RU2125721C1 - Process sampling and detecting presence of volatile contaminating substances in vessel ( versions ) - Google Patents
Process sampling and detecting presence of volatile contaminating substances in vessel ( versions ) Download PDFInfo
- Publication number
- RU2125721C1 RU2125721C1 RU94046340A RU94046340A RU2125721C1 RU 2125721 C1 RU2125721 C1 RU 2125721C1 RU 94046340 A RU94046340 A RU 94046340A RU 94046340 A RU94046340 A RU 94046340A RU 2125721 C1 RU2125721 C1 RU 2125721C1
- Authority
- RU
- Russia
- Prior art keywords
- sample
- container
- contaminants
- opening
- specified
- Prior art date
Links
- 239000000126 substance Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 30
- 238000005070 sampling Methods 0.000 title claims abstract description 26
- 238000005086 pumping Methods 0.000 claims abstract description 4
- 239000000356 contaminant Substances 0.000 claims description 39
- 230000005855 radiation Effects 0.000 claims description 27
- 235000013361 beverage Nutrition 0.000 claims description 26
- 239000003153 chemical reaction reagent Substances 0.000 claims description 16
- 239000003039 volatile agent Substances 0.000 claims description 16
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 7
- 230000003993 interaction Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims 2
- 230000008020 evaporation Effects 0.000 claims 2
- 238000000605 extraction Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 24
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 7
- 229930195733 hydrocarbon Natural products 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 abstract description 4
- 238000011109 contamination Methods 0.000 abstract description 4
- 239000000523 sample Substances 0.000 description 49
- 239000003570 air Substances 0.000 description 32
- 239000000047 product Substances 0.000 description 19
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 14
- 238000012544 monitoring process Methods 0.000 description 11
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 10
- 238000009434 installation Methods 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229910021529 ammonia Inorganic materials 0.000 description 3
- -1 nitrogen-containing compound Chemical class 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003344 environmental pollutant Substances 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000010755 BS 2869 Class G Substances 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000005264 electron capture Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 150000002897 organic nitrogen compounds Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07C—POSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
- B07C5/00—Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
- B07C5/34—Sorting according to other particular properties
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2202—Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
- G01N1/2214—Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/24—Suction devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/90—Investigating the presence of flaws or contamination in a container or its contents
- G01N21/9018—Dirt detection in containers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0011—Sample conditioning
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0078—Testing material properties on manufactured objects
- G01N33/0081—Containers; Packages; Bottles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2202—Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2202—Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
- G01N2001/222—Other features
- G01N2001/2223—Other features aerosol sampling devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/22—Devices for withdrawing samples in the gaseous state
- G01N1/2226—Sampling from a closed space, e.g. food package, head space
- G01N2001/2229—Headspace sampling, i.e. vapour over liquid
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Sampling And Sample Adjustment (AREA)
- Measurement Of Radiation (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
Description
Изобретение относится к системе контроля емкости для отбора проб и определения наличия некоторых веществ, например остатков загрязнений в емкостях, например в стеклянных или пластмассовых бутылках. Более конкретно, настоящее изобретение относится к усовершенствованной системе для отбора проб и анализа и способу определения наличия остатков загрязнений в емкостях, например в бутылках для напитков, быстро перемещающихся вдоль конвейера мимо установки для контроля в системе для разбраковки емкостей. The invention relates to a container monitoring system for sampling and determining the presence of certain substances, for example, residues of contaminants in containers, for example in glass or plastic bottles. More specifically, the present invention relates to an improved system for sampling and analysis and a method for determining the presence of residues of contaminants in containers, for example in beverage bottles, quickly moving along the conveyor past a monitoring unit in a container sorting system.
Известен автоматический химический анализатор (ЕР, патент 0087028, кл. G 01 N 35/02, 31.08.83, 32 с.), являющийся прототипом, в котором описан способ отбора проб и определения наличия летучих веществ загрязнений в емкости, которая была прежде наполнена напитком и имеет отверстие, включающий извлечение с помощью откачивающего насоса пробы летучих веществ из емкости. Known automatic chemical analyzer (EP, patent 0087028, class G 01 N 35/02, 08.31.83, 32 pp.), Which is a prototype that describes a method for sampling and determining the presence of volatile contaminants in a container that was previously filled drink and has an opening, including using a pump for extracting a sample of volatile substances from the tank.
При производстве напитков продукты упаковывают в емкости, которые возвращают после использования, моют и наполняют вновь. Как правило, повторно наполняемые емкости, например бутылки для напитков, делают из стекла, которое может быть просто очищено. Такие емкости моют и затем контролируют на наличие инородного вещества. In the production of beverages, products are packaged in containers that are returned after use, washed and refilled. Typically, refillable containers, such as beverage bottles, are made of glass that can be simply cleaned. Such containers are washed and then monitored for the presence of a foreign substance.
Стеклянные емкости имеют тот недостаток, что они являются хрупкими и, будучи большого объема, обладают относительно большим весом. Соответственно, очень желательно использовать пластмассовые емкости, поскольку они менее хрупкие и легче стеклянных емкостей подобного объема. Однако пластмассовые материалы склонны поглощать множество органических соединений, которые позднее могут выделиться в продукт, вследствие этого потенциально вредно воздействуя на качество продукта, упакованного в емкость. Примерами таких органических соединений являются азотсодержащие соединения, например аммиак, органические азотные соединения и углеводороды, включающие в себя бензин и различные очищающие текущие среды. Glass containers have the disadvantage that they are fragile and, being large in volume, have a relatively large weight. Accordingly, it is highly desirable to use plastic containers, since they are less fragile and lighter than glass containers of a similar volume. However, plastic materials tend to absorb many organic compounds that can later be released into the product, thereby potentially adversely affecting the quality of the product packaged in the container. Examples of such organic compounds are nitrogen-containing compounds, for example ammonia, organic nitrogen compounds and hydrocarbons, including gasoline and various cleaning fluids.
В основу настоящего изобретения была положена задача разработки такого способа отбора проб и определения наличия летучих веществ загрязнений в емкости, в котором отбор проб и определение наличия летучих веществ загрязнений в емкости осуществлялся бы таким образом, что обеспечивалось определение наличия или отсутствия широкого диапазона специфических веществ, например таких загрязнений, как азотсодержащие соединения и углеводороды, в емкостях, когда эти емкости быстро перемещают вдоль конвейера на пути к моечной машине или от нее или подобного устройства, отбор проб и анализ остатков в емкостях, когда емкости перемещаются вдоль конвейера без остановки их движения или любой задержки движения, чтобы можно было достигнуть высоких скоростей отбора проб, приблизительно 200-1000 бутылок в минуту, а также перемещающихся вдоль конвейера без контактирования контролируемой емкости с любым из механизмов для отбора проб и анализа и без физического введения каких-либо зондов или подобных приспособлений в емкости, и обеспечивалось обнаружение широкого диапазона загрязнений в емкостях для напитков с минимальным взаимным влиянием от летучих веществ остатков ингредиента напитка ("продукта") в емкостях. The basis of the present invention was the task of developing such a method of sampling and determining the presence of volatile pollutants in the tank, in which sampling and determining the presence of volatile pollutants in the tank would be carried out in such a way as to determine the presence or absence of a wide range of specific substances, for example contaminants such as nitrogen-containing compounds and hydrocarbons in containers when these containers are quickly moved along the conveyor on the way to or from the washer or such a device, sampling and analysis of residues in containers, when containers move along the conveyor without stopping their movement or any delay in movement, so that high sampling rates of about 200-1000 bottles per minute can be achieved, as well as moving along the conveyor without contacting a controlled containers with any of the mechanisms for sampling and analysis and without the physical introduction of any probes or similar devices in the tank, and a wide range of contaminants was detected in the tank for drinks with minimal mutual influence from volatiles of the residues of the beverage ingredient (“product”) in containers.
Это достигается тем, что способ отбора проб и определения наличия летучих веществ некоторых загрязнений в емкости, которая была прежде наполнена напитком и имеет отверстие, включающий извлечение с помощью откачивающего насоса пробы летучих веществ из емкости, согласно изобретению содержит этапы: хранение указанной емкости, отверстие которой выполнено с возможностью закрывания крышкой, с удаленной крышкой в течение достаточного периода времени, чтобы позволить летучим веществам остатков испариться и выйти из указанной емкости, извлечение с помощью откачивающего насоса пробы летучих веществ, остающихся в емкости после истечения указанного достаточного периода времени, и анализ пробы, извлеченной с помощью откачивающего насоса, для определения наличия или отсутствия в ней некоторых загрязнений. This is achieved by the fact that the method of sampling and determining the presence of volatiles of some contaminants in a container that was previously filled with a drink and has an opening, comprising extracting a sample of volatile substances from the container using a pump, according to the invention, comprises the steps of: storing said container, the opening of which made with the possibility of closing the lid, with the lid removed for a sufficient period of time to allow volatile substances of the residue to evaporate and exit the specified container, removed by means of the drain pump sample of volatiles remaining in the container after expiration of said sufficient period of time and analysis of the sample extracted using a suction pump, for determining the presence or absence of certain contaminants therein.
Указанный этап анализа может включать в себя этапы: перемешивания пробы с химическим реагентом, чтобы вызвать между ними химическое взаимодействие для генерирования хемилюминесценции реагентов, и анализ радиации, излучаемой хемилюминесценцией пробы и реагента, для определения наличия или отсутствия указанных летучих веществ некоторых загрязнений без взаимного влияния от хемилюминесценции летучих веществ напитка. The indicated analysis step may include the steps of: mixing a sample with a chemical reagent to cause a chemical interaction between them to generate chemiluminescence of the reagents, and analysis of radiation emitted by the chemiluminescence of the sample and reagent, to determine the presence or absence of these volatile substances of some contaminants without mutual influence from chemiluminescence of volatile substances of the drink.
Желательно, чтобы этап анализа включал в себя этапы: фильтрации радиации, излучаемой хемилюминесценцией пробы, для обнаружения наличия радиации, имеющей длину волн выше приблизительно 0,19 мкм, и идентификации наличия или отсутствия указанных некоторых загрязнений из радиации, обнаруживаемой при характеристических длинах волн выше приблизительно 0,19 мкм. Preferably, the analysis step includes the steps of: filtering the radiation emitted by the chemiluminescence of the sample, to detect the presence of radiation having a wavelength above about 0.19 microns, and to identify the presence or absence of these certain contaminants from radiation detected at characteristic wavelengths above approximately 0.19 μm.
Способ может включать дополнительный этап нагрева пробы до температуры приблизительно 400 - 1400oC перед указанным этапом перемешивания и чтобы указанным химическим реагентом являлся озон.The method may include an additional step of heating the sample to a temperature of about 400 - 1400 o C before the specified step of mixing and that the specified chemical reagent was ozone.
Достаточный период времени может составлять приблизительно 15 часов. A sufficient period of time may be approximately 15 hours.
Это достигается также тем, что способ отбора проб и определения наличия летучих веществ некоторых загрязнений в емкости, которая была прежде наполнена напитком и имеет отверстие, включающий нагнетание текучей среды в отверстие емкости и извлечение с помощью откачивающего насоса пробы летучих веществ из емкости, отверстие которой открыто в течение достаточного периода времени, чтобы позволить летучим веществам остатков испариться и выйти из указанной емкости, нагнетание текучей среды в отверстие емкости после истечения указанного достаточного периода времени для вытеснения из нее по меньшей мере части летучих веществ, извлечение с помощью откачивающего насоса пробы летучих веществ, остающихся в емкости после истечения указанного достаточного периода времени, и анализ пробы, извлеченной с помощью откачивающего насоса, для определения наличия или отсутствия в ней некоторых загрязнений. This is also achieved by the fact that the method of sampling and determining the presence of volatile substances of some contaminants in a container that was previously filled with a drink and has an opening, including pumping fluid into the opening of the container and extracting a sample of volatile substances from the container, with the pump opening, the opening of which is open for a sufficient period of time to allow the volatiles of the residues to evaporate and exit the specified tank, injecting fluid into the opening of the tank after the expiration of the specified an exhaustive period of time to displace at least a portion of the volatile substances from it, extracting a sample of the volatiles remaining in the tank after a specified enough time has elapsed by means of a pump, and analyzing the sample extracted by the pump to determine whether or not it contains some pollution.
Указанный этап анализа может включать в себя этапы: перемешивания пробы с химическим реагентом, чтобы вызвать между ними химическое взаимодействие для генерирования хемилюминесценции реагентов, и анализ радиации, излучаемой хемилюминесценцией пробы и реагента, для определения наличия или отсутствия указанных летучих веществ некоторых загрязнений без взаимного влияния от хемилюминесценции летучих веществ напитка. The indicated analysis step may include the steps of: mixing a sample with a chemical reagent to cause a chemical interaction between them to generate chemiluminescence of the reagents, and analysis of radiation emitted by the chemiluminescence of the sample and reagent, to determine the presence or absence of these volatile substances of some contaminants without mutual influence from chemiluminescence of volatile substances of the drink.
Желательно, чтобы этап анализа включал этапы: фильтрации радиации, излучаемой хемилюминесценцией пробы, для обнаружения наличия радиации, имеющей длину волн выше приблизительно 0,19 мкм, и идентификации наличия или отсутствия указанных некоторых загрязнений из радиации, обнаруживаемой при характеристических длинах волн выше приблизительно 0,19 мкм. Preferably, the analysis step includes the steps of: filtering the radiation emitted by the chemiluminescence of the sample, to detect the presence of radiation having a wavelength above about 0.19 μm, and to identify the presence or absence of these certain contaminants from radiation detected at characteristic wavelengths above about 0, 19 microns.
Способ может включать дополнительный этап нагрева пробы до температуры приблизительно 400 - 1400oC перед указанным этапом перемешивания и чтобы указанным химическим реагентом являлся озон.The method may include an additional step of heating the sample to a temperature of about 400 - 1400 o C before the specified step of mixing and that the specified chemical reagent was ozone.
Достаточный период времени может составлять приблизительно 15 часов. A sufficient period of time may be approximately 15 hours.
Это достигается также и тем, что способ отбора проб и определения присутствия определенных веществ в емкости, которая была прежде наполнена напитком и имеет отверстие, согласно изобретению содержит этапы: хранение указанной емкости, отверстие которой выполнено с возможностью закрывания крышкой, с удаленной крышкой в течение времени, достаточного для испарения и удаления летучих веществ напитка из емкости, вытеснение части содержимого емкости для образования облака пробы в зонах снаружи емкости около ее отверстия, и анализ облака пробы в зонах снаружи емкости около ее отверстия, и анализ облака пробы для определения присутствия или отсутствия определенных веществ в нем. This is also achieved by the fact that the method of sampling and determining the presence of certain substances in a container that was previously filled with a drink and has an opening, according to the invention comprises the steps of: storing said container, the opening of which is configured to close the lid, with the lid removed over time sufficient to evaporate and remove volatiles of the beverage from the container, displacing part of the contents of the container to form a sample cloud in areas outside the container near its opening, and analysis of the sample cloud in areas outside the container near its opening, and analysis of the sample cloud to determine the presence or absence of certain substances in it.
Кроме того, это достигается также тем, что способ отбора проб и определения присутствия летучих определенных загрязнений в емкости, которая была прежде заполнена напитком и имеет отверстие, согласно изобретению содержит этапы: хранение указанной емкости, отверстие которой выполнено с возможностью закрывания крышкой, с удаленной крышкой в течение времени, достаточного для испарения и удаления летучих остатков напитка из емкости, извлечение для анализа пробы летучих веществ, остающихся в емкости после истечения указанного достаточного периода времени, без дополнительной предварительной обработки для удаления летучих остатков напитков, чтобы исключить взаимодействие остатков и определяемых загрязнений, и анализ извлеченной пробы для определения присутствия или отсутствия в ней определенных загрязнений. In addition, this is also achieved by the fact that the method of sampling and determining the presence of volatile certain contaminants in a container that was previously filled with a drink and has an opening, according to the invention comprises the steps of: storing said container, the opening of which can be closed with a lid, with the lid removed for a time sufficient to evaporate and remove volatile beverage residues from the container, extracting for analysis a sample of volatile substances remaining in the container after the specified sufficient Heat-time, without further pretreatment to remove volatile residues beverage to avoid interaction of residues and impurities determined, and analysis of the extracted sample to determine the presence or absence of certain contaminants therein.
Дополнительный объем применимости настоящего изобретения станет очевидным из приведенного ниже подробного описания. Однако необходимо понять, что подробное описание и конкретные примеры, показывающие предпочтительные варианты воплощения настоящего изобретения, приведены только для пояснения, поскольку для квалифицированного специалиста в этой области техники из подробного описания станут очевидными различные изменения и модификации в пределах сущности и объема настоящего изобретения. An additional scope of applicability of the present invention will become apparent from the following detailed description. However, it should be understood that the detailed description and specific examples showing preferred embodiments of the present invention are provided for explanation only, as various changes and modifications will become apparent to a person skilled in the art from the detailed description within the spirit and scope of the present invention.
Настоящее изобретение станет более понятным из приведенного ниже подробного описания и сопроводительных чертежей, приведенных только для иллюстрации и, таким образом, не ограничивающих настоящее изобретение, на которых:
фиг. 1 изображает принципиальную блок-схему системы настоящего изобретения для отбора проб и анализа остатков, иллюстрирующую множество емкостей, перемещающихся по порядку вдоль конвейерной системы через установку для контроля, отбраковочное устройство и моечную машину;
фиг. 2 - блок-схему, иллюстрирующую возможное исполнение системы по фиг. 1 в системе обнаружения, в которой обнаруживаемое загрязняющее вещество может быть азотсодержащим соединением;
фиг. 3 - график зависимости интенсивности сигнала от длины волны обнаруженной радиации, излучаемой хемилюминесценцией в анализаторе системы по фиг. 2.The present invention will become more apparent from the following detailed description and the accompanying drawings, given for illustration only and thus not limiting the present invention, in which:
FIG. 1 is a schematic block diagram of a system of the present invention for sampling and analyzing residues, illustrating a plurality of containers moving in order along a conveyor system through a monitoring unit, a rejection device, and a washer;
FIG. 2 is a block diagram illustrating a possible embodiment of the system of FIG. 1 in a detection system in which a detectable contaminant can be a nitrogen-containing compound;
FIG. 3 is a graph of signal intensity versus wavelength of detected radiation emitted by chemiluminescence in the analyzer of the system of FIG. 2.
На фиг. 1 иллюстрируется конвейер 10, перемещающийся в направлении стрелки A, имеющий множество незакупоренных, открытых сверху разнесенных емкостей С (например, пластмассовых бутылок для напитков объемом приблизительно 1500 см3), размещенных на нем для перемещения по порядку через установку 12 для контроля, отбраковочное устройство 28 и конвейер 32 к моечной машине. Содержимое емкостей С будет, как правило, включать в себя воздух, летучие вещества остатков загрязнений, если они имеются, и летучие вещества каких-либо продуктов, например напитков, которые были в емкостях. Инжектор 14 воздуха, который является источником сжатого воздуха, предусматривают с соплом 16, отнесенным на некоторое расстояние, но совмещенным с емкостью С в установке 12 для контроля. Это сопло 16 размещено вне емкостей и не контактирует с ними. Сопло 16 направляет сжатый воздух в емкости С для вытеснения по меньшей мере части содержимого емкости, чтобы вследствие этого выпустить облако пробы 18 к контролируемой наружной области емкости.In FIG. 1 illustrates a
Объем нагнетаемого воздуха через сопло 16 в емкость С будет, как правило, составлять порядок приблизительно 10 см3 для скоростей бутылок приблизительно 200 - 1000 бутылок в минуту, скорость 400 бутылок в минуту является предпочтительной и совместимой с обычными скоростями наполнения бутылок для напитков. Требуемая скорость контроля может изменяться в зависимости от размера контролируемых и наполняемых бутылок.The volume of pumped air through
Только приблизительно 10 см3 содержимого емкости будет вытеснено в области вне бутылки для образования облака пробы 18.Only approximately 10 cm 3 of the contents of the container will be displaced in the area outside the bottle to form a cloud of sample 18.
Также предусматривают пробоотборник откачивающего насоса 22, который может содержать вакуумный насос или подобное устройство, соединенный с трубопроводом для отбора проб или трубопроводом 20. Этот трубопровод устанавливают вблизи, а предпочтительно вниз по технологической цепочке (например, приблизительно 15 мм) от инжектора 14 воздуха так, чтобы имелась связь с текучей средой облака пробы 18, смежного с отверстием сверху емкости С. A suction pump sampler 22 is also provided, which may comprise a vacuum pump or the like connected to a sampling pipe or
Ни сопло 16, ни трубопровод 20 не контактируют с емкостями С в установке 12 для контроля, а оба отнесены на некоторое расстояние в положения вне емкостей в тесной близости к их отверстиям. Это выгодно в том отношении, что не требуется физического соединения с емкостями С или введения зондов в емкости, которые бы замедляли их быстрое перемещение вдоль конвейера 10 и таким образом замедляли скорости отбора проб. С помощью системы и способа настоящего изобретения возможны скорости высокоскоростного отбора пробы приблизительно от 200 до 1000 бутылок в минуту. Для достижения таких скоростей без остановки или замедления бутылок в установке для контроля конвейер 10 имеет предпочтительно непрерывный привод в движение. Neither the
Обводной трубопровод 24 предусматривают в связи с пробоотборником откачивающего насоса, так что заданная часть (предпочтительно приблизительно 90) пробы из облака 18, поступающая в трубопровод 20, может быть отведена через обводной трубопровод 24. Оставшаяся часть пробы проходит к анализатору 26 остатков, который определяет имеется ли какое-либо специфическое вещество, и затем выпускается. Одной целью отведения большей части пробы из облака 18 является уменьшение количества пробы, проходящего из пробоотборника откачивающего насоса 22 к анализатору 26 остатков, чтобы достигнуть высокой скорости анализа. Это делают, чтобы обеспечить легко контролируемые уровни контролируемых проб с помощью анализатора 26 остатков. Другой целью отведения части пробы является необходимость, по существу, удалить все облако пробы 18 с помощью откачивающего насоса 22 из области установки для контроля и отвести излишки через обводной трубопровод 24. В предпочтительном варианте воплощения лишняя часть пробы, проходящая через обводной трубопровод 24, возвращается к инжектору 14 воздуха для введения в последующие емкости, перемещающиеся вдоль конвейера 10, через сопло 16. Однако будет возможно также просто проложить вентиляционный обводной трубопровод 24 в атмосферу. A
Микропроцессорный контроллер 34 предусматривают для управления работой инжектора 14 воздуха, пробоотборника откачивающего насоса 22, анализатора 26 остатков, отбраковочного устройства 28 и необязательного вентилятора 15. Датчик 17 емкости, включающий в себя расположенные бок о бок источник излучения и фотоприемник размещают напротив отражателя (не показано) через конвейер 10. Датчик 17 сообщает контроллеру 34, когда емкость достигает установки для контроля и резко прерывает луч излучения, отражаемый к фотоприемнику. Необязательный вентилятор 15 предусматривают, чтобы генерировать струю сжатого воздуха в направлении к облаку пробы 18 и предпочтительно в направлении перемещения емкостей С, чтобы помочь в удалении облака пробы 18 из окрестностей установки 12 для контроля после отбора пробы из каждой емкости С. Это очищает воздух в области установки для контроля так, чтобы не было удерживающих остатков из существующего облака пробы 18, которые могут загрязнить область установки для контроля, когда последующие емкости С достигнут установки для контроля для отбора проб. Таким образом, предотвращают перенос пробы между емкостями. Как схематически показано на фиг. 1, циклом работы вентилятора 15 управляют с помощью микропроцессора 34. Вентилятором 15 предпочтительно непрерывно управлять в течение всего времени управления остальной системой. A
Отбраковочное устройство 28 принимает сигнал отбраковки из микропроцессорного контроллера 34, если анализатор 26 остатков определяет, что конкретная емкость С загрязнена остатками различных нежелательных типов. Отбраковочное устройство 28 отводит загрязненные отбракованные бутылки на конвейер 30 и позволяет проходить незагрязненным приемлемым бутылкам к моечной машине (не показано) на конвейере 32. The
Альтернативным вариантом является размещение установки для контроля бутылок вниз по технологической цепочке моечной машины для бутылок в направлении движения конвейера или поместить дополнительную установку для контроля и систему для отбора проб и анализа остатков после моечной машины. Фактически может быть предпочтительным разместить установку для контроля и систему после моечной машины при контроле бутылок на некоторые загрязнения. Например, если загрязняющим веществом является углеводород, такой как бензин, который является нерастворимым в воде, проще обнаружить остатки углеводородов после того, как бутылки были помыты. Это справедливо, поскольку в течение процесса мойки, в котором бутылки нагревают и моют водой, водорастворимые химические летучие вещества десорбируют из бутылок путем их нагревания и затем растворяют в моющей воде. С другой стороны, некоторые углеводороды, не являющиеся растворимыми в воде, могут быть затем отобраны пробоотборником вниз по технологической цепочке от моечной машины для исключения растворенных, водорастворимых химических веществ. Следовательно, обнаружение таких углеводородов может быть выполнено без потенциального взаимного влияния с другими водорастворимыми химическими веществами, если бутылки проходят через моечную машину перед контролем. An alternative is to place the bottle control unit down the processing chain of the bottle washer in the direction of conveyor movement or place an additional control unit and a system for sampling and analyzing residues from the washer. In fact, it may be preferable to place the inspection unit and the system after the washer while inspecting the bottles for some contamination. For example, if the contaminant is a hydrocarbon, such as gasoline, which is insoluble in water, it is easier to detect hydrocarbon residues after the bottles have been washed. This is true because during the washing process, in which the bottles are heated and washed with water, water-soluble chemical volatile substances are desorbed from the bottles by heating them and then dissolved in washing water. On the other hand, some non-water-soluble hydrocarbons can then be sampled down the process chain from the washer to exclude dissolved, water-soluble chemicals. Therefore, the detection of such hydrocarbons can be performed without potential interference with other water-soluble chemicals if the bottles pass through the washer before inspection.
На фиг. 2 иллюстрируется конкретный вариант воплощения системы обнаружения для использования с системой для отбора и анализа по фиг. 1, в которой подобные ссылочные номера указывают подобные детали. Как иллюстрируется, сопло 16 предусматривают для формирования струи сжатого воздуха, который проходит в контролируемую емкость (не показано). Воздух, проходящий через сопло 16, может быть нагретым или ненагретым, причем для некоторых случаев применения воздух выгодно нагревать. Рядом с соплом 16 расположен впускной трубопровод 20 отбора проб, включающий в себя фильтр 40 на его выходе для отфильтровывания из пробы частиц. Всасывание в трубопровод 20 обеспечивают со стороны всасывания насоса 82, соединенного через анализатор 26. In FIG. 2 illustrates a specific embodiment of a detection system for use with the selection and analysis system of FIG. 1, in which like reference numbers indicate like details. As illustrated, a
Часть пробы (например, 90 - 96% всего потока пробы, приблизительно 6000 см3 в минуту), как описано в связи с фиг. 1, отклоняют через обводной трубопровод 24 посредством соединения со стороной всасывания насоса 46. Насос 46 рециркулирует воздух через накопитель 48, нормально открытый контрольный клапан 50 сжатого воздуха и назад к выпускному соплу 16 сжатого воздуха. Регулятор 54 противодавления помогает регулировать давление струи сжатого воздуха через сопло 16 и отводит избыток воздуха к вытяжному трубопроводу 57. Клапан 50 управления струей сжатого воздуха принимает управляющие сигналы по линии 50A из микропроцессорного контроллера 34, как правило, для поддержания открытого состояния клапана для пропускания потока воздуха к соплу.A portion of the sample (e.g. 90 to 96% of the total sample stream, approximately 6000 cm 3 per minute), as described in connection with FIG. 1 is diverted through the
Электрическую мощность подают к насосу 46 по линии 46A, соединенной с выходом (автоматического) выключателя 76, который, в свою очередь, соединен с выходом фильтра 74 переменного тока и источником питания переменного тока PS. Electric power is supplied to the
Устройство 27 обнаружения в варианте воплощения, показанном на фиг. 2, является анализатором, который обнаруживает остатки выбранных соединений, например азотсодержащих соединений, в контролирующих емкостях с помощью метода хемилюминесценции. Этот тип устройства обнаружения является, как правило, известным и включает в себя камеру для перемешивания озона с окисью азота или с другими соединениями, которые взаимодействуют с озоном, чтобы позволить им взаимодействовать, пропускающий излучение элемент (с соответствующим фильтром) и устройство обнаружения излучения для обнаружения хемилюминесценции из продуктов реакции. Например, когда NO, получаемая из нагревания азотных соединений (например, аммиака) в присутствии окислителя (например, кислорода воздуха) химически взаимодействует с озоном в заданных длинах волн, например длинах волн в диапазоне приблизительно 0,6 - 2,8 мкм имеет место характеристическое световое излучение. Выбранные части этого излучения хемилюминесценции и его интенсивности могут быть обнаружены с помощью фотоэлектронных умножителей. The detection device 27 in the embodiment shown in FIG. 2 is an analyzer that detects residues of selected compounds, for example nitrogen-containing compounds, in control tanks using the chemiluminescence method. This type of detection device is generally known and includes a chamber for mixing ozone with nitric oxide or with other compounds that interact with ozone to allow them to interact, a radiation transmitting element (with an appropriate filter) and a radiation detection device for detecting chemiluminescence from reaction products. For example, when NO obtained from heating nitrogen compounds (e.g., ammonia) in the presence of an oxidizing agent (e.g., air oxygen) chemically interacts with ozone at given wavelengths, e.g., wavelengths in the range of about 0.6 - 2.8 μm, a characteristic light emission. Selected portions of this chemiluminescence radiation and its intensity can be detected using photoelectronic multipliers.
Соответственно в системе, показанной на фиг.2, в генератор 64 озона окружающий воздух втягивается через приток 60 и воздушный фильтр 62. Там озон генерируют с помощью электрического разряда в воздухе и выпускают через фильтр 66 озона и регулятор 68 потока в устройство 27 обнаружения, в котором он смешивается с пробами из емкостей, введенными через приточный трубопровод 20, фильтр 40, ограничитель 42 потока и преобразователь 54. Пробу из приточного трубопровода 20 пропускают через преобразователь 44, например электрически нагреваемую никелевую трубку, в которой температура повышается приблизительно до 800 - 900oC перед введением в устройство 27 обнаружения. Приемлемыми также могут быть температуры в диапазоне 400 - 1400oC. Когда азотсодержащие соединения, например аммиак, нагревают, таким образом получают NO (окись азота), и эту окись азота подают в камеру устройства 27 обнаружения. Соединения, отличающиеся от NO, которые могут вступать во взаимодействие с О3 и хемилюминесцировать, также могут быть произведены в преобразователе 44, например органические соединения, полученные при нагревании бензина или остатков очистителя.Accordingly, in the system shown in FIG. 2, ambient air is drawn into the ozone generator 64 through the
Регулятор 70 температуры, электрическую мощность к которому подводят через трансформатор 72, используют для регулирования температуры преобразователя 44. The
Пробы в устройстве 27 обнаружения после прохождения через его камеру выпускают через накопитель 85 и насос 82 в очиститель 56 озона и выход выпускного трубопровода 57, чтобы очистить устройство обнаружения от остатков для следующей пробы из следующей емкости, перемещающейся вдоль конвейера 10 на фиг. 1 (чтобы помочь очистке от каких-либо остатков облака пробы вблизи впускного трубопровода пробы 20, может быть, как показано выше, использован (необязательный) вентилятор, не показанный на фиг. 2). Выходные сигналы из устройства 27 обнаружения, относящиеся к результатам контроля, выводят через предусилитель 84 к микропроцессору 34, который соответствующим образом передает эту информацию в регистрирующее устройство 83. Регистрирующее устройство 83 предпочтительно является обычным ленточным регистрирующим устройством или подобным устройством, которое отображает амплитуду сигнала в зависимости от времени анализируемой пробы. Samples in the detection device 27, after passing through its chamber, are discharged through the accumulator 85 and the
Микропроцессор 34 может быть запрограммирован, чтобы распознавать (как "всплеск" или обнаружение конкретных остатков) всплеск сигнала из фотоприемника устройства 27 обнаружения, который представлен в заданном интервале времени (на основе опознанного поступления емкости в установку для контроля) и наклон и амплитуда которого достигают заданных величин, которые поддерживаются после этого в течение заданного периода выдержки. The
Микропроцессорный контроллер 34 также имеет выход к выталкивателю 28 бутылок для отбраковки загрязненных бутылок и отделения их от бутылок, направляющихся к моечной машине. The
Клемму 86 калибровки предусматривают для анализатора остатков 26 для регулирования источника высокого напряжения 26A, связанного с устройством обнаружения. Предусматривают также входную клемму делителя мощности регистрирующего устройства 88, соединенную с микропроцессорным контроллером 34 для регулирования работы записывающего устройства. Устройство 27 обнаружения получает электрическую мощность от источника 26A высокого напряжения. A
Дополнительные устройства для управления включают в себя панель 90 оператора, содержащую клавиатуру и дисплей, позволяющие оператору соответствующим образом управлять работой устройства 27 обнаружения. Additional control devices include an operator panel 90 comprising a keyboard and a display allowing the operator to appropriately control the operation of the detection device 27.
Мощность постоянного тока прикладывают ко всем соответствующим компонентам через источник 78 питания постоянного тока, соединенный с выходом источника питания PS. DC power is applied to all relevant components through a
Необязательный аварийный сигнал 80A предусматривают для оповещения оператора о наличии загрязненной емкости. Аварийный сигнал 80A соединяют с выходом микропроцессорного контроллера 34 через выходную линию 80С управления. Сигнал 80В о неисправности также соединяют с микропроцессорным контроллером 34 для приема сигналов об отказе или неисправности, например, от мембранного переключателя 58 или вакуумного выключателя 87, когда давления находятся вне определенных заданных пределов. An optional 80A alarm is provided to alert the operator of contaminated containers. An alarm 80A is connected to the output of the
Для гарантирования соответствующей работы системы могут быть предусмотрены другие защитные устройства, например вакуумметр 89 и регулятор 54 противодавления. Other safety devices, such as a vacuum gauge 89 and a
Большинство компонентов всей системы, показанной на фиг.2, предпочтительно заключают в защищающий от ржавения кожух 92 из нержавеющей стали. Кожух является охлаждаемым противоточным теплообменником 92, имеющим герметически разделяющиеся секции 91A и 91B, в которых противопоток воздуха обеспечивают с помощью соответствующих вентиляторов. Most of the components of the entire system shown in FIG. 2 are preferably enclosed in a rust-proof
Как описано выше, систему по фиг. 2 в предпочтительном варианте воплощения используют для обнаружения наличия азотсодержащих соединений в пробе, например, из повторно наполняемой бутылки для напитков. Однако было бы желательным использовать систему по фиг. 2 для обнаружения возможно большего диапазона загрязнений, включающих в себя потенциальные загрязнения, которые бы хемилюминесцировали в области спектра радиации, который может перекрываться с хемилюминесценцией ингредиентов напитка (ниже "продукта"), который был упакован в бутылку для напитка. As described above, the system of FIG. 2 in a preferred embodiment is used to detect the presence of nitrogen-containing compounds in a sample, for example, from a refillable beverage bottle. However, it would be desirable to use the system of FIG. 2 to detect the largest possible range of contaminants, including potential contaminants that would chemiluminesce in the region of the radiation spectrum, which may overlap with the chemiluminescence of the beverage ingredients (below the “product”) that was packaged in the beverage bottle.
Это осуществляют в соответствии с настоящим изобретением с помощью способа, частично иллюстрируемого на фиг. 3 и описываемого ниже. This is carried out in accordance with the present invention using the method partially illustrated in FIG. 3 and described below.
Из фиг. 3, которая является графиком зависимости интенсивности сигнала радиации (ось ординат, в милливольтах) от длины волны (ось абсцисс, в микронах), излучаемой хемилюминесценцией, можно видеть, что радиация, излучаемая хемилюминесценцией азотсодержащих соединений (реакция NO + О3), находится в диапазоне приблизительно 0,6 - 2,8 мкм (почти инфракрасное излучение). Следовательно, при использовании системы по фиг.2 и ее устройства 27 обнаружения для обнаружения только азотсодержащих соединений используют фильтр с ограниченной полосой пропускания 100 для блокирования всей радиации хемилюминесценции пробы длин волн ниже приблизительно 1 мкм от достижения фотоумножительного детектора устройства 27 обнаружения. Это желательно, если обнаружение азотсодержащих соединений является первостепенной задачей, поскольку хемилюминесцентная радиация, излучаемая ниже 1 мкм (видимый свет, близкий к инфракрасному), потенциально излучаема остатками "продукта" в пробах, извлеченных с помощью откачивающего насоса из повторно наполняемых напитком бутылок. Следовательно, одномикронный фильтр с ограниченной полосой пропускания 100 исключает ложные сигналы отбраковки, которые могут быть вызваны высокими уровнями остатков "продукта" в контролируемой бутылке. Конечно, очень важно исключить или свести к минимуму ложные сигналы отбраковки для минимизации потери повторно наполняемых бутылок.From FIG. 3, which is a graph of the dependence of the radiation signal intensity (ordinate axis, in millivolts) on the wavelength (abscissa axis, in microns) emitted by chemiluminescence, it can be seen that the radiation emitted by the chemiluminescence of nitrogen-containing compounds (reaction NO + O 3 ) is in in the range of about 0.6 to 2.8 microns (near infrared). Therefore, when using the system of FIG. 2 and its detection device 27 to detect only nitrogen-containing compounds, a filter with a
Однако открытием настоящего изобретения является то, что если бутылку для напитков хранят в незакрытом состоянии, то есть с незакрытой ее верхней частью, в течение достаточного времени для контроля с помощью системы по фиг. 2, летучие вещества остатков "продукта" достаточно рассеиваются из бутылки, так что не являются обнаруживаемыми при достаточных условиях, чтобы вызывать ложные сигналы отбраковки. То есть, если удаляют одномикронный фильтр 100 и заменяют кварцевым фильтром с ограниченной полосой пропускания, имеющим ограниченную полосу пропускания 0,19 мкм, летучие вещества "продукта", не будут существовать в достаточно больших количествах, чтобы генерировать сигналы отбраковки, если бутылки хранили незакрытыми в течение достаточного периода времени. Этот период времени будет изменяться для различных "продуктов". Однако период хранения, равный приблизительно 15 часам для незакрытой бутылки, давал хорошие результаты в проведенных испытаниях. Эти результаты сведены в таблицу для проб, извлеченных с помощью откачивающего насоса из бутылок для напитков, содержащих широкий диапазон загрязнений и остатки "продукта". However, it is a discovery of the present invention that if a beverage bottle is stored in an unclosed state, that is, with its upper part unclosed, for a sufficient time to be monitored by the system of FIG. 2, the volatiles of the residues of the “product” are sufficiently dispersed from the bottle, so that they are not detectable under sufficient conditions to cause false rejection signals. That is, if a single-
Столбец 1 таблицы в верхней части перечисляет "образцы", включающие в себя потенциальные загрязнения в бутылках для напитков, которые являются обнаруживаемыми с помощью способа и системы настоящего изобретения. Эти загрязнения являются обнаруживаемыми в дополнение к азотсодержащим соединениям. Обозначение "незакрытые" означает, что содержащие остатки бутылки хранили в течение указанного времени с незакрытым их верхним отверстием, отсутствие обозначений указывает на то, что загрязнения имелись в наличии и верхнее отверстие было открыто в течение только короткого времени перед испытанием.
"Образцы" в нижней части столбца 1 включают в себя примеры испытанных напитков и указания закрыты бутылки или незакрыты и, если незакрыты, это означает период хранения содержащей остатки бутылки с ее открытым отверстием в течение, например, 15 часов. Обозначение "закрытые" означает, что бутылка была испытана с имеющимися остатками напитка и верхнее отверстие было открыто в течение только короткого периода времени перед испытанием. "Свежие" означает, что бутылка была испытана вскоре после ее открывания и содержала свежий продукт в жидком виде, то есть, по существу, полную бутылку напитка, а не старый ферментированный продукт. The "samples" at the bottom of
Столбец 2 таблицы показывает интенсивность в милливольтах сигналов, измеренных с помощью фотоэлектронного умножителя в устройстве 27 обнаружения с кварцевым фильтром 102 с ограниченной полосой пропускания 0,19 мкм у входного окна фотоэлектронного умножителя 104. Можно видеть, что сигналы значительно различаемых уровней существуют для этих загрязнений для закрытых или незакрытых бутылок для напитков.
Данные, приведенные в столбце 2, показывают также, что для "незакрытых" бутылок для напитков, хранимых в течение 15 часов, летучие вещества "продуктов" являются необнаруживаемыми (0 милливольт) с помощью фотоэлектронного умножителя 104. The data in
Столбец 4 таблицы показывает результаты испытания системы, включающей в себя одномикронной фильтр 100, и уровни обнаруживаемых сигналов в милливольтах для различных загрязнений или продуктов столбца 1. Можно видеть, что, по существу, все полезные данные сигналов, относящиеся к загрязнениям в таблице, теряются при использовании одномикронного фильтра 100. Column 4 of the table shows the test results of the system, which includes a single-
Столбец 3 таблицы показывает результаты, полученные с фильтром 106 с ограниченной полосой пропускания 0,4 мкм, установленным на входе фотоэлектронного умножителя 104 вместо любого из фильтров 100 или 102. Можно видеть, что при использовании фильтра 106 с ограниченной полосой пропускания 0,4 мкм обнаруживаемыми являются некоторые полезные данные загрязнений.
Следовательно, открытие настоящего изобретения, что хранение бутылок для напитков в незакрытом состоянии устраняет возможность формирования ложных сигналов отбраковки от летучих веществ "продукта", является самым значительным и полезным открытием. То есть способ настоящего изобретения, который заключает в себе концепцию хранения незакрытых бутылок для напитков в течение достаточного времени, чтобы позволить рассеяться летучим веществам "продукта", позволяет обнаружение широкого диапазона других загрязнений, например тех, которые перечислены в вышеуказанной таблице, в дополнение к загрязнениям, включающим в себя азотсодержащие соединения. Therefore, the discovery of the present invention that storing beverage bottles in an unclosed state eliminates the possibility of generating false signals of rejecting the “product” from the volatiles, is the most significant and useful discovery. That is, the method of the present invention, which encompasses the concept of storing unclosed beverage bottles for sufficient time to allow the volatility of the “product” to disperse, allows the detection of a wide range of other contaminants, such as those listed in the above table, in addition to contaminants including nitrogen-containing compounds.
Очевидно, что описанное таким образом изобретение может быть изменено множеством различных способов. Например, могут быть приемлемыми другие виды высокоскоростных анализаторов, например электронозахватные детекторы или фотоионизационные детекторы, вместо хемилюминесцентного анализатора, описанного со ссылкой на фиг. 2. Obviously, the invention described in this way can be modified in many different ways. For example, other types of high speed analyzers, such as electron capture detectors or photoionization detectors, may be acceptable, instead of the chemiluminescent analyzer described with reference to FIG. 2.
Проба, втянутая в трубопровод 20, может быть также разделена на два или более потоков и введена в множество анализаторов 26. Следовательно, каждый анализатор 26 может быть использован для обнаружения различных типов загрязняющих веществ. A sample drawn into
Кроме того, контролируемые материалы не ограничиваются веществами в емкостях. Например, способ и система настоящего изобретения может быть использована для обнаружения летучих веществ адсорбированных нарезанными полосками или хлопьями смолы или пластмассовым сырьем, рециклируемыми для производства новых пластмассовых бутылок для напитков. Это нарезанное или в виде хлопьев пластмассовое сырье может быть непосредственно помещено на ленту конвейера 10 и пропущено через установку 12 для контроля, показанную на фиг. 1, или пластмассовое сырье может быть помещено в корзины, ведра или другие типы контейнеров, размещаемые на конвейере и контролируемые партиями. In addition, controlled materials are not limited to substances in containers. For example, the method and system of the present invention can be used to detect volatile substances adsorbed by cut strips or flakes of resin or plastic raw materials recycled to produce new plastic beverage bottles. This chopped or flaked plastic raw material can be directly placed on the
Другими контролируемыми бутылками могут быть новые бутылки, которые никогда не наполнялись напитком. Таким образом, новые бутылки могут быть контролированы на излишнее содержание кислых альдегидов, которые могут быть сопродуктами производственного процесса. Other controlled bottles may be new bottles that have never been filled with a drink. Thus, new bottles can be controlled for excessive acid aldehydes, which can be co-products of the manufacturing process.
Такие изменения не должны рассматриваться как отклонение от существа и объема настоящего изобретения и все такие модификации, как будет очевидно квалифицированному специалисту в этой области техники, будут включены в объем следующей формулы изобретения. Such changes should not be construed as deviating from the essence and scope of the present invention and all such modifications, as will be apparent to those skilled in the art, will be included in the scope of the following claims.
Надписи к фиг. 1:
12 - установка для контроля,
14 - инжектор воздуха,
15 - вентилятор,
22 - пробоотборник откачивающего насоса,
24 - обводной трубопровод,
25 - воздушный фильтр,
26 - анализатор остатков,
28 - отбраковочное устройство,
34 - микропроцессорный контроллер,
35 - отбракованные бутылки,
36 - к моечной машине,
37 - сигнал отбраковки.The inscriptions of FIG. 1:
12 - installation for monitoring,
14 - air injector,
15 - fan
22 - sampler pumping pump,
24 - bypass pipe
25 - air filter
26 - residue analyzer,
28 - rejection device
34 - microprocessor controller,
35 - rejected bottles,
36 - to the washer,
37 - rejection signal.
Надписи к фиг. 2:
24 - обводной воздушный трубопровод,
16 - струя сжатого воздуха,
42 - проба,
44 - преобразователь,
17 - индикатор положения бутылки,
57 - выпускной трубопровод,
60 - окружающий воздух,
62 - фильтр воздуха,
65 - вентиляционная труба кожура,
64 - генератор озона,
66 - фильтр озона,
PS - выход источника питания,
74 - дроссельный сетевой фильтр переменного тока,
76 - индикатор силового выключателя,
70 - регулятор температуры,
80A - (красного цвета) - аварийный сигнал,
80B - (янтарного цвета) - сигнал о неисправности,
81 - индикатор мощности,
78 - источник питания постоянного тока,
89 - вакуумметр,
87 - выключатель вакуума,
101 - вакуумный фильтр,
68 - регулятор потока,
27 - устройство обнаружения,
84 - предусилитель,
26A - источник высокого напряжения,
86 - клемма калибровки,
88 - клемма делителя мощности регистрирующего устройства,
34 - микропроцессорный контроллер,
83 - клемма регистрирующего устройства (1 - аналоговый сигнал, 2 - импульс бутылки),
28 - клемма выталкивателя бутылок,
29 - клемма аварийного сигнала,
90 - панель оператора (дисплей, клавиатура),
85 - накопитель,
82 - откачивающий насос отбора пробы,
56 - очиститель озона,
54 - давление воздуха (противодавление),
50 - регулирование струи сжатого воздуха,
58 - мембранный переключатель,
46 - воздушный насос,
38 - положение бутылки.The inscriptions of FIG. 2:
24 - air bypass pipe
16 - a stream of compressed air,
42 - sample
44 - Converter
17 - bottle position indicator,
57 - exhaust pipe
60 - ambient air,
62 - air filter,
65 - ventilation pipe peel,
64 - ozone generator,
66 - ozone filter,
PS - power supply output,
74 - AC choke filter,
76 - power switch indicator,
70 - temperature controller,
80A - (red) - alarm,
80B - (amber) - fault signal,
81 - power indicator,
78 - DC power source,
89 - a vacuum gauge,
87 - vacuum switch,
101 - vacuum filter
68 - flow regulator,
27 is a detection device,
84 - preamplifier,
26A is a high voltage source,
86 - calibration terminal,
88 - terminal power divider recording device,
34 - microprocessor controller,
83 - terminal recording device (1 - analog signal, 2 - bottle pulse),
28 - terminal ejector bottles
29 - terminal alarm
90 - operator panel (display, keyboard),
85 - drive
82 - evacuation pump sampling,
56 - ozone cleaner,
54 - air pressure (back pressure),
50 - regulation of the jet of compressed air,
58 - membrane switch,
46 - air pump
38 - position of the bottle.
Claims (12)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US89086492A | 1992-06-01 | 1992-06-01 | |
US890.864 | 1992-06-01 | ||
US890,864 | 1992-06-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
RU94046340A RU94046340A (en) | 1997-04-20 |
RU2125721C1 true RU2125721C1 (en) | 1999-01-27 |
Family
ID=25397244
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU94046340A RU2125721C1 (en) | 1992-06-01 | 1993-05-19 | Process sampling and detecting presence of volatile contaminating substances in vessel ( versions ) |
Country Status (18)
Country | Link |
---|---|
EP (1) | EP0646236A4 (en) |
JP (1) | JPH07507393A (en) |
KR (1) | KR0184531B1 (en) |
CN (1) | CN1080723A (en) |
AR (1) | AR248316A1 (en) |
AU (1) | AU672011B2 (en) |
BR (1) | BR9306456A (en) |
CA (1) | CA2135878A1 (en) |
HU (1) | HUT75420A (en) |
IL (1) | IL105814A (en) |
MX (1) | MX9303152A (en) |
NO (1) | NO944597D0 (en) |
NZ (1) | NZ253476A (en) |
RU (1) | RU2125721C1 (en) |
TR (1) | TR28391A (en) |
TW (1) | TW227532B (en) |
WO (1) | WO1993024825A1 (en) |
ZA (1) | ZA933728B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU170386U1 (en) * | 2016-04-22 | 2017-04-24 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулёва" Министерства обороны Российской Федерации | DEVICE FOR DETERMINING THE CONTENT OF VOLATILE MATERIALS IN FOOD |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4427314C2 (en) * | 1994-08-02 | 1997-02-20 | Graessle Walter Gmbh | Device for examining containers for foreign gases |
EP0752283A1 (en) * | 1995-07-05 | 1997-01-08 | Elpatronic Ag | Method and device for inspecting containers |
CN103675210A (en) * | 2013-12-12 | 2014-03-26 | 中国航空工业集团公司第六三一研究所 | Quick detection method for pollution degree of small type liquid cooling quick connector |
CN107991247A (en) * | 2017-12-08 | 2018-05-04 | 尹大路 | A kind of food inspection device and its detection method |
DE102018120693B4 (en) * | 2018-08-24 | 2024-05-23 | Joma-Polytec Gmbh | Process for cleaning media-carrying plastic components |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4193963A (en) * | 1974-09-20 | 1980-03-18 | Petroleo Brasileiro S.A.-Petrobras | Apparatus for the determination of chemical compounds by chemiluminescence with ozone |
US4843016A (en) * | 1974-10-07 | 1989-06-27 | Thermedics Inc. | Detection system and method |
US4775633A (en) * | 1984-04-26 | 1988-10-04 | Thermedics Inc. | Detection of hydrazine compounds in gaseous samples by their conversion to nitric oxide-yielding derivatives |
US5152963A (en) * | 1986-08-04 | 1992-10-06 | Wreyford Donald M | Total sulfur analyzer system operative on sulfur/nitrogen mixtures |
US4880120A (en) * | 1987-09-02 | 1989-11-14 | The Coca-Cola Company | Plastic container inspection process |
DE59300479D1 (en) * | 1992-07-09 | 1995-09-21 | Elpatronic Ag | Method and device for checking bottles for the presence of contaminants. |
US5350565A (en) * | 1992-12-03 | 1994-09-27 | Photovac Centre, Inc. | System for the detection of noxious contaminants in beverage and potable water containers |
-
1993
- 1993-05-19 BR BR9306456A patent/BR9306456A/en not_active Application Discontinuation
- 1993-05-19 EP EP93914003A patent/EP0646236A4/en not_active Withdrawn
- 1993-05-19 NZ NZ253476A patent/NZ253476A/en unknown
- 1993-05-19 WO PCT/US1993/004766 patent/WO1993024825A1/en not_active Application Discontinuation
- 1993-05-19 JP JP6500619A patent/JPH07507393A/en active Pending
- 1993-05-19 HU HU9403443A patent/HUT75420A/en unknown
- 1993-05-19 AU AU43829/93A patent/AU672011B2/en not_active Ceased
- 1993-05-19 CA CA002135878A patent/CA2135878A1/en not_active Abandoned
- 1993-05-19 RU RU94046340A patent/RU2125721C1/en active
- 1993-05-19 KR KR1019940704382A patent/KR0184531B1/en not_active IP Right Cessation
- 1993-05-26 TR TR00435/93A patent/TR28391A/en unknown
- 1993-05-27 ZA ZA933728A patent/ZA933728B/en unknown
- 1993-05-27 MX MX9303152A patent/MX9303152A/en not_active IP Right Cessation
- 1993-05-27 IL IL105814A patent/IL105814A/en not_active IP Right Cessation
- 1993-05-29 CN CN93106223A patent/CN1080723A/en active Pending
- 1993-06-01 AR AR93325071A patent/AR248316A1/en active
- 1993-07-21 TW TW082105797A patent/TW227532B/zh active
-
1994
- 1994-11-30 NO NO944597A patent/NO944597D0/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU170386U1 (en) * | 2016-04-22 | 2017-04-24 | Федеральное государственное казенное военное образовательное учреждение высшего образования "Военная академия материально-технического обеспечения имени генерала армии А.В. Хрулёва" Министерства обороны Российской Федерации | DEVICE FOR DETERMINING THE CONTENT OF VOLATILE MATERIALS IN FOOD |
Also Published As
Publication number | Publication date |
---|---|
NZ253476A (en) | 1995-11-27 |
CA2135878A1 (en) | 1993-12-09 |
EP0646236A1 (en) | 1995-04-05 |
KR950702028A (en) | 1995-05-17 |
CN1080723A (en) | 1994-01-12 |
IL105814A0 (en) | 1993-09-22 |
AU4382993A (en) | 1993-12-30 |
TR28391A (en) | 1996-05-23 |
EP0646236A4 (en) | 1996-02-28 |
WO1993024825A1 (en) | 1993-12-09 |
BR9306456A (en) | 1998-06-30 |
AR248316A1 (en) | 1995-07-12 |
AU672011B2 (en) | 1996-09-19 |
MX9303152A (en) | 1994-06-30 |
HU9403443D0 (en) | 1995-02-28 |
KR0184531B1 (en) | 1999-05-15 |
JPH07507393A (en) | 1995-08-10 |
ZA933728B (en) | 1994-03-01 |
HUT75420A (en) | 1997-05-28 |
NO944597L (en) | 1994-11-30 |
IL105814A (en) | 1997-07-13 |
NO944597D0 (en) | 1994-11-30 |
TW227532B (en) | 1994-08-01 |
RU94046340A (en) | 1997-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2126160C1 (en) | Process and system to take samples and detect presence of chemical compounds in vessels | |
US4880120A (en) | Plastic container inspection process | |
US5470754A (en) | Method and system for sampling and determining the presence of compounds | |
KR100264138B1 (en) | Method and apparatus for sampling and measuring the presence of contaminants in recycled plastic materials | |
US4858767A (en) | Plastic container inspection process | |
RU2125721C1 (en) | Process sampling and detecting presence of volatile contaminating substances in vessel ( versions ) | |
US6013228A (en) | Method and system for sampling and determining the presence of compounds in containers using a pulsed fluorescence detector | |
US5376550A (en) | Method and system for sampling and determining the presence of compounds in containers | |
TW305933B (en) | ||
TH16782A (en) | Methodology and systems for sample washing and diagnosis of container contamination. |