[go: up one dir, main page]

RU2016501C1 - Способ хранения биологических объектов в регулируемой газовой среде - Google Patents

Способ хранения биологических объектов в регулируемой газовой среде Download PDF

Info

Publication number
RU2016501C1
RU2016501C1 SU4945447A RU2016501C1 RU 2016501 C1 RU2016501 C1 RU 2016501C1 SU 4945447 A SU4945447 A SU 4945447A RU 2016501 C1 RU2016501 C1 RU 2016501C1
Authority
RU
Russia
Prior art keywords
storage
chamber
oxygen
content
carbon dioxide
Prior art date
Application number
Other languages
English (en)
Inventor
Н.Т. Тихомирова
Н.П. Дубодел
В.П. Серегин
Original Assignee
Московская государственная академия пищевых производств
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Московская государственная академия пищевых производств filed Critical Московская государственная академия пищевых производств
Priority to SU4945447 priority Critical patent/RU2016501C1/ru
Application granted granted Critical
Publication of RU2016501C1 publication Critical patent/RU2016501C1/ru

Links

Images

Landscapes

  • Storage Of Fruits Or Vegetables (AREA)

Abstract

Использование: в сельском хозяйстве, в частности в способах хранения продуктов растениеводства, а именно при хранении плодоовощной продукции. Сущность изобретения: способ осуществляют следующим образом. Перед загрузкой камеры устанавливают зависимости коэффициента дыхания биологического объекта от содержания кислорода и диоксида углерода, по которым определяют исходные оптимальные концентрации этих газов. В процессе хранения содержание кислорода и диоксида углерода устанавливают по формулам соответственно
Figure 00000001
Figure 00000002
где
Figure 00000003
- исходное оптимальное содержание кислорода, об.%;

Description

Изобретение относится к сельскому хозяйству, в частности к способам хранения продуктов растениеводства, и может быть использовано при хранении плодоовощной продукции.
Известен способ хранения кочанной капусты при температуре 0 + 1оС в среде инертных газов и кислорода, состав которой в течение 40-45 сут. с момента закладки составляет 96-98% азота, 2-4% O2, 0,03-2% CO2, в последующие 80-90 сут. - 90% азота, 8-10% O2, 0,03-2% CO2, затем до конца хранения - 96-98% азота, 2-4% CO2, 0,03-2% CO2 [1].
Однако известный способ позволяет сократить потери продукции лишь в 1,5 раза, так как при закладке на хранение не учитывается физиологическое состояние биологического объекта. Кроме того, снижение в газовой среде содержания кислорода к концу хранения противоречит закономерности изменения предельной концентрации кислорода, ниже которой в растительных организмах значительно усиливаются анаэробные процессы.
Наиболее близким по технической сущности и достигаемому результату к предлагаемому изобретению является способ хранения биологических объектов в регулируемой газовой среде (РГС), включающий загрузку камеры, ее герметизацию, создание газовой среды заданного состава путем продувки камеры азотом, последующий контроль содержания в камере кислорода и диоксида углерода и поддержание заданной концентрации кислорода и диоксида углерода продувкой азотом и воздухом [2]. Данный способ характеризуется также тем, что перед загрузкой определяют интенсивность дыхания биологического объекта, а концентрацию O2 и CO2 в регулируемой газовой среде задают по предельным значениям интенсивности дыхания.
Недостатком данного способа являются существенные потери из-за физиологических заболеваний и микробиологической порчи, так как постоянное содержание O2 и CO2 в РГС, которое устанавливается перед закладкой, не может быть оптимальным для всего периода хранения. Более того, установить оптимальные концентрации O2 и CO2 в РГС по наименьшей интенсивности дыхания, исследуя лишь функциональную зависимость количества выделяемого объектом CO2 от концентрации O2 в окружающей среде, для ряда видов плодов и овощей (цитрусовые, косточковые и другие) не представляется возможным из-за отсутствия явно выраженного ее экстремума.
Целью изобретения является снижение потерь плодоовощной продукции при хранении.
Это достигается тем, что в способе хранения биологических объектов в регулируемой газовой среде, включающем загрузку камеры, ее герметизацию, создание газовой среды заданного состава, контроль содержания в камере кислорода и диоксида углерода и поддержание их заданной концентрации, отличием является то, что перед загрузкой камеры устанавливают зависимости коэффициента дыхания биологического объекта от содержания кислорода и диоксида углерода, определяют исходное оптимальное содержание кислорода и диоксида углерода по этим зависимостям, в процессе хранения содержание кислорода и диоксида углерода задают по формулам соответственно
V
Figure 00000005
=2·V
Figure 00000006
+
Figure 00000007
·
Figure 00000008
,, (1)
V
Figure 00000009
=0.67·V
Figure 00000010
-
Figure 00000011
·
Figure 00000012
,, (2) где VO2 исх - исходное оптимальное содержание кислорода, об.%;
VCO2 исх- исходное оптимальное содержание диоксида углерода, об.%;
Т - рекомендуемый срок хранения для конкретного вида и сорта объекта, сут.;
τ - продолжительность хранения, сут.
Установка зависимости коэффициента дыхания (ДК) биологического объекта от содержания O2 и CO2 обусловлена необходимостью учета его физиологического состояния при закладке на хранение в РГС. Выбор коэффициента дыхания как критерия оценки физиологического состояния объясняется тем, что ДК отражает качественную сторону процесса дыхания плодов и овощей, являющегося центральным звеном обмена веществ. Легкость плодов и овощей тесно связана с этой характеристикой их жизнедеятельности, по сути выражающей соотношение между анаэробным и аэробным этапами энергетического обмена. Кроме этого ДК, учитывающий сложный механизм метаболических превращений, определяется без нарушения целостности объекта хранения и повреждения его структуры. Т.е. выполняется обязательное требование к критерию оценки физиологического состояния биологического объекта.
Определение исходного оптимального содержания O2 и CO2 по указанным зависимостям объясняется тем, что на величину ДК огромное влияние оказывает обеспеченность тканей O2, а следовательно, и изменение состава газовой среды. В общей форме ДК зависит от степени восстановленности органического вещества, используемого при дыхании, от способности клеток использовать O2 и других факторов. Однако во всех случаях, когда кислородное дыхание сочетается с брожением, наблюдается резкое возрастание его величины. Такие изменения коэффициента дыхания отмечаются при снижении концентрации O2 ниже и повышении концентрации CO2 выше определенных значений. В начале же данного процесса дыхание биологического объекта характеризуется низкими значениями ДК и постепенным снижением его интенсивности. Это связано с тем, что в первую очередь подавляется интенсивность поглощения O2. Выделение же CO2подавляется позднее, и депрессия эта всегда менее значительна. Снижение концентрации O2 и повышение концентрации CO2 до определенных пределов приводит к соответствию интенсивности поглощения и выделения этих газов (ДК = 1). В дальнейшем их соотношение резко возрастает - ДК > 1. Его увеличение становится понятным, если учесть, что скорость аэробного дыхания при практически постоянной или увеличивающейся скорости анаэробного стремится к нулю. Отношение же этих скоростей, определяющее величину ДК, стремится к бесконечности. Следовательно, концентрации O2 и CO2, соответствующие ДК = 1, являются предельными, ниже и выше которых превалируют анаэробные процессы. Эти величины коррелируют с физиологическим состоянием биологического объекта, поскольку оно определяет устойчивость к возникновению анаэробного дыхания.
Задание содержания кислорода в процессе хранения по указанной формуле (1) связано с тем, что в процессе хранения происходят изменения в физиологических свойствах плодов и овощей, обусловленные созреванием и старением их тканей. При этом кислородный оптимум у различных видов и сортов в разные периоды этого процесса зависит от преобладания активности тех или иных ферментных систем. Характер изменения содержания кислорода от продолжительности хранения (сигмоида) объясняется постепенно нарастающей утратой способности плодов и овощей переносить пониженные концентрации O2 без нарушения физиологических процессов и наступления функциональных расстройств. Следовательно, для поддержания нормального процесса дыхания в период хранения необходимо соответствующее повышение содержания O2 в газовой среде. Причем к концу хранения оно менее значимо, поскольку кислородный оптимум стремится к величине, мало изменяющей интенсивность дыхания плодов и овощей (10-12%).
Задание содержания диоксида углерода в процессе хранения по указанной формуле (2) связано с теми же причинами, что и кислорода, хотя действие этих газов на дыхание плодов и овощей неравнозначно. Характер изменения содержания CO2 от продолжительности хранения (сигмоида противоположного знака) объясняется тем, что из-за негативных изменений в структурах митохондрий в период созревания и старения усиливается повреждающее действие растительной ткани повышенными концентрациями CO2. Следовательно, во избежание физиологических расстройств у плодов и овощей в период хранения необходимо постепенное понижение содержания CO2в газовой среде. К концу хранения это понижение менее значимо, так как оптимум CO2 стремится к нулю.
Способ осуществляется следующим образом.
Перед загрузкой камеры устанавливают зависимость коэффициента дыхания биологического объекта от содержания кислорода и диоксида углерода. С этой целью объект исследования помещают в герметично закрывающуюся, термостатирующую камеру анализатора, в которой поддерживается температура хранения. В результате дыхания объекта в камере анализатора содержание кислорода уменьшается, а диоксида углерода увеличивается. При этом состав газовой среды в ней фиксируется автоматически газоанализаторами с самопишущими приборами.
Полученные данные используются для расчета интенсивности поглощения плодами кислорода JO2, выделения диоксида углерода JCO2 и коэффициента дыхания (ДК) при изменении концентрации O2 и CO2 в камере анализатора:
J
Figure 00000013
=
Figure 00000014
,
Figure 00000015
;;
J
Figure 00000016
=
Figure 00000017
,
Figure 00000018
;;
ДК =
Figure 00000019
=
Figure 00000020
/
Figure 00000021
=
Figure 00000022
, отн.ед./, где V - объем свободного пространства в камере анализатора, мл;
(O2) и (CO2) - количество поглощенного кислорода и выделенного диоксида углерода плодами за равные промежутки времени ( τ ', ч.) в период исследования, об.%:
G - масса плодов, кг.
Строя графики зависимости коэффициента дыхания от содержания кислорода ДК = f (O2)ср. и диоксида углерода ДК = =f(CO2)ср., определяют исходное оптимальное содержание O2 и CO2 в газовой среде. (O2)ср. и (CO2)ср. - среднее значение концентраций O2 и CO2 в каждый промежуток времени ( τ ') в период исследований.
Исходное оптимальное содержание O2 и CO2 соответствует коэффициенту дыхания, равному единице.
После загрузки камеру герметизируют, создают газовую среду заданного состава путем продувки азотом до необходимой концентрации O2или газовой смесью азота и кислорода заданной концентрации от газоразделительной установки, контроль содержания в камере O2 и CO2осуществляют с помощью газоанализаторов. При увеличении в результате жизнедеятельности биологического объекта концентрации CO2 выше и снижении концентрации O2 ниже заданных значений камеру продувают азотом и воздухом (для уменьшения концентрации CO2 и увеличения концентрации O2) или газовой смесью азота и кислорода заданной концентрации от газоразделительной установки. В процессе хранения содержание кислорода и диоксида углерода задают по формулам (1, 2) соответственно
V
Figure 00000023
=2·V
Figure 00000024
+
Figure 00000025
·
Figure 00000026
,, (1)
V
Figure 00000027
=0.67·V
Figure 00000028
-
Figure 00000029
·
Figure 00000030
,, (2) где VO2 исх- исходное оптимальное содержание кислорода, об.%;
VCO2 исх- исходное оптимальное содержание диоксида углерода, об.%;
Т - рекомендуемый срок хранения для конкретного вида и сорта объекта, сут.;
τ - продолжительность хранения, сут.
Для достижения положительного эффекта при хранении плодов предложенным способом важно, чтобы состав газовой среды в камерах оперативно регулировался. Это возможно лишь при использовании технически создаваемой газовой среды, например, с помощью азота или газовой смеси азота и кислорода от газоразделительных аппаратов (криогенные установки, БАРС и т.д.). Процесс разделения воздуха и получения необходимой газовой среды в данном случае автоматизирован и легко управляем.
На фиг.1 представлена схема автоматического регулирования состава газовой среды в герметичной камере 1 с загруженным биологическим объектом, оснащенной газоразделительной установкой. В ее состав входят мембранный аппарат 2, центробежный вентилятор 3, водокольцевой вакуумный насос 4, газоанализаторы 5 и 6 соответственно для измерения текущих значений O2 и CO2 в камере хранения, трубопроводы и арматура. Автоматическое задание концентраций O2 и CO2 осуществляют с помощью микропроцессорного блока 7, в который вводится программа изменения состава газовой среды в процессе хранения. При возникновении в блоке разностного сигнала, возникающего из-за несоответствия контролируемого газоанализаторами 5,6 состава газовой среды в камере 1 хранения и программы, происходит включение системы управления газоразделительной установки. Посредством циркуляции газовой среды через рециркуляционные трубопроводы, а также с помощью вентилятора 3 и надмембранного пространства аппарата 2 в камеру 1 хранения подают смесь азота и кислорода заданной концентрации. При этом увеличивающаяся в результате дыхания биологического объекта концентрация CO2 уменьшается, а пониженная концентрация O2 увеличивается до заданных на данный период хранения величины. Система отключается при отсутствии разностного сигнала.
П р и м е р 1. Хранение яблок сорта Ренет Симиренко - объем хранения 150 т, температура 1 ± 0,5оС, относительная влажность газовой среды 90 ± 2% , срок хранения (Т) 240 сут.
Перед загрузкой камеры 1 определяют исходное оптимальное содержание O2 и CO2 по зависимостям коэффициента дыхания (ДК) плодов от концентраций этих газов. С этой целью яблоки помещают в герметично закрывающуюся камеру анализатора, в которой поддерживается температура хранения 1оС.
Состав газовой среды в ней, изменяющийся в результате дыхания плодов, фиксируется через каждые 4 ч ( τ') автоматическими газоанализаторами. По показаниям самопишущих приборов рассчитывают коэффициент дыхания плодов для каждого последующего промежутка времени ( τ ' ) в период исследования
ДК =
Figure 00000031
=
Figure 00000032
/
Figure 00000033
=
Figure 00000034
, отн.ед./, где (O2) и (CO2) - количество поглощенного кислорода и выделенного диоксида углерода плодами в каждые 4 ч в период исследования, об.%.
Строя графики зависимости коэффициента дыхания от среднего значения концентраций O2 и CO2 в каждые 4 ч в период исследования, определяют при ДК = 1 оптимальный исходный состав газовой среды - 2,1% O2 : 6,9% СO2 : 91,0% N2 (фиг.2).
После загрузки яблок в камеру 1 и ее герметизации создают данный газовый состав путем продувки азотом от воздухоразделительной установки.
Контроль содержания в камере O2 и CO2 осуществляют с помощью газоанализаторов 5,6 непрерывно в автоматическом режиме. В процессе хранения газовый состав задают автоматически с помощью микропроцессорного блока 7 по формулам (1, 2), введенным в него в виде программы
V
Figure 00000035
=2·2.1+
Figure 00000036
·
Figure 00000037
= 4.20+0.39
Figure 00000038
,,
(1)
V
Figure 00000039
=0.67·6.9 -
Figure 00000040
Figure 00000041
= 4.62-0.55
Figure 00000042
,,
(2) где τ - продолжительность хранения, сут.
При возникновении в блоке разностного сигнала из-за несоответствия контролируемого газоанализаторами 5, 6 состава газовой среды в камере 1 хранения и программы происходит включение системы управления воздухоразделительной установки. Посредством продувки азотом и воздухом увеличившаяся в результате дыхания концентрация CO2 уменьшается, а пониженная концентрация O2 увеличивается до заданных на данный период хранения величин. Система отключается при отсутствии разностного сигнала.
Выход стандартной продукции после хранения яблок предложенным способом составляет 97,3%, отход 1,2%.
П р и м е р 2. Хранение груш сорта Бере Арданпон, объем хранения 30 т, температура 1,5 ± 0,5оС, относительная влажность газовой среды 90 ± 1%, срок хранения (Т) 150 сут.
Перед загрузкой камеры 1 определяют исходное оптимальное содержание O2 и CO2 по зависимостям коэффициента дыхания (ДК) плодов от концентрации этих газов. С этой целью груши помещают в герметично закрывающуюся камеру анализатора, в которой поддерживается температура хранения 1,5оС.
Состав газовой среды в ней, изменяющийся в результате дыхания плодов, фиксируется через каждые 4 ч ( τ ') автоматическими газоанализаторами.
По показаниям самопишущих приборов рассчитывают коэффициент дыхания плодов для каждого последующего промежутка времени ( τ ') в период исследования
ДК =
Figure 00000043
=
Figure 00000044
, отн.ед., где (O2) и (CO2) - количество поглощенного кислорода и выделенного диоксида углерода плодами в каждые 4 ч в период исследования, об.%.
Строя графики зависимости коэффициента дыхания от среднего значения концентраций O2 и CO2 в каждые 4 ч в период исследования, определяют при ДК = 1 оптимальный исходный состав газовой среды - 3,4% O2 : 6,4% CO2 : 90,2% N2 (фиг.3).
После загрузки груш в камеру 1 и ее герметизации создают данный газовый состав путем продувки азотом от воздухоразделительной установки. Контроль содержания в камере O2 и CO2 осуществляют с помощью газоанализаторов 5, 6 непрерывно в автоматическом режиме. В процессе хранения газовый состав задают автоматически с помощью микропроцессорного блока 7 по формулам (1, 2), введенным в него в виде программы
V
Figure 00000045
=2·3.4+
Figure 00000046
·
Figure 00000047
= 6.8+0.74
Figure 00000048
,, (1)
V
Figure 00000049
=0.67·6.4 -
Figure 00000050
Figure 00000051
= 4.29-0.59
Figure 00000052
,,
(2) где τ - продолжительность хранения, сут.
При возникновении в блоке разностного сигнала из-за несоответствия контролируемого газоанализаторами 5, 6 состава газовой среды в камере 1 хранения и программы происходит включение системы управления воздухоразделительной установки. Посредством продувки азотом и воздухом увеличившаяся в результате дыхания концентрация CO2 уменьшается, а пониженная концентрация O2 увеличивается до заданных на данный период хранения величин. Система отключается при отсутствии разностного сигнала.
Выход стандартной продукции после хранения груш предлагаемым способом составляет 95,4%, отход 2,4%.
П р и м е р 3. Хранение мандаринов сорта Уншиу широколистный - объем хранения 20 т, температура 3 ± 0,5оС, относительная влажность газовой среды 92 ± 2%, срок хранения (Т) 120 сут.
Перед загрузкой камеры 1 определяют исходное оптимальное содержание O2 и CO2 по зависимостям коэффициента дыхания (ДК) плодов от концентрации этих газов. С этой целью мандарины помещают в герметично закрывающуюся камеру анализатора, в которой поддерживается температура хранения 3оС.
Состав газовой среды в ней, изменяющийся в результате дыхания плодов, фиксируется через каждые 4 ч ( τ ') автоматическими газоанализаторами. По показаниям самопишущих приборов рассчитывают коэффициент дыхания плодов исследования
ДК =
Figure 00000053
=
Figure 00000054
, отн.ед., где (O2) и (CO2) - количество поглощенного кислорода и выделенного диоксида углерода плодами в каждые 4 ч в период исследования, об.%.
Строя графики зависимости коэффициента дыхания от среднего значения концентраций O2 и CO2 в каждые 4 ч в период исследования, определяют при ДК = 1 оптимальный исходный состав газовой среды - 2,7% O2 : 4,8% CO2 : 92,5% N2 (фиг.4).
После загрузки мандаринов в камеру 1 и ее герметизации создают данный газовый состав путем продувки газовой смесью азота и кислорода от газоразделительной установки. Контроль содержания в камере O2 и CO2осуществляют с помощью газоанализаторов 5, 6 непрерывно в автоматическом режиме. В процессе хранения газовый состав задают автоматически с помощью микропроцессорного блока 7 по формулам (1, 2), введенным в него в виде программы
V
Figure 00000055
=2·2.7+
Figure 00000056
·
Figure 00000057
= 5.4+0.63
Figure 00000058
,, (1)
V
Figure 00000059
=0.67·4.8 -
Figure 00000060
Figure 00000061
= 3.22-0.45
Figure 00000062
,,
(2)
где τ - продолжительность хранения, сут.
Выход стандартной продукции хранения мандаринов предлагаемым способом составляет 93,5%, отход 3,8%.
П р и м е р 4. Хранение томатов сорта Принц Ревермунт - объем хранения 20 т, температура 10 ± 0,5оС, относительная влажность газовой среды 95 ± 2% , срок хранения ( τ ') 60 сут.
Перед загрузкой камеры 1 определяют исходное оптимальное содержание O2 и CO2 по зависимостям коэффициента дыхания (ДК) плодов от концентраций этих газов. С этой целью томаты помещают в герметично закрывающуюся камеру анализатора, в которой поддерживается температура хранения 10оС.
Состав газовой среды в ней, изменяющийся в результате дыхания томатов, фиксируется через каждые 4 ч ( τ ') автоматическими газоанализаторами. По показаниям самопишущих приборов рассчитывают коэффициент дыхания томатов для каждого последующего промежутка времени ( τ ') в период исследования
ДК =
Figure 00000063
=
Figure 00000064
/
Figure 00000065
=
Figure 00000066
, отн.ед.,, где (O2) и (CO2) - количество поглощенного кислорода и выделенного диоксида углерода томатами каждые 4 ч в период исследования, об.%.
Строя графики зависимости коэффициента дыхания от среднего значения концентраций O2 и CO2 каждые 4 ч в период исследования, определяют при ДК = 1 оптимальный исходный состав газовой среды - 3,0% O2 : 4,2% CO2 : 92,8% N2 (фиг.5).
После загрузки томатов в камеру 1 и ее герметизации создают данный газовый состав путем продувки азотом от газоразделительной установки. Контроль содержания в камере O2 и CO2 осуществляют с помощью газоанализаторов 5, 6 непрерывно в автоматическом режиме. В процессе хранения газовый состав задают автоматически с помощью микропроцессорного блока 7 по формулам (1, 2), введенным в него в виде программы
V
Figure 00000067
=2·3.0+
Figure 00000068
·
Figure 00000069
= 6.0+0.89
Figure 00000070
,, (1)
V
Figure 00000071
=0.67·4.2 -
Figure 00000072
Figure 00000073
= 2.8-0.47
Figure 00000074
,,
(2) где τ - продолжительность хранения, сут.
При возникновении в блоке разностного сигнала из-за несоответствия контролируемого газоанализаторами 5, 6 состава газовой среды в камере 1 хранения и программы происходит включение системы управления газоразделительной установки. Посредством продувки газовой средой заданного состава увеличивающаяся в результате дыхания концентрация CO2уменьшается, а пониженная концентрация O2 увеличивается до заданных за данный период хранения величин. Система отключается при отсутствии разностного сигнала.
Выход стандартной продукции после хранения томатов предлагаемым способом составляет 95,5%, отход 2,02%.
П р и м е р 5. Хранение картофеля сорта Темп - объем хранения 5 т, температура 4 ± 0,5оС, относительная влажность газовой среды 93 ± 2%, срок хранения (Т) 240 сут.
Перед загрузкой камеры 1 определяют исходное оптимальное содержание O2 и CO2 по зависимостям коэффициента дыхания (ДК) картофеля от концентрации этих газов. С этой целью картофель помещают в герметично закрывающуюся камеру анализатора, в которой поддерживается температура хранения 4оС.
Состав газовой среды в ней, изменяющийся в результате дыхания картофеля, фиксируется через каждые 4 ч ( τ') автоматическими газоанализаторами. По показаниям самопишущих приборов рассчитывают коэффициент дыхания картофеля для каждого последующего промежутка времени ( τ ') в период исследования
ДК =
Figure 00000075
=
Figure 00000076
, отн.ед., где (O2) и (CO2) - количество поглощенного кислорода и выделенного диоксида углерода картофелем в каждые 4 ч в период исследования, об.%.
Строя графики зависимости коэффициента дыхания от среднего значения концентраций O2 и CO2 в каждые 4 ч в период исследования, определяют при ДК = 1 оптимальный исходный состав газовой среды - 2,1% O2 : 3,8% CO2 : 94,1 N2 (фиг.6).
После загрузки картофеля в камеру 1 и ее герметизации создают данный газовый состав путем продувки азотом от воздухоразделительной установки. Контроль содержания в камере O2 и CO2 осуществляют с помощью газоанализаторов 5, 6 непрерывно в автоматическом режиме. В процессе хранения газовый состав задают автоматически с помощью микропроцессорного блока 7 по формулам (1, 2), введенным в него в виде программы
V
Figure 00000077
=2·2.1+
Figure 00000078
·
Figure 00000079
= 4.2+0.39
Figure 00000080
,, (1)
V
Figure 00000081
= 0.67·3.8 -
Figure 00000082
Figure 00000083
= 2.55-0.26
Figure 00000084
,, (2) где τ - продолжительность хранения, сут.
При возникновении в блоке разностного сигнала из-за несоответствия контролируемого газоанализаторами 5, 6 состава газовой среды в камере 1 хранения и программе происходит включение системы управления воздухоразделительной установки. Посредством продувки азотом и воздухом увеличившаяся в результате дыхания концентрация CO2 уменьшается, а пониженная концентрация O2 увеличивается до заданных на данный период хранения величин. Система отключается при отсутствии разностного сигнала.
Выход стандартной продукции после хранения картофеля предлагаемым способом составляет 95,5%, отход 1,8%.
П р и м е р 6. Хранение капусты сорта Амагер 611 - объем хранения 5 т, температура 1,0 ± 0,5оС, относительная влажность газовой среды 92 ± 0 2%, срок хранения (Т) 210 сут.
Перед загрузкой камеры 1 определяют исходное оптимальное содержание O2 и CO2 по зависимостям коэффициента дыхания (ДК) кочанов от концентрации этих газов. С этой целью кочаны помещают в герметично закрывающуюся камеру анализатора, в которой поддерживается температура хранения 1оС.
Состав газовой среды в ней, изменяющийся в результате дыхания капусты, фиксируется через каждые 4 ч ( τ ') автоматическими газоанализаторами. По показаниям самопишущих приборов рассчитывают коэффициент дыхания капусты для каждого последующего промежутка времени ( τ ') в период исследования
ДК =
Figure 00000085
=
Figure 00000086
, отн.ед., где (O2) и (CO2) - количество поглощенного кислорода и выделенного диоксида углерода в каждые 4 ч в период исследования, об.%.
Строя графики зависимости коэффициента дыхания от среднего значения концентраций O2 и CO2 в каждые 4 ч в период исследования, определяют при ДК = 1 оптимальный исходный состав газовой среды - 1,9% O2 : 7,3% CO2 : 90,8% N2 (фиг.7).
После загрузки капусты в камеру 1 и ее герметизации создают данный газовый состав путем продувки азотом от воздухоразделительной установки. Контроль содержания в камере O2 и CO2 осуществляют с помощью газоанализаторов 5, 6 непрерывно в автоматическом режиме. В процессе хранения газовый состав задают автоматически с помощью микропроцессорного блока 7 по формулам (1, 2), введенным в него в виде программы
V
Figure 00000087
=2·1.9+
Figure 00000088
·
Figure 00000089
= 3.8+0.37
Figure 00000090
,, (1)
V
Figure 00000091
= 0.67·7.3 -
Figure 00000092
Figure 00000093
= 4.89-0.61
Figure 00000094
,, (2) где τ - продолжительность хранения, сут.
При возникновении в блоке разностного сигнала из-за несоответствия контролируемого газоанализатора 5, 6 состава газовой среды в камере 1 хранения и программы происходит включение системы управления воздухоразделительной установки. Посредством продувки азотом и воздухом увеличившаяся в результате дыхания концентрация CO2 уменьшается, а пониженная концентрация O2 увеличивается до заданных на данный период хранения величин. Система отключается при отсутствии разностного сигнала.
Выход стандартной продукции после хранения капусты предлагаемым способом 93,6%, отход 0,3%.
Использование предлагаемого способа по сравнению с прототипом позволяет уменьшить отходы при хранении плодоовощной продукции в 3-5 раз. При этом наилучшим образом сохраняются пищевые и диетические качества плодов.
Способ испытан в совхозе "Родина", г. Грозный.

Claims (1)

  1. СПОСОБ ХРАНЕНИЯ БИОЛОГИЧЕСКИХ ОБЪЕКТОВ В РЕГУЛИРУЕМОЙ ГАЗОВОЙ СРЕДЕ, включающий загрузку камеры, ее герметизацию, создание газовой среды заданного состава, контроль содержания в камере кислорода и диоксида углерода и поддержание их заданной концентрации, продувку азотом, отличающийся тем, что, с целью уменьшения потерь при хранении, перед загрузкой камеры определяют коэффициент дыхания биологического объекта в зависимости от концентрации в камере кислорода и диоксида углерода и устанавливают исходное оптимальное содержание кислорода и диоксида углерода в зависимости от коэффициента дыхания биологического объекта, а в процессе хранения содержание кислорода и диоксида углерода устанавливают по формуле
    V
    Figure 00000095
    =2·V
    Figure 00000096
    +
    Figure 00000097
    ·
    Figure 00000098
    ,,
    V
    Figure 00000099
    =0.67·V
    Figure 00000100
    -
    Figure 00000101
    ·
    Figure 00000102
    ,,
    где V02 исх. - исходное оптимальное содержание кислорода, об.%;
    Vco2 исх. - исходное оптимальное содержание диоксида углерода, об.%;
    T - рекомендуемый срок хранения для конкретного вида и сорта объекта, сут;
    τ - продолжительность хранения, сут.
SU4945447 1991-06-14 1991-06-14 Способ хранения биологических объектов в регулируемой газовой среде RU2016501C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU4945447 RU2016501C1 (ru) 1991-06-14 1991-06-14 Способ хранения биологических объектов в регулируемой газовой среде

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU4945447 RU2016501C1 (ru) 1991-06-14 1991-06-14 Способ хранения биологических объектов в регулируемой газовой среде

Publications (1)

Publication Number Publication Date
RU2016501C1 true RU2016501C1 (ru) 1994-07-30

Family

ID=21579270

Family Applications (1)

Application Number Title Priority Date Filing Date
SU4945447 RU2016501C1 (ru) 1991-06-14 1991-06-14 Способ хранения биологических объектов в регулируемой газовой среде

Country Status (1)

Country Link
RU (1) RU2016501C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444175C1 (ru) * 2010-10-11 2012-03-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Рязанский государственный агротехнологический университет имени П.А. Костычева" Способ хранения картофеля в регулируемой газовой среде и устройство для его осуществления
RU2626155C2 (ru) * 2012-02-24 2017-07-21 Ван Амеронген Контроллед Атмосфере Технологи Б.В. Способ и оборудование для контролирования атмосферы в помещении, заполненном продукцией сельского хозяйства или садоводства

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1. Авторское свидетельство СССР N 673237, кл. A 01F 25/00, 1974. *
2. Авторское свидетельство СССР N 1373351, кл. A 01F 25/00, 1988. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2444175C1 (ru) * 2010-10-11 2012-03-10 Федеральное государственное образовательное учреждение высшего профессионального образования "Рязанский государственный агротехнологический университет имени П.А. Костычева" Способ хранения картофеля в регулируемой газовой среде и устройство для его осуществления
RU2626155C2 (ru) * 2012-02-24 2017-07-21 Ван Амеронген Контроллед Атмосфере Технологи Б.В. Способ и оборудование для контролирования атмосферы в помещении, заполненном продукцией сельского хозяйства или садоводства

Similar Documents

Publication Publication Date Title
US10966435B2 (en) System for controlling low temperature injury of cold-sensitive fruit vegetables by combining intelligent pre-cooling and segmented controlled atmosphere storage
RU2626155C2 (ru) Способ и оборудование для контролирования атмосферы в помещении, заполненном продукцией сельского хозяйства или садоводства
Burton Some biophysical principles underlying the controlled atmosphere storage of plant material
US7199376B2 (en) Method and apparatus for monitoring a condition in chlorophyll containing matter
Betancourt et al. Accumulation and loss of sugars and reduced ascorbic
WO1996018306A2 (en) System for controlling the air composition within a storage room for breathing vegetable products
EP1265489B1 (de) Klimaregelung für den transport und die lagerung von verderblichen gütern
RU2016501C1 (ru) Способ хранения биологических объектов в регулируемой газовой среде
Spalding et al. Quality of'Booth 8'and'Lula'avocados stored in a controlled atmosphere
Jones et al. THE RESPIRATION CLIMACTERIC IN APPLE FRUITS: BIOCHEMICAL CHANGES OCCURRING DURING THE DEVELOPMENT OE THE CLIMACTERIC IN ERUIT DETACHED EROM THE TREE
RU2325810C2 (ru) Способ хранения урожая плодоовощной и растениеводческой продукции
Nicolaï et al. Gas exchange properties of fruit and vegetables
Wardlaw et al. Studies in Tropical Fruits: IX. The Respiration of Bananas during Ripening at Tropical Temperatures
Pharr et al. Effects of air flow rate, storage temperature, and harvest maturity on respiration and ripening of tomato fruits
NZ524174A (en) A method and apparatus to detect stress in chlorophyll containing matter by exposing to a light and detecting the fluoresence signal
Potts et al. Changes in dissolved oxygen and microflora during fermentation of aerated, brined cucumbers
Schouten Dynamic control of the oxygen content during CA storage of fruits and vegetables
Geeson et al. The effects of ethylene concentration in controlled atmosphere storage of tomatoes
Neuwald et al. Dynamic controlled atmosphere (DCA) a chance for sustainable fruit storage
Allegra et al. The effect of passive atmosphere on quality of'Dottato'breba fig stored at low temperature
Bohling et al. Respiration measurements in various kinds of vegetables and fruit during storage under increased CO2 and reduced O2 concentrations
Zerbini et al. Chlorophyll fluorescence and gas exchanges in'Abbé Fétel'and'Conference'pears stored in atmosphere dynamically controlled with the aid of fluorescence sensors
Saïd et al. Respiration and nitrogen metabolism of whole and sliced radish roots with reference to the effect of alternation of air and nitrogen atmospheres
SU1250210A1 (ru) Способ контрол качества корнеклубнеплодов
WO2024134494A1 (en) Improved method for determining an atmospheric composition in a storage environment for respiring products