | 1983-02-28 | 川崎製鉄株式会社 | 圧縮性、成形性および熱処理特性に優れる合金鋼粉 |
US4277544A (en) * | 1979-01-29 | 1981-07-07 | Ipm Corporation | Powder metallurgical articles and method of bonding the articles to ferrous base materials |
JPS6030727B2 (ja) * | 1980-02-04 | 1985-07-18 | 日本鋼管株式会社 | シヤドウマスク用素材の製造方法 |
JPS56130407A (en) * | 1980-03-18 | 1981-10-13 | Toshiba Corp | Production of iron sintered parts |
CA1190418A (en) * | 1980-04-21 | 1985-07-16 | Nobuhito Kuroishi | Process for producing sintered ferrous alloys |
US4497874A (en) * | 1983-04-28 | 1985-02-05 | General Electric Company | Coated carbide cutting tool insert |
JPS6184302A (ja) * | 1984-09-28 | 1986-04-28 | Toyota Motor Corp | 焼結鍛造部品の製造方法 |
JPS61264105A (ja) | 1985-05-17 | 1986-11-22 | Toyota Motor Corp | 高強度焼結部材の製造方法 |
WO1989002802A1 (en) | 1987-09-30 | 1989-04-06 | Kawasaki Steel Corporation | Composite alloy steel powder and sintered alloy steel |
US5009842A (en) * | 1990-06-08 | 1991-04-23 | Board Of Control Of Michigan Technological University | Method of making high strength articles from forged powder steel alloys |
GB2250227B (en) | 1990-10-08 | 1994-06-08 | Formflo Ltd | Gear wheels rolled from powder metal blanks |
US5711187A (en) * | 1990-10-08 | 1998-01-27 | Formflo Ltd. | Gear wheels rolled from powder metal blanks and method of manufacture |
JP3184295B2 (ja) * | 1992-05-18 | 2001-07-09 | マツダ株式会社 | 浸炭部材の製造方法 |
US5681651A (en) * | 1992-11-27 | 1997-10-28 | Mitsubishi Materials Corporation | Multilayer coated hard alloy cutting tool |
DE69314438T2 (de) | 1992-11-30 | 1998-05-14 | Sumitomo Electric Industries | Niedrig legierter Sinterstahl und Verfahren zu dessen Herstellung |
EP0626893B1 (en) * | 1992-12-21 | 2000-08-09 | STACKPOLE Limited | Method of producing bearings |
ATE221142T1 (de) * | 1993-05-31 | 2002-08-15 | Sumitomo Electric Industries | Beschichtetes schneidwerkzeug und verfahren zu dessen herstellung |
US5462808A (en) * | 1993-09-03 | 1995-10-31 | Sumitomo Metal Industries, Ltd. | Highly rigid composite material and process for its manufacture |
US5613180A (en) * | 1994-09-30 | 1997-03-18 | Keystone Investment Corporation | High density ferrous power metal alloy |
JPH09194908A (ja) * | 1996-01-16 | 1997-07-29 | Mitsubishi Materials Corp | 焼結鍛造品およびその製造方法 |
US5729822A (en) * | 1996-05-24 | 1998-03-17 | Stackpole Limited | Gears |
SE9602376D0 (sv) * | 1996-06-14 | 1996-06-14 | Hoeganaes Ab | Compact body |
CA2268649C (en) * | 1996-10-15 | 2002-10-01 | Zenith Sintered Products, Inc. | Surface densification of machine components made by powder metallurgy |
JPH10317008A (ja) * | 1997-05-14 | 1998-12-02 | Japan Steel Works Ltd:The | 金属粉末焼結体の製造方法 |
JPH10317090A (ja) * | 1997-05-19 | 1998-12-02 | Sumitomo Electric Ind Ltd | 鉄合金焼結体部品とその製法 |
US5997805A (en) * | 1997-06-19 | 1999-12-07 | Stackpole Limited | High carbon, high density forming |
US6110419A (en) * | 1997-12-02 | 2000-08-29 | Stackpole Limited | Point contact densification |
JP2000239710A (ja) * | 1999-02-19 | 2000-09-05 | Tsubakimoto Chain Co | 焼結部品 |
US6592809B1 (en) * | 2000-10-03 | 2003-07-15 | Keystone Investment Corporation | Method for forming powder metal gears |
-
2000
- 2000-06-28 SE SE0002448A patent/SE0002448D0/xx unknown
- 2000-08-21 TW TW089116924A patent/TW461841B/zh not_active IP Right Cessation
-
2001
- 2001-06-25 JP JP2002505148A patent/JP2004502028A/ja not_active Ceased
- 2001-06-25 MX MXPA03000079A patent/MXPA03000079A/es active IP Right Grant
- 2001-06-25 WO PCT/SE2001/001441 patent/WO2002000378A1/en not_active Application Discontinuation
- 2001-06-25 EP EP01944054A patent/EP1294511A1/en not_active Withdrawn
- 2001-06-25 US US10/311,973 patent/US7169351B2/en not_active Expired - Fee Related
- 2001-06-25 BR BR0111949-4A patent/BR0111949A/pt not_active IP Right Cessation
- 2001-06-25 AU AU2001266498A patent/AU2001266498A1/en not_active Abandoned
- 2001-06-25 CN CNB018118577A patent/CN100391659C/zh not_active Expired - Fee Related
- 2001-06-25 RU RU2003102383/02A patent/RU2271263C2/ru not_active IP Right Cessation
- 2001-06-25 KR KR10-2002-7017701A patent/KR100520701B1/ko not_active IP Right Cessation
- 2001-06-25 CA CA002412520A patent/CA2412520C/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2465981C2 (ru) * | 2007-07-18 | 2012-11-10 | АйЭйчАй КОРПОРЕЙШН | Способ изготовления электрода для искровой модификации поверхности и электрод для искровой модификации поверхности |
US8993917B2 (en) | 2007-07-18 | 2015-03-31 | Ihi Corporation | Fabrication method of electrode for spark surface modification, and spark surface modification electrode |
Also Published As
Publication number | Publication date |
---|---|
TW461841B (en) | 2001-11-01 |
MXPA03000079A (es) | 2003-09-25 |
CN1438926A (zh) | 2003-08-27 |
BR0111949A (pt) | 2003-05-06 |
US20030155041A1 (en) | 2003-08-21 |
EP1294511A1 (en) | 2003-03-26 |
JP2004502028A (ja) | 2004-01-22 |
CN100391659C (zh) | 2008-06-04 |
KR20030023637A (ko) | 2003-03-19 |
AU2001266498A1 (en) | 2002-01-08 |
CA2412520A1 (en) | 2002-01-03 |
KR100520701B1 (ko) | 2005-10-17 |
SE0002448D0 (sv) | 2000-06-28 |
WO2002000378A1 (en) | 2002-01-03 |
CA2412520C (en) | 2009-10-13 |
US7169351B2 (en) | 2007-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2271263C2 (ru) | Способ получения порошковых металлических изделий с уплотненной поверхностью | |
CA2255643C (en) | Gears | |
US5613180A (en) | High density ferrous power metal alloy | |
US8870997B2 (en) | Iron-based pre-alloyed powder | |
EP0958077B1 (en) | Process for producing a powder metallurgical body with compacted surface | |
US20200047254A1 (en) | Method for Manufacturing Iron-based Powder Metallurgical Parts | |
CN104428085B (zh) | 烧结部件及起动器用小齿轮、以及它们的制造方法 | |
JP2012527535A (ja) | 高強度低合金焼結鋼 | |
US20230211413A1 (en) | Iron-based sintered alloy material and production method therefor | |
EP1027467A1 (en) | Method for manufacturing high carbon sintered powder metal steel parts of high density | |
US7722803B2 (en) | High carbon surface densified sintered steel products and method of production therefor | |
KR20050012161A (ko) | 사일런트 체인용 소결 스프로켓 및 그 제조방법 | |
Engstrom et al. | Efficient Low-Alloy Steels for High-Performance Structural Applications | |
JPH03219040A (ja) | 高強度焼結鋼およびその製造方法 | |
JPH0680164B2 (ja) | 焼結鍛造品の製造方法 | |
Bengtsson et al. | Carburizing of Low-Alloyed Chromium Materials–An Overview | |
Hanejko | Advances in P/M gear materials | |
JPH0225504A (ja) | 高疲労強度鉄系焼結材料およびその製造方法 | |
CA2258161C (en) | Powder metallurgical body with compacted surface | |
JPS6120602B2 (ru) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20120626 |