RU2154033C1 - Способ удаления ионов многовалентных металлов из кислых водных сред - Google Patents
Способ удаления ионов многовалентных металлов из кислых водных сред Download PDFInfo
- Publication number
- RU2154033C1 RU2154033C1 RU99103771A RU99103771A RU2154033C1 RU 2154033 C1 RU2154033 C1 RU 2154033C1 RU 99103771 A RU99103771 A RU 99103771A RU 99103771 A RU99103771 A RU 99103771A RU 2154033 C1 RU2154033 C1 RU 2154033C1
- Authority
- RU
- Russia
- Prior art keywords
- polymers
- derivatives
- chitosan
- solid polymers
- media
- Prior art date
Links
- 239000012736 aqueous medium Substances 0.000 title claims abstract description 19
- 239000002253 acid Substances 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 22
- 229910021645 metal ion Inorganic materials 0.000 title claims description 17
- 229920000642 polymer Polymers 0.000 claims abstract description 30
- 229920001661 Chitosan Polymers 0.000 claims abstract description 26
- 230000002378 acidificating effect Effects 0.000 claims abstract description 24
- 239000007787 solid Substances 0.000 claims abstract description 24
- 229920002101 Chitin Polymers 0.000 claims abstract description 18
- 239000002738 chelating agent Substances 0.000 claims abstract description 15
- 238000001179 sorption measurement Methods 0.000 claims abstract description 13
- -1 polyethylene Polymers 0.000 claims abstract description 11
- 239000007791 liquid phase Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 7
- 239000004698 Polyethylene Substances 0.000 claims abstract description 6
- 238000001914 filtration Methods 0.000 claims abstract description 6
- 229920000573 polyethylene Polymers 0.000 claims abstract description 6
- 239000004743 Polypropylene Substances 0.000 claims abstract description 4
- 239000004793 Polystyrene Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims abstract description 4
- 229920001155 polypropylene Polymers 0.000 claims abstract description 4
- 229920002223 polystyrene Polymers 0.000 claims abstract description 4
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 4
- 229920001577 copolymer Polymers 0.000 claims abstract description 3
- 239000013522 chelant Substances 0.000 claims description 5
- KLTNIKZOONUWKC-UHFFFAOYSA-L dihydroxy(dioxo)chromium sulfane Chemical compound [Cr](=O)(=O)(O)O.S KLTNIKZOONUWKC-UHFFFAOYSA-L 0.000 claims 1
- 238000005191 phase separation Methods 0.000 claims 1
- 239000000243 solution Substances 0.000 abstract description 20
- 239000003792 electrolyte Substances 0.000 abstract description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 10
- 239000002351 wastewater Substances 0.000 abstract description 10
- 239000011651 chromium Substances 0.000 abstract description 8
- 230000008929 regeneration Effects 0.000 abstract description 8
- 238000011069 regeneration method Methods 0.000 abstract description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 abstract description 7
- 238000000746 purification Methods 0.000 abstract description 7
- 150000002500 ions Chemical class 0.000 abstract description 6
- 239000010936 titanium Substances 0.000 abstract description 6
- 150000007513 acids Chemical class 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 235000011054 acetic acid Nutrition 0.000 abstract description 3
- 239000008151 electrolyte solution Substances 0.000 abstract description 3
- 229940021013 electrolyte solution Drugs 0.000 abstract description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 abstract description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 235000011167 hydrochloric acid Nutrition 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- 229910052759 nickel Inorganic materials 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 abstract 1
- 238000004065 wastewater treatment Methods 0.000 abstract 1
- 239000002184 metal Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 6
- KWSBBWBZNFTNOK-UHFFFAOYSA-L [S].O[Cr](O)(=O)=O Chemical compound [S].O[Cr](O)(=O)=O KWSBBWBZNFTNOK-UHFFFAOYSA-L 0.000 description 4
- 239000003929 acidic solution Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000002140 halogenating effect Effects 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000008187 granular material Substances 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000002594 sorbent Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- BNSTVBLCTRZUDD-KEWYIRBNSA-N N-[(3R,4S,5S,6R)-2,3,4,5-tetrahydroxy-6-(hydroxymethyl)oxan-2-yl]acetamide Chemical compound CC(=O)NC1(O)O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O BNSTVBLCTRZUDD-KEWYIRBNSA-N 0.000 description 1
- BLBVLMPUSLFQNF-UHFFFAOYSA-N S.P(O)(O)(O)=O Chemical compound S.P(O)(O)(O)=O BLBVLMPUSLFQNF-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000000866 electrolytic etching Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920006254 polymer film Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 125000004962 sulfoxyl group Chemical group 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Images
Landscapes
- Water Treatment By Sorption (AREA)
- Treatment Of Water By Ion Exchange (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Изобретение относится к регенерации кислых водных сред от ионов многовалентных металлов: железа, хрома, никеля, титана и других, в частности регенерации электролитов гальванических производств и образующихся кислых сточных вод. Способ удаления ионов многовалентных металлов из кислых водных сред включает обработку таких сред хелатообразующим агентом на основе хитина, хитозана или их производных и отделение жидкой фазы, причем обработку осуществляют фильтрацией кислой водной среды через кислотоустойчивую емкость, заполненную хелатообразующим агентом на основе хитина, хитозана или их производных, после чего проводят сорбционную обработку образующихся хелатных комплексов твердыми полимерами, имеющими кислотные группы, при этом твердые полимеры предварительно обрабатывают в серно-хромовокислой смеси, а после отделения жидкой фазы твердые полимеры погружают в раствор кислот, таких как уксусная, соляная. В качестве материала твердых полимеров используют полиэтилен, полипропилен, полистирол, их сополимеры, поливиниловые полимеры и их производные. Использование изобретения обеспечивает повышение эффективности очистки как электролитов, так и кислых сточных вод, и регенерации высококонцентрированных кислотных растворов электролитов, хелатообразующих агентов на основе хитина, хитозана или их производных и материалов твердых полимеров, применяемых при очистке. 1 з.п. ф-лы, 1 табл.
Description
Предлагаемое изобретение относится к области регенерации кислых водных сред от ионов многовалентных металлов: железа (Fe2+, Fe3+), хрома (Cr3+, Cr6+), никеля (Ni2+), титана (Ti2+, Ti2+) и других, в частности регенерации электролитов гальванических производств, например, серно-, фосфорно- и сернофосфорнокислых растворов химического и электролитического травления и полирования сталей и сплавов разных марок и образующихся кислых сточных вод.
Известен способ очистки растворов электролитов и сточных вод от ионов металлов за счет сорбционной обработки растворов или сточных вод активными углями [1,2] . Сорбционный способ очистки обладает рядом недостатков, к основным из ним относятся следующие:
1) Изменение свойств активных углей в высококонцентрированных кислотных растворах: поверхность углей гидрофилизуется, сульфируется, в результате чего наряду с сорбцией ионов многовалентных металлов (Fe2+, Fe3+, Cr3+, Cr6+, Ti2+, Ni2+, Al3+ и др. ) происходит эффективное капиллярное впитывание электролита и значительный физический унос ценных компонентов электролитов, например серной и фосфорной кислот;
2) неудовлетворительная очистка электролитов и сточных вод, содержащих добавки органических веществ в больших концентрациях, поскольку при этом происходит блокирование адсорбционных центров углей, что резко уменьшает эффективность процесса удаления ионов металлов из растворов.
1) Изменение свойств активных углей в высококонцентрированных кислотных растворах: поверхность углей гидрофилизуется, сульфируется, в результате чего наряду с сорбцией ионов многовалентных металлов (Fe2+, Fe3+, Cr3+, Cr6+, Ti2+, Ni2+, Al3+ и др. ) происходит эффективное капиллярное впитывание электролита и значительный физический унос ценных компонентов электролитов, например серной и фосфорной кислот;
2) неудовлетворительная очистка электролитов и сточных вод, содержащих добавки органических веществ в больших концентрациях, поскольку при этом происходит блокирование адсорбционных центров углей, что резко уменьшает эффективность процесса удаления ионов металлов из растворов.
Известен способ очистки водных сред от ионов многовалентных металлов за счет обработки сорбентами на основе хитина, хитозана и их производных, позволяющий повысить эффективность процесса очистки [3, 4]. Хитин, хитозан и его химические модификации обеспечивают поглощение ионов тяжелых металлов из сточных вод с эффективностью удаления свыше 90%, что обусловлено особенностями структуры хитозана [3]. Достоинством этого способа является также возможность осуществления процесса очистки в присутствии органических присадок в растворе.
Однако образующиеся хелаты хитозана с ионами металлов хорошо растворяются в кислых водных средах и не подвергаются процессу коагуляции, обеспечивающему принцип действия предлагаемого способа очистки.
Наиболее близким по технической сущности к предлагаемому изобретению, выбранному авторами в качестве прототипа, является способ удаления ионов многовалентных металлов из кислых водных сред с использованием хитозана и галогенирующих агентов [5].
Для удаления из водных сред загрязнителей в виде растворимых соединений многовалентных металлов III-V, VIII и основных подгрупп VI и VII групп в кислые водные среды с pH 2-5,5 добавляют хитозан или его растворимую в воде соль в сочетании с галогенирующим агентом в количествах, достаточных для образования в водной среде N-галогенхитозана. Затем нейтрализуют кислые водные среды до pH > 6 и отделяют образующийся при этом нерастворимый комплекс N-галогенхитозана и многовалентного металла.
Однако использование этого способа в широкой практике гальванического и других электрохимических производств имеет ряд недостатков:
1) Растворы электролитов загрязняются производными хитозана и хитина, образующимися при их растворении в минеральных кислотах и их смесях, входящих в состав электролитов гальванических производств. Электролиты также загрязняются вводимыми галогенирующими агентами и образующимися N-галогенхитозанами;
2) изменяются характеристики электродов вследствие адсорбции хитиновых и хитозановых производных на их поверхности;
3) высококонцентрированные кислотные растворы электролитов данным способом не регенерируются, так как на стадии отделения жидкой фазы растворы должны быть нейтрализованы с pH < 1 до pH > 6 и после удаления ионов металлов они не могут быть использованы по первоначальному назначению;
4) возникают дополнительные проблемы с регенерацией отработанных сорбентов.
1) Растворы электролитов загрязняются производными хитозана и хитина, образующимися при их растворении в минеральных кислотах и их смесях, входящих в состав электролитов гальванических производств. Электролиты также загрязняются вводимыми галогенирующими агентами и образующимися N-галогенхитозанами;
2) изменяются характеристики электродов вследствие адсорбции хитиновых и хитозановых производных на их поверхности;
3) высококонцентрированные кислотные растворы электролитов данным способом не регенерируются, так как на стадии отделения жидкой фазы растворы должны быть нейтрализованы с pH < 1 до pH > 6 и после удаления ионов металлов они не могут быть использованы по первоначальному назначению;
4) возникают дополнительные проблемы с регенерацией отработанных сорбентов.
Задача изобретения - создание эффективного способа очистки как высококонцентрированных кислотных растворов электролитов, так и кислых сточных вод, обеспечивающего высокую эффективность удаления ионов тяжелых металлов без загрязнения растворов дополнительными органическими (производными хитина, хитозана и компонентов растворов электролитов) и неорганическими (растворами щелочи) веществами.
Технический результат от использования изобретения заключается в повышении эффективности очистки как электролитов, так и кислых сточных вод электрохимических производств, и регенерации высококонцентрированных кислотных растворов электролитов, хелатообразующих агентов на основе хитина, хитозана или их производных и материалов твердых полимеров, применяемых при очистке.
Указанный результат достигается тем, что в способе удаления ионов многовалентных металлов из кислых водных сред, включающем обработку таких сред хелатообразующим агентом на основе хитина, хитозана или их производных, и отделение жидкой фазы, обработку осуществляют фильтрацией кислой водной среды через кислотоустойчивую емкость, заполненную хелатообразующим агентом на основе хитина, хитозана или их производных, после чего проводят сорбционную, обработку образующихся хелатных комплексов твердыми полимерами, имеющими кислотные группы, причем твердые полимеры предварительно обрабатывают в серно-хромовокислой смеси, а после отделения жидкой фазы твердые полимеры погружают в раствор кислот, таких как уксусная, соляная. В качестве материала твердых полимеров используют полиэтилен, полипропилен, полистирол, их сополимеры, поливиниловые полимеры и их производные.
Способ осуществляют следующим образом: фильтруют кислый водный раствор или сточную воду через кислотоустойчивую емкость, заполненную хелатообразующим агентом на основе хитина, хитозана или их производных, со скоростью фильтрации от 0,1 м3•ч-1 до 1,0 м3•ч-1, затем обрабатывают раствор или сточную воду твердыми полимерами, имеющими кислотные группы, при перемешивании или фильтруют через тонкую пленку полимеров, имеющих кислотные (анионные) группы, при скорости фильтрации от 0,01 м3•ч-1 до 1,0 м3•ч-1. Причем твердые полимеры предварительно обрабатывают в серно-хромовокислой смеси. После отделения жидкой фазы твердые полимеры погружают в раствор 0,5-3,0% уксусной, соляной или других кислот.
В качестве хелатообразующего агента используют хитин и хитозан или их производные с катионным зарядом не менее 2-10 мг-экв•г-1. Структурное звено хитозана (R-NHCOOCH3) можно представить следующим образом [3]:
Хитозан состоит из остатков N-ацетилглюкозоамина, связанных между собой β (1-4)-глюкозидными связями. Молекулярная масса колеблется в пределах 200000-700000.
Хитозан состоит из остатков N-ацетилглюкозоамина, связанных между собой β (1-4)-глюкозидными связями. Молекулярная масса колеблется в пределах 200000-700000.
В качестве твердого полимера используют гранулированный полимер или полимерную пленку из полиэтилена, полистирола, полипропилена, поливиниловых полимеров и их производных, окисленные в тонком поверхностном слое. Для этого твердые полимеры предварительно обрабатывают в серно-хромовокислой смеси при 70-100oC.
Достигаемый эффект обусловлен эффективной адсорбцией растворимых в кислой среде хелатных комплексов ионов многовалентных металлов с производными хитина и хитозана на поверхности твердого полимера, имеющего кислотные, преимущественно сульфатные и сульфоксильные группы.
Предполагаемая схема процессов, протекающих при удалении ионов многовалентных металлов из кислых водных сред, может быть представлена двумя стадиями:
I стадия: Обработка хелатообразующим агентом
II стадия: Обработка твердыми полимерами
где R - звено N-ацетилглюкозоамина; R' - матрица твердого полимера; MeZ+ - ион многовалентного металла; Z = 2, 3, 4, 5, 6 - заряд многовалентного металла.
I стадия: Обработка хелатообразующим агентом
II стадия: Обработка твердыми полимерами
где R - звено N-ацетилглюкозоамина; R' - матрица твердого полимера; MeZ+ - ион многовалентного металла; Z = 2, 3, 4, 5, 6 - заряд многовалентного металла.
Пример 1 осуществления способа: кислый водный раствор, представляющий собой отработанный серно-фосфорнокислый электролит электролитического полирования нержавеющей стали 12X18H10Т, имеющий pH ≤ 1 и содержащий ионы многовалентных металлов: Fe2+, Fe3+, Cr3+, Cr6+, Ti2+, Ni2+, фильтровали через кислотоустойчивую емкость из хлориновой ткани, содержащей в качестве хелатообразующего агента - хитин из расчета 75 г на 1 литр раствора со скоростью фильтрации 0,1 м3•ч-1 затем раствор обрабатывали при перемешивании твердым полимером - полиэтиленом, имеющим кислотные группы, обработанным в серно-хромовокислой смеси, взятым в виде гранул, в течение 24 часов для достижения сорбционного равновесия. После этого раствор фильтровали через слой кислотоустойчивой ткани со скоростью 0,01 м3•ч-1 и анализировали на содержание ионов металлов. Гранулы полиэтилена погружали в раствор 2,0% уксусной кислоты для извлечения хелатообразующего агента. Степень извлечения ионов металлов из кислого водного раствора определяли по формуле: η = Ci исх. - Ci кон./Ci исх.• 100%, где Ci исх., Ci кон. - концентрация i-иона металла в растворе до и после очистки соответственно.
Примеры 2 - 12 проведены аналогично примеру 1. Данные по степени извлечения ионов металлов приведены в таблице.
Таким образом, сочетание обработки кислых водных сред хелатообразующим агентом на основе хитина, хитозана или их производных с образованием хелатных комплексов ионов металлов с хитином и хитозаном и сорбционной обработки кислых водных сред твердыми полимерами для извлечения растворимых хелатных комплексов позволяет увеличить степень извлечения ионов многовалентных металлов с 5-70% до 12-100% (селективно), регенерировать высококонцентрированные кислые растворы электролитов, не изменяя pH среды, упростить процесс и не загрязнять электролиты посторонними реагентами. Введение дополнительной обработки твердых полимеров, взятых либо в виде гранул, либо в виде тонкой пленки раствором уксусной или соляной кислот позволяет регенерировать хелатообразующий агент.
Использованная литература:
1. Тарасович М.Р. Электрохимия углеродных материалов - М.: Наука, 1984, 253 С.
1. Тарасович М.Р. Электрохимия углеродных материалов - М.: Наука, 1984, 253 С.
2. Регенерация активными углями отработанного раствора электрополирования сталей / Е.А.Федорова, Г.А.Курноскин, В.Н.Флеров // ЖПХ, 1990, Т. 63, N 5, С. 1586-1588.
3. Elimination des metaux lourds par adsorption sur materiaux d'origine biologique / Jansson-Charrier М., Guibal E., Le Cloirec P. / Techn., sci., meth.-1994, N 6, P. 321-326.
4. Сорбция металлов из водных растворов хитинсодержащими материалами / А. Ф. Селиверстов, А. Ю. Емельянова, Б.Г.Ершов // ЖПХ, 1993, Т.66, N 10, С. 2331-2336.
5. Патент США 5336415, МКИ5 C 02 F 1/54. Способ удаления многовалентных металлов из водных сред с использованием хитозана и галогенирующих агентов. Опубл. 1995.
Claims (2)
1. Способ удаления ионов многовалентных металлов из кислых водных сред, включающий обработку таких сред хелатообразующим агентом на основе хитина, хитозана или их производных и отделение жидкой фазы, отличающийся тем, что обработку осуществляют фильтрацией кислой водной среды через кислотоустойчивую емкость, заполненную хелатообразующим агентом на основе хитина, хитозана или их производных, после чего проводят сорбционную обработку образующихся хелатных комплексов твердыми полимерами, имеющими кислотные группы, причем твердые полимеры предварительно обрабатывают в серно-хромовокислой смеси, а после отделения жидкой фазы твердые полимеры погружают в раствор кислот, таких, как уксусная, соляная.
2. Способ по п. 1, отличающийся тем, что в качестве материала твердых полимеров используют полиэтилен, полипропилен, полистирол, их сополимеры, поливиниловые полимеры и их производные.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99103771A RU2154033C1 (ru) | 1999-02-23 | 1999-02-23 | Способ удаления ионов многовалентных металлов из кислых водных сред |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99103771A RU2154033C1 (ru) | 1999-02-23 | 1999-02-23 | Способ удаления ионов многовалентных металлов из кислых водных сред |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2154033C1 true RU2154033C1 (ru) | 2000-08-10 |
Family
ID=20216364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99103771A RU2154033C1 (ru) | 1999-02-23 | 1999-02-23 | Способ удаления ионов многовалентных металлов из кислых водных сред |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2154033C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2575029C1 (ru) * | 2014-11-05 | 2016-02-10 | Федеральное государственное казенное образовательное учреждение высшего профессионального образования "Волгоградская академия Министерства внутренних дел Российской Федерации" (Волгоградская академия МВД России) | Способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и ультразвука |
-
1999
- 1999-02-23 RU RU99103771A patent/RU2154033C1/ru active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2575029C1 (ru) * | 2014-11-05 | 2016-02-10 | Федеральное государственное казенное образовательное учреждение высшего профессионального образования "Волгоградская академия Министерства внутренних дел Российской Федерации" (Волгоградская академия МВД России) | Способ очистки поверхностных и подземных вод от титана и его соединений с помощью углеродных нанотрубок и ультразвука |
RU2773515C1 (ru) * | 2021-09-30 | 2022-06-06 | Федеральное государственное бюджетное учреждеие науки Институт химии твердого тела Уральского отделения Российской академии наук | Способ очистки кислых водных растворов от железа |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3909793B2 (ja) | 高濃度の塩類を含有する有機性廃水の処理方法及びその装置 | |
US5453201A (en) | Water treatment process | |
CN108002580A (zh) | 一种酸性烟气洗涤废水处理方法及其用途 | |
CN106315947A (zh) | 一种含重金属工业污水的处理系统及处理工艺 | |
JPH0525560A (ja) | ニツケル回収方法 | |
Schmidt et al. | Rinse water regeneration in stainless steel pickling | |
RU2154033C1 (ru) | Способ удаления ионов многовалентных металлов из кислых водных сред | |
CN109382004A (zh) | 一种利用海藻酸钙膜分离回收混合重金属的方法 | |
JP3968678B2 (ja) | テトラアルキルアンモニウムイオン含有液の処理方法 | |
RU2323267C2 (ru) | Способ извлечения металлов | |
JP3734338B2 (ja) | イオン交換樹脂再生廃液の処理方法 | |
RU2689576C1 (ru) | Способ очистки высокомутных мышьяксодержащих сточных вод | |
JPH11221579A (ja) | フッ素含有水の処理方法 | |
JP2001340873A (ja) | 重金属類を含む水の処理材及びそれを用いた水処理方法 | |
JPS5830387A (ja) | アミン類を含む廃水の処理方法 | |
JP2012000586A (ja) | 過塩素酸イオン含有水の処理装置および過塩素酸イオン含有水の処理方法 | |
RU2748040C1 (ru) | Способ очистки воды от тяжелых металлов каталитическим осаждением | |
RU2747686C1 (ru) | Способ очистки воды от комплексных соединений тяжелых металлов | |
JPH11207365A (ja) | セレン含有排水の処理方法 | |
KR19980083856A (ko) | 전기투석과 역삼투막에 의한 산폐수의 재이용 방법 및 그 장치 | |
US20240174535A1 (en) | Prussian blue-based coagulant and microplastic coagulation method using the same | |
CN211946623U (zh) | 工业污水处理设备 | |
CN108264171A (zh) | 中水回用处理装置及其处理工艺 | |
RU2175025C1 (ru) | Способ регенерации отработанных электролитов полирования и травления хромсодержащих сталей | |
RU2121008C1 (ru) | Способ извлечения цинка и кадмия из водных растворов электролитов |